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Abstract: Site Index has been widely used as an age normalised metric in order to account for
variation in forest height at a range of spatial scales. Although previous research has used a range
of modelling methods to describe the regional variation in Site Index, little research has examined
gains that can be achieved through the use of regression kriging or spatial ensemble methods. In
this study, an extensive set of environmental surfaces were used as covariates to predict Site Index
measurements covering the environmental range of Pinus radiata D. Don plantations in Chile. Using
this dataset, the objectives of this research were to (i) compare predictive precision of a range of
geostatistical, parametric, and non-parametric models, (ii) determine whether significant gains in
precision can be attained through use of regression kriging, (iii) evaluate the precision of a spatial
ensemble model that utilises predictions from the five most precise models, through using the model
prediction with lowest error for a given pixel, and (iv) produce a map of Site Index across the study
area. The five most precise models were all geostatistical and they included ordinary kriging and
four regression kriging models that were based on partial least squares or random forests. A spatial
ensemble model that was constructed from these five models was the most precise of those developed
(RMSE = 1.851 m, RMSE% = 6.38%) and it had relatively little bias. Climatic and edaphic variables
were the strongest determinants of Site Index and, in particular, variables that are related to soil water
balance were well represented within the most precise predictive models. These results highlight the
utility of predicting Site Index using a range of approaches, as these can be used to construct a spatial
ensemble that may be more precise than predictions from the constituent models.

Keywords: ensemble of models; site productivity; machine learning; precision silviculture

1. Introduction

Pinus radiata D. Don (radiata pine) is the predominant plantation species within Chile
and there is considerable interest within the forest sector in the accurate prediction of Site
Index for this species [1]. P. radiata is the most widely established plantation species within
the Southern Hemisphere, and this species constitutes a large proportion of plantations in
Chile, New Zealand, and Australia [2]. This species is very responsive to environment and,
as a consequence, productivity has been found to range widely across the environments
over which it is grown [3,4]. A number of process-based models, such as 3PG [5], CenW [6],
and CABALA [7], have been developed to describe how the environment influences growth
of plantation species, such as P. radiata (e.g., Kirschbaum and Watt [8]). However, empirical
or hybrid models are still the most widely used for predictions of plantation productivity,
as these models are simpler to parameterise and can provide more precise estimates of
growth than process-based approaches [9].
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Stand productivity is modelled by empirical models as a function of stand age,
while using non-linear functional forms. Variation in the productivity between stands
is accounted for by standardised measurements of productivity at a given age that are
used to adjust both the trajectory and the asymptote of predictions of productivity over
time [10–12]. Site Index, which expresses the height of dominant or co-dominant trees at
a reference age [13], has been most widely used to account for this inter-stand variation,
as this metric is correlated with productivity [14,15] and the height of dominant trees is
relatively invariant to stand density [16–18].

Environmental surfaces have been widely used through a range of modelling ap-
proaches to develop maps of Site Index for P. radiata [3,19] and many other coniferous
tree species [20–25]. When compared to direct measurements of Site Index made using
plot data, which are typically averaged to the stand level, predictions of Site Index from
environmental surfaces open up a range of applications that are not available from tradi-
tional inventory. The resulting spatial description of Site Index provides insight into the
key environmental drivers of productivity and allows for managers to understand how
productivity is likely to vary across the landscape and where the optimal productivity will
occur at a range of resolutions from the intra-stand to the regional level [3,19]. In contrast
to spatial predictions of Site Index from remotely sensed data, such as LiDAR, [26], surfaces
of productivity, which are created from environmental surfaces can also be used to estimate
productivity for unplanted areas, providing managers with insight into the potential value
of land that they intend to purchase [27].

The use of Site Index surfaces to parameterise empirical growth models incorpo-
rates elements of process-based modelling, as Site Index integrates the most important
determinants of tree growth, including topography, soil characteristics, and climate [28].
Consequently, spatial predictions of Site Index provide a means of generating stand growth
curves that are sensitive to fine and coarser scale landscape level changes in climatic and
edaphic conditions [29]. These estimates of stand development allow for managers to
spatially optimise the timing of a range of silvicultural operations including thinning and
pruning, across their estate [30,31]. The site Index surfaces can also be used as input to
models that are used for key management decisions, such as the optimisation of final crop
stand density (Sopt) and the development of surfaces showing spatial variation in Sopt [32].

A large number of modelling methods with varying levels of complexity have been
used to predict Site Index for a wide range of forest species growing in Europe, North
America, and New Zealand. These methods range from relatively simple approaches, such
as multiple linear regression [4,21–25,33–44], to more complex parametric methods, such as
Partial Least Squares, Lasso, Elastic Net, Least Angle Regression, and Infinitesimal Forward
Stagewise Regression [45]. A wide range of non-parametric methodologies has also been
used to model Site Index, which includes Random Forests [46,47], Boosted Trees [33,34],
Classification and Regression Trees [33,34], Neural Networks [34], Generalised Additive
Models [33,34,48], and Multivariate Adaptive Regression Splines [45].

Parametric methods that utilise the spatial correlation between the underlying plot
data describing Site Index have been less frequently used to develop models and surfaces of
Site Index. Amongst these geostatistical methods, ordinary kriging and regression kriging
are the most commonly used techniques [3,19]. Because predictions are made by ordinary
kriging through interpolating values between measured plots, this method is most precise
when plots are located in relatively close proximity [3]. Regression kriging is less reliant on
a dense plot network than ordinary kriging, as this method fits an underlying regression
model and then geospatially refines these estimates through kriging the model residual
variation across the area of interest [3].

The recent emergence of advanced machine learning methods allows for greater utili-
sation of the increasing amount of information in geospatial surfaces, as these models can
often accommodate collinearity between closely correlated environmental variables [49,50].
Despite this advantage, few studies have compared the predictive precision of these meth-
ods with more traditional approaches. For forest species located in Belgium and Turkey,
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Site Index was more precisely predicted while using non-parametric methods than multiple
linear regression and, amongst non-parametric methods, artificial neural networks had
the highest predictive performance [33]. Comparative studies of model performance un-
dertaken in P. radiata plantations have highlighted the precision of regression kriging and
more advanced non-parametric models, but, as with other forest species, have not included
a comprehensive comparison of the models. Within New Zealand plantations, regression
kriging was found to be marginally more precise than ordinary kriging, which, in turn, was
more precise than Partial Least Squares [3,19]. A comparison of seven modelling methods
using data that were collected from northwest Spain found the non-parametric Multivariate
Adaptive Regression Splines (MARS) to be the most precisely predicted Site Index, which
was closely followed by the parametric methods of stepwise regression and PLS [45].

Because each modelling method has its own limitations and advantages [51], an
alternative approach for improving the overall model precision is to combine predictions
from each model [52,53]. This method, which is known as Ensemble Modelling, is a well
known methodology that can improve prediction through integrating knowledge from
many sources [53]. Although this technique has been used for the prediction of many soil
attributes [53,54] and class prediction studies [52], we are unaware of any studies that use
spatial Ensemble Models for the prediction of Site Index.

In Chile, different Site Index curves have been developed for each region and geo-
graphic area, although these local predictions are relatively inaccurate and there is little
understanding of how the Site Index responds to topography, climatic and edaphic condi-
tions [55]. Given the wide diversity of environmental conditions within the region over
which plantations are grown, we assumed that more than one modelling method would be
required to best predict Site Index across south-central Chile. Consequently, the objectives
of this study were to compare the precision of a wide range of modelling algorithms and
determine whether the combination of multiple algorithms (e.g., by the means of spatial
ensemble learning) could more precisely predict Site Index than the best performing single
modelling algorithm.

2. Materials and Methods
2.1. Data and Covariates Description

Stand level data describing Site Index of P. radiata were extracted from 20 year stands.
The site index for P. radiata is defined as the mean top height at age 20 years old, where
mean top height is defined as the mean height of the 100 largest diameter trees [56]. As
stands used in this study were planted between 1987–1997 Site Index could be estimated at
20 years of age rather than being projected forward to 20 years as is commonly done [57].
In total, there were 64,190 observations of Site Index available for modelling that were
dispersed from Región del Maule (latitude 35◦14′) to Región de los Ríos (latitude 40◦6′)
and covered a Site Index range of 14.2–42 m with a mean of 29.0 m. These observations
were randomly split, with 75% used for the fitting dataset, 12.5% for the calibration dataset
(used for the ensemble methodology only), and 12.5% for the validation dataset. All three
datasets covered a similar geographic range that was representative of the location of
P. radiata plantations through Chile (Figure 1). The site Index and enviromental conditions
were very similar between the three data sets, and they are summarized in Table 1.

The 64 environmental factors or covariates, as listed in Appendix B, were extracted for
each of the plot locations at a 90 × 90 m resolution from spatial layers. These spatial layers
described topography, vegetation index, soil properties, and climate. Topography was char-
acterised from a Digital Elevation Model (DEM) that was created using LiDAR. Automated
Geoscientific Analyses (SAGA) was used to extract the topographical variables listed in
Appendix B from this DEM. The enhanced vegetation index (EVI) was used in order to
characterise the vegetation. The values for EVI were derived from MODIS images collected
between 1987–2017 period that were reclassified to 90 × 90 m. Values of EVI describing the
mean, range, and standard deviation were extracted from this imagery (Appendix B). The
soil morphology was determined from the Chilean Natural Resources Information Center
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(CIREN). The soil properties were determined by interpolating data from ten thousand
soil pits that were distributed across south-central Chile that belong to Arauco. The soil
surfaces available from this dataset included soil depth, clay content, nutrient content
(C:N ratio, N content) and physical properties (available soil water, bulk density, hydraulic
conductivity). Long term monthly air temperature, rainfall, evapotranspiration, and water
balance were obtained from CR2 (Center for Climate and resilience research [58]), which is
unpublished information, but available for purchase.

Table 1. Site variation in climatic variables and Site Index for the fitting, calibration and validation data sets. The values
shown represent the mean, followed in brackets by the range.

Variable Fitting Data Set Calibration Data Set Validation Data Set

Site index (m) 28.9 (14.2–42) 29.3 (17.1–40.4) 29.0 (14.3 –38.9)
Mean annual Temperature (◦C ) 12.4 (9.7–14.9) 12.4 (10.1 –14.6) 12.5 (10–14.7)

Max temperature of warmest month (◦C ) 25.1 (17.5–31.7) 25.3 (18.3–31.5) 25.3 (17.7–31.5)
Min temperature of coldest month (◦C) 3.8 (0.7–7.9) 3.7 (1.4–7.1) 3.8 (1.3–7.9)

Annual precipitation (mm) 1385 (548–2807) 1374 (562–2467) 1364 (591–2569)
Precipitation of wettest month (mm) 278 (133–552) 276 (137–496) 273 (145–545)
Precipitation of driest month (mm) 22.6 (0.9–70.3) 23.2 (0.9–66.6) 22.3 (1.6–66.4)

Figure 1. Map of the spatial distribution of observations, showing the location of (a) fitting (n = 48,117), (b) calibration
(n = 8036), (c) validation (n = 8037) data sets and (d) Delineation of the study area within the Chilean territory.

In addition to long term averages, mean climatic data that were linked to the time
period of each plot were also used within analyses. These covariates were developed for
the model prediction while using the climate that was experienced by each forest stand
(observations), from the plantation establishment until an age of 20 years, including the
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effect of rainfall for different stand periods (first, second, and forth initial years post estab-
lishment), accumulative cold days, evapotranspiration, and water deficit index per stand.
Where these variables were significant based on the relative environmental feature selection
(details in Section 2.2), they were used to construct the models. The map development
used raster surfaces of these variables while using the average values over the last 30 years
for air temperature, water balance, rainfall, and evapotranspiration.

2.2. Subsetting of Covariates for the Modelling

A pre-processing method was used in order to extract a subset of relevant features from
the available 64 covariates. According to Weston et al. [59], this step plays an important role
in improving prediction performance and can reduce overfitting. Two types of redundant
features selection were made. The first was for non-parametric models (NPM), which
included random forest (RF), support vector machines (SVM), neural network (ANN),
eXtreme Gradient Boosting (XGBoost), and Multivariate Adaptive Regression Splines
(MARS). The second method was used for parametric models (PM), including multiple
linear regression (MLR), partial least squares (PLS), and elastic net (EN). Appendix A
provides the description of the pre-processing that each of these models follow. Using
the methods detailed in the next subsections, a total of 18 variables were selected for PM,
while 20 were selected for NPM. From these selected ’optimal’ variables, the top five were
identified based on their level of importance ranking, while using the mean reduction in
accuracy (MDA) for NPM (further details in Section 2.1) and Pearson correlation coefficient
for PM. The models of Site Index were developed while using PM and NPM methods that
were based on both the optimal selection and the top five variables. Model development
using the reduced number of variables was undertaken in order to produce a greater
computational time efficient alternative, interpretable, and parsimonious models, and to
explore how variable number affected statistical differences in SI prediction.

2.2.1. Covariate Selection for Non-Parametric Models

Recursive Feature Elimination (RFE) implemented via caret [60] was used to subset
variables for the NPM. This method seeks to improve generalization performance through
removing the features that have the least effect on training errors [61]. RFE is basically
a backward selection of the predictors, which selects features by recursively considering
smaller and smaller sub sets of features, and then builds a model while using the remaining
attributes and calculates model accuracy with an internal cross-validation [62].

During the reduction of input selection with RFE the importance of each variable
is measured based on the MDA. This process assesses how much the prediction accu-
racy drops by randomly permuting the values of each input variable (one at a time). A
higher importance of the input variable under consideration corresponds to larger reduc-
tions in the prediction accuracy [63]. The top five covariates were selected based on RFE
importance level.

2.2.2. Covariate Selection for Parametric Models

A penalized regression was used in order to reduce the number of predictors for PM as
this method has been shown to produce more parsimonious models [64]. A least absolute
shrinkage and selection operator (LASSO) was used to penalize the parameter estimates
to avoid overfitting. LASSO finds the best variables and coefficients by minimizing the
residual sum of squares and adding penalties that are useful for fitting a wide variety
of linear models [65]. This technique requires the selection of a tuning parameter λ that
determines the amount of shrinkage.

This method was followed by a complementary collinearity test while using the vari-
ance inflation factor (VIF). VIF can be used in order to identify correlated variables, which
can inflate coefficient values, and it is determined from the following formulation [66],

VIFi =
1

1− R2
i

(1)
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where R2 is the coefficient of determination.
The variables that were identified to be most important by penalized regression were

reduced to a set of 18 predictors while using a procedure that sequentially eliminated
correlated variables with a VIF that exceeded four [66].

After LASSO and VIF were completed, a ranking of the variables was obtained that
was based on the strength of the regression between the variable and Site Index.

2.3. Modelling Approach
2.3.1. Overview

Five types of modelling methods were used in order to predict Site Index. Each of
them used various machine learning and regression algorithm methods, which included:
(1) geostatistical models (ordinary kriging [3,19]); (2) parametric models (multiple linear
regression, partial least squares [45], elastic net); (3) non-parametric models (random for-
est [67], support vector machines [62], neural network [33], XGBoost [68] and MARS [45]);
(4) hybrid models (random forest-kriging and PLS-kriging [19]); and, (5) a modelling ensem-
ble approach using the best five models from the previous four categories. The strategy for
fitting the models is outlined below. The parametric, non-parametric models and ordinary
kriging (OK) were fitted to Site Index while using the fitting dataset. Regression kriging
was then used to create a range of hybrid models from the fitting dataset, through kriging
the residuals of the partial least squares and random forest models. Predictions from all
of these models were then made on the calibration dataset. The five most precise models
were selected from this process and the difference between the actual and predicted Site
Index (residuals) for these five models were determined. The residuals for these five most
precise models were kriged using OK. For all pixels, the model with the lowest residual
was selected and this combination of predictions from all five models was termed as the
model ensemble (Code available on [69]. The final precision of all of the models that were
developed, including the ensemble, was determined through predictions that were made
on the validation dataset.

2.3.2. Model Description and Fitting Procedure

Appendix A provides abrief explanation of all the parametric and non-parametric
models. Each of the PM and NPM machine learning models was fitted while using the
caret package within R [60], utilising a five fold cross validation. Hyperparameters for the
models were optimized using a grid search that started with a wide search radius and
narrowed down to the final values over a series of iterations. Table 2 summarises the final
hyperparameters.

Geostatistical models have been widely used for predicting spatially continuous
variables that are based only on geospatial locations. Ordinary kriging (OK) is one of the
most widely used geostatistical methods [3,19,70–72], in which the value for an unsampled
point is estimated based on the weighted average of observed neighbouring points within a
given area [72]. The neighborhood was restricted to include only the 100 nearest neighbours.
Ordinary Kriging was used in order to predict Site Index from,

Ẑ(S0) =
n

∑
i=1

λiZ(Si) (2)

where Ẑ(S0) is the predicted value of an unvisited location S0, Z(S1), .., Z(Sn) are the
measured values and their location, and λi are the weights that depend on the spatial auto-
correlation of the variable, as defined by the semi-variogram (see below for description).

Regression kriging is a hybrid modelling technique that combines model prediction of
the dependant variables with ordinary kriging of the model residuals [73,74]. This method
was used in order to predict Site Index, at an unsampled site, from,

Ẑ(S0) = m̂(S0) + ε̂(S0) (3)
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where the drift m̂ refers to the predictions made by the modelling method (as described
above) and the residuals from these models, ε̂, are interpolated while using ordinary
kriging. In this study, the model drift was estimated while using random forests and partial
least squares.

Semi-variance is used within ordinary kriging and regression kriging to describe the
spatial autocorrelation of measured values between locations. The plot of semi-variance
against distance is a semi-variagram [74]. In this study the semi-variogram was fitted
using the autofitVariogram from the R package automap, which tests various models
(spherical model, exponential model, gaussian model, and Stein’s parameterization) and
automatically fits the most precise to the data [75].

Table 2. Final hyperparameters used in each model. The term “opt” or “5” is added to specify whether the model was fitted
using the top five or the optimum number of covariates.

Model Hyperparameter Best Tune (5) Best Tune (Opt)

PLS Components (ncomp) 4 12

Elastic net Mixing Percentage (alpha) 0.02020202 0.03030303
Regularization Parameter (lambda) 0.0102 0.0102

Random forest
Ramdomly selected parameter (mtry) 2 11

Splitting rule extratrees extratrees
Minimum node size 5 5

SVM Cost 1 0.25
Lost function L2 L2

Neural network Hidden Units (size) 7 7
Weight decay 0.1 0.1

XGBoost

Boosting Iterations (nrounds) 200 200
Max Tree Depth 2 2
Shrinkage (eta) 0.3 0.3

Minimum Loss Reduction (gamma) 0 0
Subsample Ratio of Columns (colsample_bytree) 0.8 0.8

Minimum Sum of Instance 1 1
Subsample Percentage 0.7 1

MARS Terms (nprune) 23 34
Product Degree 2 2

2.3.3. Model Evaluation

Each model was evaluated by comparing the performance of our predicted Site Index
with the validation data set, following the procedure that was proposed in Guevara and
Olmedo [71]. Using modStats from the openair library from R, the statistics of different
models were compared [76]. These statistics included root mean square error (RMSE),
Mean Bias (MB), the Pearson correlation coefficient (r), and Index of Agreement based on
Willmontt (IOA), which were defined, as follows:

RMSE =

√
∑n

i=1(ŷ− y1)2

n
(4)

MB =
1
n

n

∑
i=1

(y1 − ŷ) (5)

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i−1(xi − x)2
√

∑n
i−1(yi − y)2

(6)
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[IOA] = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(|ŷi − y|+ |yi − y|)2 (7)

where ŷ is the predicted value in i, y is the average of the observed values (analogously for
x), yi is the observed value (analogously for x), and n is the number of plots.

3. Results
3.1. Covariate Selection

While using the covariate selection process described above, the number of indepen-
dant variables used in the modelling was reduced from sixty-four to twenty for NPM and
eighteen for PM (Table 3). These were further subsetted to the top five variables that are
based on their importance level. The 18 key variables selected for PM were predominantly
related to topography, with the remainder being evenly distributed across the climate,
soil properties and vegetation categories. Eight of the 20 variables selected for NPM were
related to climate with the remainder evenly distributed within the other three categories.
The top five variables from the selected covariates mainly related to soil properties for PM
and included soil hydraulic conductivity, available soil water, C:N ratio, and soil depth.
From NPM, these top five variables were all related to climate and included growing
degree days, rainfall, and two variables that accounted for seasonality in rainfall and air
temperature.

Table 3. Selected environmental covariates for parametric models (PM) and non-parametric models (NPM). A more detailed
description of each variable is given in Appendix B.

Covariate Category PM Ranking Selection NPM Ranking Selection

AGDD5 Climate Top 5
ET Climate Optimum Optimum

Rain1 Climate Optimum Top 5
Rain2 Climate Optimum
Rain4 Climate Top 5

biovar.3 Climate Optimum Optimum
biovar.4 Climate Optimum Top 5

biovar.15 Climate Top 5
Total nitrogen content Soil Properties Optimum

Soil hydraulic conductivity Soil Properties Top 5 Optimum
Clay content Soil Properties Optimum

Available soil water Soil Properties Top 5
Carbon to Nitrogen ratio Soil Properties Top 5

Soil Depth Soil Properties Top 5 Optimum
Elevation Topography Optimum

Aspect Topography Optimum
Chanel Network Base Level Topography Optimum
Channel Network Distance Topography Top 5

Slope Length and Steepness Factor Topography Optimum
Tangential Curvature Topography Optimum

Terrain Surface Convexity Topography Optimum Optimum
Profile Curvature Topography Optimum

Valley Depth Topography Optimum Optimum
EVI mean Vegetation Optimum Optimum
EVI min Vegetation Optimum Optimum

EVI range Vegetation Optimum
EVI sd Vegetation Optimum Optimum

3.2. Creation of the Ensemble Model

Predictions that were made on the calibration data showed that the five most precise
models were either geostatistical or hybrid models. Four of these models were developed
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through regression kriging while using PLS and random forests with either the optimum
set of covariates or the top five covariates, while the fifth model used OK. Within the
calibration dataset residuals were extracted from these five models and OK was used
to spatially interpolate values throughout the study area. An ensemble model was then
created from these five models by selecting, from each pixel, the model with the lowest
residual (Figure 2).

Figure 2. Map showing the allocation of the most precise model per pixel, represented by (1) PLS-
kriging (opt); (2) PLS-kriging (5); (3) Ordinary Kriging; (4) Random Forest-Kriging (5); and, (5)
Random Forest-Kriging (opt). Grey colour represents areas with no information.

3.3. Validation of the Models

All of the created models were fitted to the validation dataset and the model statis-
tics are displayed for the top five models (Table 4) and all models (Appendix C). The
model ensemble was the least biased (mean bias = −0.0227 m) with the highest preci-
sion (RMSE = 1.8505 m, r = 0.8103 and IOA = 0.7228). The five models that were used in
order to create the ensemble were also the next most precise, with RMSE ranging from
1.8888–2.0373 m (Table 4) and mean bias ranging from 0.0309–0.5537 m. The number of
variables included in the model did not markedly affect model precision, as these five
models included regression kriged PLS and RF models that had either five variables or the
entire set of covariates (18 for PLS and 20 for RF).

A plot of predicted against actual and residual values for the ensemble showed little
apparent bias (Figure 3). This bias was smallest for the high density observations and
residuals for these observations largely did not exceed 2 m. However the model did slightly
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overpredict at low values and underpredict at high values of Site Index, but this bias was
generally constrained to outlying points that occurred at low density (Figure 3).

Table 4. Model validation for different statistical estimators showing mean bias (MB), root mean
square error (RMSE), Pearson correlation coefficient (r), and Index of Agreement based on Willmontt
(IOA). The term “opt” or “5” is added to specify if the model uses the top five or the optimum
number of covariates.

Model MB RMSE R IOA

Model Ensemble −0.0227 1.8505 0.8103 0.7228
PLS-kriging(opt) 0.2513 1.8888 0.8072 0.7155
Ordinary Kriging 0.1603 1.9332 0.7920 0.7081

PLS-kriging(5) 0.0309 1.9632 0.7893 0.7000
Random Forest-Kriging(5) 0.1718 1.9974 0.7839 0.7025

Random Forest-Kriging(opt) 0.5537 2.0373 0.7853 0.6916

Figure 3. Relationship between Site Index predicted by the ensemble model and (a) observed Site Index and (b) residual
Site Index.

3.4. Predictions of the Models

Figure 4 illustrates the SI prediction of the five most precise models along with the
ensemble approach. All five models that were used to produce the ensemble show the
highest values of Site Index occurred at a latitude of ca. 36–38◦ S within coastal and some
parts of the inland areas. With the exception of OK, the lowest Site Index was predicted
to occur in northern regions and in eastern regions that are close to the Andes. OK did
not predict low values in eastern regions, as there were few plots in this area, but did
predict low values in the north, where the plot density was higher. Predictions from
the ensemble largely reflected the values from the five constituent models. This model
predicted moderate to high values of Site Index in coastal areas and within the central
valley with the lowest predicted values occurring in the eastern and northern regions.
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Figure 4. Site Index predictions from the five most precise models and the ensemble approach; (a) Random Forest-
Kriging(opt); (b) Random Forest-Kriging(5); (c) Ordinary Kriging; (d) PLS-Kriging(opt); (e) PLS-Kriging(5); and, (f)
Ensemble map. Areas that are coloured grey are regions with no information.

4. Discussion

This study clearly demonstrated the utility of geostatistical methods for predicting
the Site Index of P. radiata. While using a novel spatial ensemble approach, the most
precise model for each pixel was combined in order to produce an overall model with
a more precise prediction that the constituent models. The final model had an RMSE of
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1.88 m which compared favourably with previous predictions for both P. radiata and other
coniferous species [3,19,33,34]. The variable reduction process highlighted the sensitivity
of Site Index to climatic and edaphic factors.

The geostatistical models of ordinary kriging or regression kriging provided the
most precise predictions of Site Index among the compared methods. Previous studies
have primarily focused on comparisons of precision between the models of Site Index,
which do not include a geostatistical component, demonstrating that non-parametric gen-
erally outperform parametric models [33,45,46]. Our results extend this research through
demonstrating that the addition of a spatial component to both of these model types
outperforms models without this component. Gains through regression kriging over the
base model were particularly marked for the most precise model, which utilised PLS
(r = 0.807 vs 0.705), demonstrating the utility of this approach. Although regression kriging
has been widely used for prediction in other domains [67,77,78], with few exceptions
very little research has used regression kriging for prediction of productivity indices.
As noted by Samuel-Rosa et al. [79], there was generally a consistent but small reduction
in precision when the number of variables in the models was reduced from between 18–20
to five.

Regression kriging and ordinary kriging have been found to be the most precise
when applied to high density datasets. The accuracy of OK is most influenced by the
spatial point pattern (random, aggregated, or regular), sampling density (high or low),
autocorrelation, data distribution (normal and skewed), and heterogeneity of the data [80].
The high density of observations in this study favoured the use of ordinary kriging and
regression kriging, which is consistent with a model of P. radiata Site Index developed in
New Zealand [19]. Regression kriging is less sensitive to the spatial distribution of the
sample plots than ordinary kriging, as this method also includes an underlying model that
is based on environmental variables. As a result, regression kriging can outperform OK
when datasets include a range of plot densities across the area of interest (e.g., [19]).

A novel ensemble approach was used here to spatially combine predictions from
the five most precise prediction models. Although ensemble methods have been widely
used in other disciplines [52,54,81,82], this method has not previously been used in order
to predict Site Index. Most ensemble approaches combine predictions from all models
across the entire study area using a range of approaches to weight the individual model
predictions [81,83]. Our approach differs in that a single model was used in order to predict
Site Index within each pixel, which improved the overall predictive precision over any of
the five constituent models.

One of the advantages of our ensemble approach is that this method highlighted
regions in which each model performed best, which may be useful if predictions need
to be made within a sub-set of the study area. The RF–Kriging method was found to
be well suited to northern regions with sparse observations and southern parts of the
study area without observations, which highlights the utility of this approach, where the
observation density is low. OK had less error in regions where there were both sparse and
denser observations. In high altitude eastern areas where the OK model was not selected
predictions from this model are likely be higher than actual values as there were not any
points to interpolate within this region. In the central part of the study area, as well as
southern parts of the Andes, PLS–riging had the lowest prediction error and this region
generally included a dense concentration of observations.

The five environmental variables that were the most important determinants of Site
Index were all climatic variables for the RF-Kriging model and almost all edaphic variables
for the PLS-Kriging model. Growing degree days, accumulated rainfall during years 1
and 4, and variables describing the rainfall and temperature seasonality were the most
important climatic determinants of Site Index. Growing degree days has a sound physio-
logical basis as a predictive variable, as P. radiata height extension is strongly regulated by
air temperature [84,85] and, consequently, this variable controls the length of the growing
season. The sensitivity of Site Index to rainfall has been well established [4,8] and our study
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clearly demonstrates the importance of adequate rainfall during the years immediately
after establishment. The seasonality of air temperature and rainfall were also important
regulators of Site Index within Chile, where both of the variables exhibit a marked seasonal
variance [86].

Important soil properties included C:N ratio, soil hydraulic conductivity, available
soil water, and soil depth. Soil C:N ratio has been found to be a key determinant of
conifer productivity [87] and it is a more precise proxy of soil nutrient availability than N
as C:N ratio accounts for the positive relationship between carbon content and nitrogen
immobilisation [88–92]. Both available soil water and soil depth control the amount of
water available to trees which are key attributes within the study area where rainfall is
often sparse and highly seasonal [86]. Similarly, soil hydraulic conductivity is also related
to water availability and it reflects the soil’s ability to transmit water when subjected to a
hydraulic gradient, therefore controlling the partitioning of precipitation between surface
runoff and groundwater recharge [93].

Although enhanced vegetation index was not included in the top five variables,
variables describing the mean and dispersion of EVI consistently featured among the
optimum variables for both types of model. Previous research has found EVI to be a useful
predictor of forest canopy structure [94]. There is a strong physiological link between this
variable and growth rate, as EVI has also been found to be strongly related to leaf area
index (LAI) [95,96] and EVI can also be used in order to identify the start of the growing
season [97].

Topographic variables that were well represented for prediction of Site Index in both
types of models included terrain surface convexity (TSC) and valley depth. These covari-
ates influence local microclimate and soil-forming processes, and they are consequently
associated with the soil type [43]. Both TSC and valley depth are also associated with
multiple environmental variables, such as water drainage and water availability, as well as
the accumulation of clay and other soil particles. Valley depth is also likely to be a proxy
for local exposure to the wind. As higher windspeeds result in reduced tree height and
increased diameter [98–101] P. radiata located in deep valleys with little wind exposure has
been found to have significantly greater height than trees that are located on ridges or more
exposed areas [102,103].

The direct estimation of Site Index from height data that were collected at the index age
of 20 years reduced the error from extrapolation. According to Burkhart and Tomé [104],
estimates of Site Index using measurements that coincide with 20 years are rare. As a result,
most SI studies use equations to extrapolate height to the required index age, which is an
approach that is potentially biased [105,106]. More recent methods, such as the generalised
algebraic difference approach (GADA), which include polymorphic models, provide a
more accurate estimation method, but still include uncertainties in the final prediction [105].
An additional advantage of using an older dataset was that site specific climatic conditions
could be estimated over a uniform period of the rotation length from establishment to
20 years of age.

5. Conclusions

In conclusion, we found geostatistical models of Site Index to outperform a range
of parametric and non-parametric models without a geo-spatial component. These five
geostatistical models were successfully combined into an ensemble model that was more
precise than the constituent models. Climatic and edaphic variables were most strongly
related to Site Index, although EVI and many topographic variables were also widely
used within the five most precise models. Variables that are related to soil water balance,
such as rainfall, soil depth, and water holding capacity, were well represented in the top
five models reflecting the importance of water limitations in regulating growth across the
study area.

This research highlights the potential improvements that can be gained through the
application of sophisticated modelling methods to site productivity modelling, which are
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likely to be transferrable to other species and countries. Although geostatistical models,
such as Ordinary Kriging, are not likely to be as applicable in situations with sparser
datasets the regression models used here would be applicable under these circumstances.
Future research should more fully utilise LiDAR from existing plantations, as these data
can be used to estimate height and Site Index very precisely. In the context of this study,
LiDAR can also be used as a supplemental form of plot data, which could prove to be
useful when existing plot data are sparse or do not completely cover all environmental
conditions. These estimates can be used as input to machine learning and geostatistical
models to generate surfaces and predictions of Site Index for unplanted sites.
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Appendix A

Appendix A.1. Parametric Models

Appendix A.1.1. Multiple Linear Regression

Multiple linear regression is a statistical method that predicts the response variable
from more than one independent variable. Use of this method assumes that independent
variables are not too highly correlated and that residuals from the final model are normally
distributed [107].

Appendix A.1.2. Partial Least Squares

Partial least squares (PLS) condenses the most useful information from a large number
of predictors to a reduced set of uncorrelated components. These components are then used
within a regression to predict the dependant variable [3,108]. The main advantage of this
method is that provides a lower risk of chance correlation and higher predictive accuracy
than multiple regression particularly when there are a large number of correlated predictors
in the dataset [109]. The number of components within the model was optimised.

Appendix A.1.3. Elastic Net

Elastic net (EN) is a form of regularised regression. This method incorporates penali-
ties from both lasso and ridge regression that constrain the coefficient size within the model.
EN performs automatic variable selection like Lasso, while the penalization from the Ridge
term stabilizes the solution paths which improves the prediction accuracy. The model was
fitted using the ‘glmnet’ method, which was used to optimise the two hyperparameters
alpha (mixing percentage) and lambda (regularization parameter).
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Appendix A.2. Non-Parametric Models

Appendix A.2.1. Random Forest

Random Forest (RF) consists of a combination of many binary decision trees built
using several bootstrap samples from a supervised machine learning algorithm, which
randomly chooses, at each node, a subset of explanatory variables [110]. RF belongs to
the family of ensemble methods, in where the final prediction comprises the average
predictions from individual trees [111].

Using the caret package [60], a more memory efficient implementation of RF, using
the ‘ranger’ method was applied [112]. For this methodology the following parameters
were optimised: (i) the number of randomly selected predictors (mtry), (ii) the minimum
node size and (iii) the splitting rule.

Appendix A.2.2. Support Vector Machines

Support vector machine (SVM) applies a simple linear technique to the data but
in a high-dimensional feature space that is non-linearly related to the input space [113].
The regularized SVM Machine (dual) with Linear Kernel was fitted to the data [60]. The
covariates were standardized by pre-processing the predictor data (“center”, and “scale”).
The loss function and cost parameters were optimised within the model.

Appendix A.2.3. Neural Network

Neural networks or artificial neural networks (ANN) consist of processing units called
neurons or nodes, whose functionality is loosely based on the structure and behaviour of
the natural neuron. This technique uses mathematical models that learn nonlinear relation-
ship between the data set, and response variable for both prediction and classification [114].
ANN was fitted using “nnet” method [60] and the hidden units and weight decay parame-
ters were optimised.

Appendix A.2.4. Xgboost

The method eXtreme Gradient Boosting (XGBoost) is a scalable implementation of
gradient boosting framework developed by Friedman [115]. XGBoost is a supervised
machine learning, using decision-tree algorithms. This method builds models from adding
individual so called “weak learners” from a gradient descent algorithm over an objective
function. XGBoost used the caret package with the “xgbTree” methodology [60]. The
hyperparameters that were tuned for this method, included : (i) boosting iterations, (ii)
maximum tree depth, (iii) shrinkage, (iv) minimum loss reduction, (v) subsample ratio of
columns, (vi) minimum sum of instance weight, and (vii) subsample percentage.

Appendix A.2.5. Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) is a regression technique that
captures the nonlinear relationships in the data by assessing cutpoints (knots), which
identifies regions where the relationship between the predictor variable and the response
changes [116]. The main advantage of MARS is that it enhances the interpretability of
complex interactions between the predictor and the response variables. This model was
fitted using the “earth” method in the caret package [60], which tuned the number of terms
(the maximum number of knots) and the number of variable interactions.



Forests 2021, 12, 77 16 of 21

Appendix B

Table A1. Environmental raster covariates list.

Code Category Description

AGDD5 Climate Growing degrees day base 5 (◦C)
AGDD10 Climate Growing degrees day base 10 (◦C)
AGDD15 Climate Growing degrees day base 15 (◦C)

Rain Climate accumulative rainfall per stand (mm)
DH Climate accumulative water deficit index per stand (mm)
DH4 Climate accumulative water deficit index per stand first 4 years (mm)
ET Climate accumulative evapotranspiration per stand (mm)

Rain1 Climate accumulative rainfall per stand first year (mm)
Rain2 Climate accumulative rainfall per stand first 2 years (mm)
Rain4 Climate accumulative rainfall per stand first 4 years (mm)
ColdD Climate accumulative cold days per stand (days)

biovar.1 Climate bio1 = Mean annual temperature (◦C)
biovar.2 Climate bio2 = Mean diurnal range (mean of max temp - min temp) (◦C)
biovar.3 Climate bio3 = Isothermality (bio2/bio7) (× 100) (%)
biovar.4 Climate bio4 = Temperature seasonality (standard deviation × 100) (%)
biovar.5 Climate bio5 = Max temperature of warmest month (◦C)
biovar.6 Climate bio6 = Min temperature of coldest month (◦C)
biovar.7 Climate bio7 = Temperature annual range (bio5-bio6) (◦C)
biovar.8 Climate bio8 = Mean temperature of the wettest quarter (◦C)
biovar.9 Climate bio9 = Mean temperature of driest quarter (◦C)

biovar.10 Climate bio10 = Mean temperature of warmest quarter (◦C)
biovar.11 Climate bio11 = Mean temperature of coldest quarter (◦C)
biovar.12 Climate bio12 = Total (annual) precipitation (mm)
biovar.13 Climate bio13 = Precipitation of wettest month (mm)
biovar.14 Climate bio14 = Precipitation of driest month (mm)
biovar.15 Climate bio15 = Precipitation seasonality (coefficient of variation) (%)
biovar.16 Climate bio16 = Precipitation of wettest quarter (mm)
biovar.17 Climate bio17 = Precipitation of driest quarter (mm)
biovar.18 Climate bio18 = Precipitation of warmest quarter (mm)
biovar.19 Climate bio19= Precipitation of coldest quarter (mm)

Frost Climate average number of cold Day (days)
PRM Soil Morphology Parent rock material
BLD Soil Properties Bulk density

SHC_0_30 Soil Properties Soil hydraulic conductivity (0–30 cm)
CLAY Soil Properties Clay content (%)
ASW Soil Properties Available soil water

N_0_60 Soil Properties Total Nitrogen content from 0 to 60 cm of soil depth (kg/ha)
C_N Soil Properties Carbon to Nitrogen ratio

SoilDepth Soil Properties Soil Depth
Elevation Topography LiDAR + SRTM elevation (m.a.s.l)

Aspect Topography Aspect Degree (%)
Slope Topography Slope Degree (%)
CNBL Topography Channel Network Base Level (m.a.s.l)
CND Topography Channel Network Distance
LC Topography Longitudinal Curvature
CI Topography Convergence Index

LS_factor Topography Slope Length and Steepness Factor
Max_Curv Topography Maximal Curvature
Min_Curv Topography Minimal Curvature
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Table A1. Cont.

Code Category Description

Prof_Curv Topography Profile Curvature
Tang_Curv Topography Tangential Curvature

TSC Topography Terrain Surface Convexity
TRI Topography Terrain ruggedness index
TPI Topography Topographic Position Index
TWI Topography Topographic Wetness Index

ValDepth Topography Valley Depth
EVI_mean Vegetation Average Enhance vegetation index from last 20 years
EVI_min Vegetation Minimum Enhance vegetation index from last 20 years
EVI_peak Vegetation Maximum Enhance vegetation index from last 20 years
EVI_range Vegetation Enhanced vegetation index range from last 20 years

EVI_sd Vegetation Standard deviation for EVI from last 20 years
PWU Water balance Potential water use
WDI Water balance Water deficit index
WS Water balance Water surplus

Appendix C

Spatial model validation, including the ensemble approach with the validation data set.

Table A2. Model validation to different statistical estimators. Mean Bias (MB), Root mean square
error (RMSE), Pearson correlation coefficient (r) and Index of Agreement based on Willmontt (IOA).
The term “opt” or “5” is added to specify if the model use the top five or the optimum number of
covariates.

Model MB RMSE R IOA

Model Ensemble −0.0228 1.8505 0.8103 0.7229
PLS-kriging(opt) 0.2609 1.8884 0.8074 0.7154
Ordinary Kriging 0.1813 1.9477 0.7888 0.7059

PLS-kriging(5) 0.0368 1.9587 0.7901 0.7009
Random Forest-Kriging(5) 0.1767 1.9927 0.7849 0.7035

Random Forest-Kriging(opt) 0.5590 2.0340 0.7864 0.6921
Random Forest (opt) 0.5334 2.0496 0.7793 0.6844

XGBoost (opt) 0.5996 2.1420 0.7583 0.6714
Random Forest(5) 0.6542 2.1795 0.7521 0.6708

Neural network(opt) 0.2924 2.3034 0.7010 0.6524
XGBoost(5) 0.8710 2.3129 0.7344 0.6354
MARS(opt) 0.6446 2.4419 0.6934 0.6106

PLS(opt) 1.2366 2.5921 0.7052 0.5924
Multiple linear regression(opt) 1.2368 2.5922 0.7052 0.5924

Elastic net(opt) 1.2429 2.6019 0.7030 0.5907
Neural network(5) 1.0331 2.6561 0.6380 0.5924

MARS(5) 1.6199 2.8209 0.6929 0.5499
Support vector machine(opt) 1.1034 3.1136 0.4028 0.5114
Multiple linear regression(5) 1.7278 3.3910 0.4025 0.4514

PLS(5) 1.7298 3.3930 0.4036 0.4513
Support vector machine(5) 3.1245 4.5882 −0.1750 0.2521

Elastic net(5) 20.3880 20.9859 0.2763 −0.7439
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