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Abstract: In order to secure a supply of forest biomass, as well as promote further utilization
following the completion of the Feed-in-Tariff Scheme for Renewable Energy (FIT), small-diameter
trees such as cleanings from young planted forests and broad-leaved trees from coppice forests are
prospective resources in Japan. The goal of this study was to discuss effective methods for harvesting
the small-diameter trees that are unutilized forest biomass in Japan. This study assumed a simplified
model forest and conducted experiments and time studies of the harvesting of small-diameter trees
with a truck-mounted multi-tree felling head. As a result, the machine used in the experiment
could fell a maximum of six trees inward in a row from a forest road. However, the harvesting
cost (felling, accumulating and chipping) was cheapest when the machine felled five trees inward
in a row. Lengthening the maximum reach of a felling head to fell trees deeper inward in a row
appeared effective in increasing the number of harvested trees. From the perspective of minimizing
the harvesting cost, however, there were upper limits to the number of trees felled inward as well as
to the maximum reach of a felling head. The results of a sensitivity analysis suggested the following
machine improvements could be considered in future policy: increasing the moving velocity of a
felling head and the maximum number of trees that can be held at a time are effective if it is possible
to lengthen the maximum reach of a felling head. Meanwhile, shortening the machine’s moving time
among operation points is also effective if the maximum reach of a felling head cannot be lengthened.

Keywords: small-diameter tree; forest biomass; multi-tree felling head; time study; harvesting cost

1. Introduction

The Feed-in-Tariff Scheme for Renewable Energy (FIT) was launched in Japan in
2012 and the scheme has increased the energy utilization of forest biomass. In the case of
biomass, the electric utilities have committed to buying the electricity derived from biomass
at a higher price than the normal retail one for 20 years. Thus, power generation plants
that accept unused forest biomass (such as thinnings and logging residues rather than
wood-based materials such as mill residues and imported woods) have been built and the
initiation of plant operations are progressing, in part due to the purchase price incentive [1].
As a result, 3.03 Tg of wood chips on a dry weight basis derived from thinnings and logging
residues were used as energy in Japan in 2019 [2].

The use of small-diameter trees is also promising. The area covered by planted forests
that have undergone final cutting and subsequent reforestation is now gradually increasing.
Thus, a cleaning operation in young planted forests will be necessary 15–20 years from
now, when the FIT will expire. The development of an efficient harvesting technology for
small-diameter trees can thus be expected to contribute not only to securing a source of
forest biomass for power generation plants but also to the continuous tending of young
planted forests after regeneration.

Broad-leaved woody coppices have substantial potential. Before and during World
War II, an average of 50 million m3/y of naturally regenerated forest was felled and har-
vested for energy use in the form of charcoal and firewood in Japan. The annual available
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amount of naturally regenerated broad-leaved trees for energy is estimated to be 9 Tg/y
on a dry weight basis [3]. The rich ecosystems of coppice forests were traditionally main-
tained by periodic cutting. Broad-leaved forests are now left unutilized and degradation
is progressing. Therefore, a new approach to hardwood forest management under cyclic
logging for the purpose of energy use is proposed so that the former rich ecosystems can
be restored.

The authors’ research group has studied technologies and systems for harvesting,
transporting and chipping logging residues on steep terrain in Japan [4–10]. In the case
of logging residues, the calculation of the procurement cost begins from the harvesting
operation at a logging site where the limbing and bucking processes are carried out
while the felling and accumulating processes must also be considered to calculate the
procurement cost of small-diameter trees. Thus, in Japan, forest biomass from small-
diameter trees is considered to be a resource second to that from logging residues in the
Biomass Nippon Strategy [11].

Harvesting technologies for small-diameter trees have been developed and examined
in North America [12–16] and Europe [17–19]. In Nordic countries, the accumulative func-
tion equipped with feller-bunchers and harvesters is utilized in harvesting small-diameter
trees for bioenergy use [20–23]. For example, Belbo compared two working methods for
small tree harvesting with a multi-tree felling head mounted on a farm tractor [24] and
Laitila et al. examined the forwarding of whole trees after manual and mechanized felling
and bunching in pre-commercial thinning [25]. Harvesting small-diameter trees has not
been examined in Japan since Japanese forestry fell behind in mechanization. Nitami et al.
proposed the harvesting of small-diameter trees by introducing accumulative felling and
compressing machines [26] but a developed system has never been demonstrated. In the
effort to clarify effective methods of harvesting such as small-diameter trees as unutilized
forest biomass appropriate for Japan, this study conducted experiments and time studies
in the harvesting of small-diameter trees with a truck-mounted multi-tree felling head.

2. Materials and Methods
2.1. Assumed Simplified Model Forest and Harvesting System

In this study, an effective method for harvesting small-diameter trees as unutilized
forest biomass appropriate for Japan is discussed using a simplified model forest (Figure 1)
in which there was a broad-leaved coppice forest on either side of a 3 m wide forest road.
The stand density and biomass per unit area were assumed to be 12,000 trees/ha (growing
0.91 m apart in a reticular pattern) and 30 BDT/ha (BDT: bone-dry ton), respectively. When
a felling machine harvested the coppice trees repeatedly in a clear cut way moving each
operation point in turn, the number of trees felled inward in a row that minimized the
harvesting cost was examined.

The following operations by two machines were assumed (Figure 2). The first ma-
chine was a chipper equipped with a multi-tree felling head. It felled and accumulated
trees, which were then comminuted. The second machine, equipped with a container,
followed after the first one to receive the comminuted wood chips. Such a machine as
the first one shown in Figure 2 has never been in operation in Japan; thus, a harvesting
experiment (felling and accumulating) was conducted in this study while the data related
to the chipping operation were referred to from the previous study by the authors of this
paper [27].
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calculating the cycle time of harvesting operations by inputting the parameters listed in 
Table 1 was constructed with MATLAB (R2019a, The MathWorks, Inc., Natick, MA, USA). 
The productivity of harvesting could then be determined by dividing the harvest amount 
per cycle by the calculated cycle time as follows: 
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Figure 2. Assumed harvesting system.

Figure 3 contains a flow chart outlining one cycle of the harvesting operation that
consists of the felling, accumulating and chipping processes. The simulation model for
calculating the cycle time of harvesting operations by inputting the parameters listed in
Table 1 was constructed with MATLAB (R2019a, The MathWorks, Inc., Natick, MA, USA).
The productivity of harvesting could then be determined by dividing the harvest amount
per cycle by the calculated cycle time as follows:

HP(L, n) = 3600 × HA(L, n)/CT(L, n) (1)

where HP(L, n), HA(L, n) and CT(L, n) are the productivity of harvesting (BDT/h), harvest
amount per cycle (BDT/cycle) and cycle time (s/cycle), respectively, when the maximum
reach of a felling head is L (m) and the number of trees felled inward in a row is n.
Meanwhile, this study calculated the costs taken to fell, accumulate and chip trees and
considered the sum as the harvesting cost as follows:

HC(L, n) = MC/HP(L, n) (2)
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where HC(L, n) is the harvesting cost (JPY/BDT) when the maximum reach of a felling
head is L and the number of trees felled inward in a row is n and MC is the sum of the
hourly costs of the two machines (JPY/h).
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Table 1. Parameters of the simulation model for calculating the cycle time of the harvesting operation.

Item Parameter

Machine’s moving time among operation points (s) a + bl
Time for installation and withdrawal (s) a
Machine’s moving velocity (m/s) b
Distance between adjacent two operation points (m) 1 l
Maximum reach of the felling head (m) L
Time for felling a tree (s) f
Moving velocity of the felling head (m/s) v
Maximum number of trees that can be held at a time h
Time for chipping (s) c

1 Distance between adjacent two operation points, l, is determined depending on the maximum reach of a felling
head, L, and the number of trees felled inward in a row, n. For example, Figure 1 shows the case of L = 6.7 m and
n = 4 and the distance between the Operation points 1 and 2, which corresponds to l, is then determined to be 10
m.

2.2. Harvesting Experiment

A 10 m wide and 5 m long plot alongside a forest road was established for the
harvesting experiment. The felling machine (the first one) was assumed to be located at an
operation point (the center of the forest road) so as to fell all trees inside the plot. There
were broad-leaved coppices of which the dominant species was konara oak (Quercus serrata
Thunb.), once repeatedly harvested. There were 50 trees in total inside the plot, the age
of the oldest tree was about 20 years old and the average diameter at ground level was
9.1 ± 3.7 cm.
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The harvesting experiment was carried out with the multi-tree felling head (ENERGY
WOOD GRAPPLE 300, Biojack, Finland; Table 2) used for felling and accumulating small-
diameter trees in Nordic countries; the felling head was attached to a crane (LOGLIFT 61Z,
Hiab, Sweden; outreach: 7.1 m, weight: 1360 kg) mounted on a log transportation truck
(Figure 4). The time it took to fell and accumulate coppice trees was measured in order to
collect basic data related to the parameters of the simulation model listed in Table 1.

Table 2. Technical data of the ENERGY WOOD GRAPPLE 300, Biojack [28].

Item Technical Data

Weight 260 kg
Cutting diameter 250–300 mm
Working pressure 2.00 × 107–2.50 × 107 N/m2 (total pressure–back pressure)

Oil flow 60–100 dm3/min
Grapple opening 840 mm

Height in felling position 600 mm
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3. Results and Discussion
3.1. Results of the Harvesting Experiment

An experiment on a felling and accumulating operation and its time study was carried
out and the data necessary for calculating the cycle time were acquired (Table 3). The felling
head cut a tree, of which the diameter at ground level was 20 cm, smoothly during the
experiment (Figure 5). In the authors’ previous study, a sugar cane harvester was used for
harvesting 3- to 5-year-old willow trees (ezonokinu willow (Salix schwerinii E.L.Wolf.) and
onoe willow (S. sachalinensis Fr.Schm.)) of which cultivation was aimed at short rotation
forestry but it could not cut down 9 cm in diameter at ground level [29], suggesting that
the felling head used in the experiment was appropriate for harvesting small-diameter
trees in a broad-leaved coppice forest.
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Table 3. Results of the time study.

Element Operation Frequency Average Std. Dev. 1

Time for installation 1 155 s -
Time for withdrawal 1 115 s -
Time for felling a tree 50 10 s 2.8 s

Moving velocity of the felling head 12 5.7 m/s 1.2 m/s
Maximum number of trees that could

be held at a time 6 8.3 1.6

1 Std. Dev.: standard deviation.
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The maximum reach of the felling head used in the experiment, L, was 6.7 m, so that
the machine could fell a maximum of six trees inward in a row from a 3 m wide forest road
(width taken into consideration) in the model forest. With respect to the other parameters
acquired from the time study, the time for installation and withdrawal, a, the time for
felling a tree, f, the moving velocity of the felling head, v, and the maximum number of
trees that could be held at a time, h, were set to be 270 s, 10 s, 0.57 m/s and 8, respectively,
based on Table 3. The simulation model for calculating the cycle time of the harvesting
operation was completed assuming that the machine’s moving velocity, b, and the time
for chipping, c, were 5 m/s and 10 s [27], respectively; thus, the productivity of harvesting
could be calculated. Finally, the harvesting cost per BDT of small-diameter trees, HC(L, n)
of Equation (2), was calculated by dividing the sum of the hourly costs of the two machines
(listed in Tables 4 and 5 as 12,250 JPY/h (= 7173 JPY/h for the first machine plus 5077
JPY/h for the second machine), by the harvesting productivity, HP(L, n), calculated from
Equation (1).
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Table 4. Hourly costs of the two machines. 1.

Item 1st Machine 2nd Machine Note

Labor cost (JPY/h) 2000 2000 (a)
Machine cost (JPY/h) 2 3330 1579 (b)
Fuel cost (JPY/h) 1843 1498 (c) = (d) × (e)
Hourly fuel consumption (dm3/h) 16 13 (d)
Unit fuel price (JPY/dm3) 115.2 115.2 (e)

Total hourly cost (JPY/h) 7173 5077 (f) = (a) + (b) + (c)
1 The exchange rate was roughly 1 USD = 104 JPY and 1 EUR = 126 JPY in December 2020. 2 The detail of
calculating the hourly costs of the two machines is listed in Table 5.

Table 5. Detail of calculating the hourly costs of the two machines.

(a) 1st Machine

Item Tractor Felling Head Chipper Note

Price (106 JPY) 9.45 5.00 4.00 (a)
Hourly price (JPY/h) 900 667 533 (b) = (a) × 106/{(c) × (d)}
Life (y) 7 5 5 (c)
Annual operation hour (h/y) 1500 1500 1500 (d)
Hourly repair cost (JPY/h) 630 333 267 (e) = (f) × 103/(d)
Annual repair cost (103 JPY/y) 945 500 400 (f) = (a) × 106 × 0.1/103

Total hourly cost (JPY/h) 1530 1000 800 (g) = (b) + (e)

(b) 2nd machine

Item Tractor Container Note

Price (106 JPY) 9.45 0.30 (a)
Hourly price (JPY/h) 900 29 (b) = (a) × 106/{(c) × (d)}
Life (y) 7 7 (c)
Annual operation hour (h/y) 1500 1500 (d)
Hourly repair cost (JPY/h) 630 20 (e) = (f) × 103/(d)
Annual repair cost (103 JPY/y) 945 30 (f) = (a) × 106 × 0.1/103

Total hourly cost (JPY/h) 1530 49 (g) = (b) + (e)

Figure 6 shows the relationship between the number of trees felled inward in a row
and the harvesting cost. The harvesting cost was cheapest when the machine felled five
trees inward in a row. The following reasons are considered to explain this result: the more
trees inward in a row the machine felled, the more trees were harvested at one operation
point. In this case, however, the machine’s total moving time markedly increased because
the frequency of moving among operation points increased. Therefore, it was concluded
that there was an optimum number of felled trees inward in a row that could minimize the
harvesting cost.

3.2. Length of the Maximum Reach of a Felling Head

In order to increase the harvest of trees, it seemed it would be effective to lengthen
the maximum reach of the felling head and fell trees deeper inward in a row; thus, the
following two factors were examined in the case that the maximum reach of a felling head
could be lengthened: (1) the maximum number of felled trees inward in a row that would
minimize harvesting cost and (2) the minimum harvesting cost itself. With regard to factor
(1), 12 trees inward in a row from a forest road was the highest possible number when
the length of the maximum reach was increased to 18.2 m (Figure 7a). This meant that
felling trees deeper than the twelfth one inward in a row using a longer reach felling head
would not reduce the harvesting cost. Concerning factor (2), the cheapest harvesting cost
of 10,658 JPY/BDT was obtained when the length of the maximum reach was 10.4 m
(Figure 7b). This meant that using a felling head with a maximum reach longer than 10.4 m
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could not reduce the harvesting cost. These findings indicated that, from the perspective of
minimizing harvesting cost, there were upper limits to the number of trees felled inward
in a row from a forest road as well as a maximum reach of a felling head. This may help
forest road network planning in broad-leaved coppice forests for the purpose of energy
wood production and utilization when using a harvesting system for small-diameter trees
such as that examined in this study.
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(a) Maximum number of felled trees inward in a row that would minimize harvesting cost; (b) Minimum harvesting
cost itself.

Although this study was a limited analysis based on various assumptions, the harvest-
ing cost calculated in this study was more expensive than that in the U.S. [12], Italy [18]
and Finland [21]. However, the general trend concerning the procurement cost of wood
chips from forest biomass in Japan was identified; that is, the cost from small-diameter
trees calculated in this study was more expensive than that from logging residues [30] but
cheaper than that from short rotation woody crops [31].

3.3. Sensitivity Analysis

A sensitivity analysis was carried out on the results to determine how the felling
machine used in the experiment might be improved. When the moving velocity of the
felling head was doubled, as was the maximum number of trees that could be held at a
time, the cost reduction effect increased with the longer maximum reach of the felling head
used (Figure 8a,b). On the other hand, the shorter the maximum reach of the felling head
used, the greater the cost reduction effect as the machine’s moving time among operation
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points was halved (Figure 8c). Thus, the following regarding the improvements of the
machine for future policy are suggested: increasing the moving velocity of a felling head
and the maximum number of trees that can be held at a time is effective if it is possible
to lengthen the maximum reach of a felling head. Meanwhile, shortening the machine’s
moving time among operation points is also effective if the maximum reach of a felling
head cannot be lengthened.
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4. Conclusions

The goal of this study was to discuss effective methods for harvesting small-diameter
trees that are unutilized forest biomass in Japan. This study assumed a simplified model
forest and conducted experiments and time studies of the harvesting of small-diameter
trees with a truck-mounted multi-tree felling head. The findings are summarized below:

• The machine used in the experiment could fell a maximum of six trees inward in a
row from a forest road. The harvesting cost was cheapest, however, when the machine
felled five trees inward in a row.

• Lengthening the maximum reach of a felling head to fell trees deeper inward in a
row appeared to be effective in increasing the number of harvested trees. From the
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perspective of minimizing harvesting cost, however, there were upper limits to the
number of trees felled inward as well as to the maximum reach of a felling head.

• The results of a sensitivity analysis suggested the following machine improvements
could be considered in future policy: increasing the moving velocity of a felling head
and the maximum number of trees that can be held at a time are effective if it is
possible to lengthen the maximum reach of a felling head. Meanwhile, shortening the
machine’s moving time among operation points is also effective if the maximum reach
of a felling head cannot be lengthened.
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