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Abstract: Research Highlights: Patterns of dispersal shape the distribution and temporal devel-
opment of genetic diversity both within and among populations. In an era of unprecedented
environmental change, the maintenance of extant genetic diversity is crucial to population persis-
tence. Background and Objectives: We investigate patterns of pollen dispersal and spatial genetic
structure within populations of giant sequoia (Sequoiadendron giganteum). Materials and Methods:
The leaf genotypes of established trees from twelve populations were used to estimate the extent of
spatial genetic structure within populations, as measured by the Sp statistic. We utilized progeny
arrays from five populations to estimate mating parameters, the diversity of the pollen pool, and
characteristics of pollen dispersal. Results: Our research indicates that giant sequoia is predom-
inantly outcrossing, but exhibits moderate levels of bi-parental inbreeding (0.155). The diversity
of the pollen pool is low, with an average of 7.5 pollen donors per mother tree. As revealed by
the Sp-statistic, we find significant genetic structure in ten of twelve populations examined, which
indicates the clustering of related individuals at fine spatial scales. Estimates of pollen and gene
dispersal indicate predominantly local dispersal, with the majority of pollen dispersal <253 m, and
with some populations showing fat-tailed dispersal curves, suggesting potential for long-distance
dispersal. Conclusions: The research presented here represent the first detailed examination of the
reproductive ecology of giant sequoia, which will provide necessary background information for the
conservation of genetic resources in this species. We suggest that restoration planting can mitigate
potential diversity loss from many giant sequoia populations.

Keywords: pollen dispersal; spatial genetic structure; bi-parental inbreeding; giant sequoia

1. Introduction

Propagule/regeneration dispersal is a key ecological process that influences the evolu-
tion of genetic diversity both within and among populations [1–4]. For sessile organisms
such as forest trees, how far propagules disperse away from the parent tree has many
consequences for the distribution of genetic diversity at fine-spatial scales [5]. Moreover,
the characteristics of the dispersal kernel play a large role in determining the extent of
long-distance dispersal (gene flow), and thus modulate large scale patterns of genetic
diversity and structure across a species range [6–8]. Since an adequate pool of genetic di-
versity, on which selection can act, is critical for the success of populations under changing
environments, understanding dispersal dynamics is important for successful management
of species.

At the scale of a population, dispersal dynamics shape the clustering of related in-
dividuals on the landscape. Fine-scale spatial genetic structure (FSGS) can be defined as
the non-random arrangement of genotypes on a landscape [5,9]. In plants, FSGS is caused
by the interplay of many evolutionary forces, but of key importance is dispersal limita-
tion, which creates patterns of isolation by distance between parents and offspring [5,10].
When related genotypes aggregate together in space, this can increase rates of bi-parental
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inbreeding, eventually leading to a reduction in genetic diversity (i.e., loss of heterozygos-
ity) [11,12]. Moreover, populations with high levels of fine-scale genetic structure can be
more vulnerable to genetic diversity loss from stochastic events, such as disturbance or
genetic drift [13].

In plants, gene dispersal occurs in two distinct phases, pollen and subsequent seed
dispersal. For forest trees, pollen and seed differ in abundance and dispersal dynamics.
Empirical studies have often shown that for wind-dispersed species, pollen can have
particularly large dispersal potential [14–17]. Moreover, the shape of the dispersal kernel
(kurtosis) is an important indicator of the potential for long-distance dispersal (LDD), as
fat-tailed curves have an increased likelihood of LDD [1]. In an era of ever-increasing
risks of catastrophic mortality in populations due to wildfires and disease, exacerbated in
species with small, disjunct populations, long-distance pollen dispersal can be especially
important for maintaining connectivity among habitat patches [18,19] and mitigating risks
of inbreeding. Thus, determining the characteristics of the pollen dispersal curve is critical
in order to understanding how genetic diversity will change within populations and across
fragmented landscapes.

Giant sequoia, Sequoiadendron giganteum, is a paleoendemic long-lived tree species
occupying ~70 groves, scattered across mid-elevations in the Sierra Nevada mountains of
California [20]. Its range stretches approximately 400 km from Placer county in the north
to Tulare county in the south. The entire range of giant sequoia is fragmented. However,
populations tend to become smaller and more disjunct in the northern ~2/3 rds of the
latitudinal range (Figure 1). Giant sequoia is wind-pollinated, and mature trees produce
an abundance of pollen and seed cones each year [21]. Mature seed cones remain closed
and attached to the tree for many years, and thus provide a large aerial seed bank [21].
Successful regeneration for this species often occurs after fires, which trigger seed dispersal
and create canopy gaps [22–26]. This species’ reliance on fire highlights a potential for
environmental mismatch, as forest management policies and shifting climate alter fire
regimes across California [27]. In addition, climate change places additional stress on many
forest tree populations, as demonstrated by the massive tree mortality that resulted from a
recent drought in the Sierra Nevada mountains.

Given the cultural and ecological value of giant sequoia, it is surprising how little
is known regarding the fine-scale patterns of genetic diversity and dispersal within the
extant groves. To date, no studies have addressed the extent of FSGS within giant sequoia
populations, and only a single study [28], which investigated pollen rain, demonstrated
patterns consistent with short-distance pollen dispersal. However, the scope of this work
was extremely limited as it only covered two extremely small populations of giant sequoia
<0.21 km2 [27]. Our previous work indicated minimal gene exchange between adjacent
groves (3.0–6.5 km apart) in the northern range of giant sequoia [29], consistent with
limited dispersal in the species. However, no studies have used progeny arrays at a local
scale to understand the dynamics of pollen dispersal distance, the quality (diversity) of
the pollen pool, and rates of inbreeding, in determining FSGS. These are factors that are
crucial in shaping how genetic diversity may change over time. Here we attempt to fill
this gap in giant sequoia reproductive ecology by doing the following: (1) determining the
degree of fine-scale spatial genetic structure within twelve populations of giant sequoia;
(2) estimating mating parameters (i.e., number of pollen donors, rates of outcrossing and
bi-parental inbreeding) using progeny collected from five populations; and (3) investigating
characteristics of pollen dispersal, including the mean dispersal distance and kurtosis of
the dispersal curve.
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Figure 1. (A) Range map of giant sequoia. Populations where leaf or seed collection occurred are 
noted by a population code. Leaf tissue was collected in all noted locations, black arrows indicate 
seed collection sites. (B) Pollen dispersal kernels for two giant sequoia populations, CALN (left) 
and GRNT (right) estimated in TwoGener by fitting an exponential power distribution with effec-
tive density set to ½ census density. 
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Figure 1. (A) Range map of giant sequoia. Populations where leaf or seed collection occurred are noted by a population
code. Leaf tissue was collected in all noted locations, black arrows indicate seed collection sites. (B) Pollen dispersal kernels
for two giant sequoia populations, CALN (left) and GRNT (right) estimated in TwoGener by fitting an exponential power
distribution with effective density set to 1

2 census density.

2. Materials and Methods
2.1. Sampling and Data Preparation
2.1.1. Fine-Scale Spatial Genetic Structure (FSGS)

FSGS within groves was estimated using leaf tissue collected from twelve giant sequoia
groves (Figure 1). Leaf collections, DNA extraction, and DNA preparation are described in
detail in DeSilva and Dodd [29]. In brief, for this study we utilized leaf material collected
in twelve populations with high sampling density. All individuals were genotyped at ten
microsatellite loci, as described in DeSilva and Dodd [30].

2.1.2. Mating Parameters and Pollen Dispersal

We obtained seeds from fallen cones that were in clusters close to a putative parent
tree, within five S. giganteum groves (Figure 1). Due to the height of reproductive branches
in mature S. giganteum trees, often >10 m, 0.5–2.0 bushels of cones were collected from the
ground beneath potential maternal trees in 7–18 locations per population (Table 1). The
geographic coordinates of all collection sites were taken at the time of collection. From each
sampling location, seeds were extracted from multiple cones from each sampling location
and mixed together. We then randomly chose 100 seeds from each collection location and
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subjected them to 30 days of moist cold-stratification and 30 days of dry cold-stratification
at 1–2◦ Celsius. After stratification, seeds were then germinated on filter-paper-lined
Petri dishes. Subsequently, DNA was isolated from the seedling radicle using the CTAB
method [31]. A total of 1070 seeds were germinated and genotyped using ten microsatellite
markers outlined in DeSilva and Dodd [30] (Appendix A).

Table 1. Seed collection and mating system parameters for five populations.

Population
(ha)

Seed
Collection

Sites

Average
Maternal

Family Size

Census
Density (m2)

Multi-Locus
Outcrossing Rate:

tm (SD)

Single-Locus
Outcrossing
Rate: ts (SD)

Bi-Parental
Inbreeding:

tm − ts

Nep

CALN (25) 7 10 0.0005 0.92 (0.11) 0.81 (0.09) 0.117 (0.09) 8.5
CALS (182) 9 11 0.0006 0.94 (0.12) 0.76 (0.04) 0.178 (0.11) 8.4
GRNT (163) 11 14 0.0010 0.84 (0.03) 0.66 (0.03) 0.180 (0.03) 4.7
LOST (21) 8 13 0.0018 0.88 (0.04) 0.77 (0.04) 0.112 (0.04) 7.8

GFOR (935) 18 12 0.0010 0.95 (0.12) 0.76 (0.02) 0.189 (0.11) 7.0
AVERAGE - - - 0.91 0.75 0.155 7.5

The census density of mature trees was estimated from population surveys for all
southern groves, using the density of all trees >75 cm diameter at breast height [32]. For the
northern groves, (NELD, CALN, CALS), census densities of mature trees were estimated
from Willard [20].

2.1.3. Assigning Maternity

Because each cone collection locality potentially included progeny from more than
a single mother tree, maternal families were identified using the likelihood method im-
plemented in ML-RELATE [33]. Subsequently, the largest maternal families were retained
from each cone collection locality. We then removed individuals with potential null alleles
or genotyping errors (those that were incompatible with a single mother tree), while maxi-
mizing the number of individuals retaining the most common alleles within the maternal
family. On occasion, this process resulted in more than one potential maternal family. In
this case, all potential families were retained for subsequent analyses and average statistics
for the population are reported. We then utilized MLTR to determine the most likely
maternal genotype for each maternal family [34,35], as potential maternal genotypes were
not sampled. After filtering, DNA from 629 seeds was used in pollen dispersal analyses
and in assessing mating parameters.

2.2. Data Analysis
2.2.1. Mating Parameters

Using the seed genotype data, we first estimated the mating parameters (selfing,
bi-parental inbreeding and outcrossing) from single-locus and multilocus estimates of
outcrossing using MLTR [35]. The multilocus outcrossing rate (tm) provides an estimate
of the true level of selfing, whereas the single-locus outcrossing rate (ts) accounts for
all inbreeding (selfing and mating with close relatives). Thus, we estimated bi-parental
inbreeding as (tm − ts), following Ritland [35].

Then, we used TwoGener [36] to estimate the effective number of pollen donors
per mother tree (Nep) as Nep = 1/2ΦFT [37], where ΦFT is the differentiation between
the pollen clouds sampled by pairs of maternal trees within a population (for details on
TwoGener, see Spatial genetic structure and gene dispersal below).

2.2.2. Spatial Genetic Structure and Gene Dispersal

Based on the leaf genotypes of established trees, we estimated the extent of the spatial
genetic structure within populations using the Sp statistic [5], calculated as −bF/[1 − F(1)],
where bF represents the linear decay in the pairwise kinship coefficient (Fij) for all pairs
of individuals with the logarithm of geographic distance, and F(1) is the mean kinship
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coefficient between individuals within the first distance class. The Sp statistic is useful
in our case because it provides a meaningful way to compare spatial genetic structure
across populations despite variations in population sizes and sampling scheme [5]. For
this calculation, we used the pairwise kinship coefficients (Fij) of Loiselle et al. [38], as this
measure of relatedness shows less statistical bias than many others [5,39]. We assigned
the number of distance classes based on the geographic area of each grove as follows:
number of distance classes 0–125 ha = 2, 125–275 ha = 3, 275–500 ha = 4, 500–850 ha = 5,
and >900 ha = 6 (Appendix B). We determined these grove area cut-offs, after completing
exploratory analyses, to inform the spatial resolution that allowed for a large number of
pairwise comparisons per distance class and an adequate spatial resolution within the
first distance class. The significance of ‘bF’ was obtained using 20,000 permutations of
sampling locations within populations. All calculations were completed using SPAGeDi
1.5 software [40].

In addition, we utilized SPAGeDi 1.5 [40] to obtain an indirect estimate of evolutionary-
scale gene dispersal, an effective pollen and seed average, from patterns of FSGS. Under
equilibrium isolation-by-distance conditions, the scale of effective gene dispersal can be
estimated from Wright’s neighborhood size equation (Nb ≡ 4πDeσ2), where De is the
effective density and σ2 is half the mean-squared parent–offspring distance (i.e., gene
dispersal; [40,41]). For the estimation of gene dispersal (σ2), we set the effective density
to 1/2 the adult census density. We recognize this represents a high estimate of effective
density, as evidence suggests that for adult populations the ratio of Ne/N often ranges
between 0.1 and 0.5 [42]. We also utilized correlation tests to determine the relationships
between gene dispersal with census population size and population density.

2.2.3. Pollen Dispersal Parameters

We estimated the characteristics of pollen dispersal using both the TwoGener and
KinDist approaches, as implemented in POLDISP 1.0 [43]. Here, maternal trees are con-
sidered to serve as pollen traps, and their progeny represent a sample of the available
pollen pool. The TwoGener method uses the differential structure of the pollen sampled
by each mother tree across the landscape [36], whereas the related KinDist method uses
the relationship between correlated paternity and the pollen dispersal kernel [44]. Both
methods can have some drawbacks. To fit the pollen dispersal curve, TwoGener requires
an independent estimate of effective density which can be hard to obtain for some species.
Yet, accuracy can be increased with a reliable external estimate of effective density [44].
On the other hand, KinDist requires a threshold distance for unrelated pollen pools, which
can be difficult to determine. For both KinDist and TwoGener, we applied the two pa-
rameter (a and b) exponential power distribution to fit the pollen distribution curve, as
recommended by Austerlitz et al. [45]. This distribution allows for the leptokurtic pat-
tern of pollen dispersal that is commonly observed in wind-pollinated trees [16,17,45–48].
We estimated the scale (a) and shape (b) parameters of the dispersal kernel and calculated
mean pollen dispersal distances (d) according to Austerlitz et al. [45]. The shape parameter
(b) provides an indication of the potential for LDD, through determining the degree of
kurtosis (i.e., how fat-tailed the dispersal curve is). For TwoGener calculations we set the
Ne/N ratios as 0.1 and 0.5. Because effective density often ranges between 0.1 and 0.5 of
the census density [42], we chose these values as they potentially represent a high and low
estimate of the effective density within giant sequoia populations.

3. Results
3.1. Mating Parameters

The average multi-locus outcrossing rate (tm) across five groves was 91%, with the
highest outcrossing observed in GFOR (0.95) and the lowest in GRNT (0.84) (Table 1),
which indicates that low levels (9%) of selfing are also occurring. The average rate of
bi-parental inbreeding was moderate (tm − ts) = 0.155. Bi-parental inbreeding was lowest
in LOST, (tm − ts) = 0.112 (0.037), and highest in GFOR, (tm − ts) = 0.189 (0.107) (Table 1).
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The number of effective pollen donors per mother tree (Nep) ranged from 4.7 to 8.5, with
an average of 7.5 (Table 1). We observed the fewest pollen donors in GRNT (4.7) and the
most in CALN (8.5) (Table 1).

3.2. Spatial Genetic Structure

Significant genetic structure was found in ten of the twelve populations assessed
(Table 2). For these ten populations, the Sp ranged from 0.024 to 0.044, and was lowest in
RMNT and highest in CALS. When estimating Wright’s gene dispersal from SPAGeDi, which
represents an effective pollen and seed average, we found mean gene dispersal distances
between 120.4 and 374.0 m (Table 2). Our iterative procedure to estimate gene dispersal failed
to converge for three populations, which was likely due to the insufficient sampling density
within these populations. Although we found a significant negative correlation between
gene dispersal and grove size in hectares, we did not detect any significant correlations
between gene dispersal and census population size or census population density. We believe
that grove size is not a reliable index of the presence of giant sequoia on the landscape
because grove boundaries may include large areas not occupied by the species, such as
Nelder grove, which comprises two groups of spatially distinct trees.

Table 2. Sp-statistic and estimated gene dispersal for twelve giant sequoia populations distributed
across the range, based on analyses using SPAGeDi [40].

Population (ha) Sp-Statistic Sigma*2 (m)

CALN (25) 0.0354 * 252.6
CALS (182) 0.0444 ** 374.0
NELD (195) 0.0417 ** 153.6
GRNT (163) 0.0388 ** _

RMNT (1466) 0.0235 * 120.4
LOST (21) 0.0339 NS _

GFOR (935) 0.0238 ** 185.6
ATWL (542) 0.0292 NS _
MCTR (700) 0.0414 ** 264.2
FMAN (580) 0.0397 ** 159.0
LMDW (138) 0.0308 * 260.2
DCRK (21) 0.0303 * 236.0

* indicates a significant result (p 0.05), ** (p 0.01). NS = result is not significant.

3.3. Dispersal Dynamics

The TwoGener method indicated an average pollen dispersal distance (d) ranging
from 64.6 to 252.1 m, with a trend of increased dispersal distance when the effective density
was reduced from 50 to 10% census density (Table 3). Evidence for fat-tailed dispersal
kernels (b < 1.0) was consistently found for GRNT, LOST, and GFOR, but was absent in
CALS and was detected in CALN only when the effective density was set to 50% census
density (Table 3). When using the KinDist approach, the correlated paternity among
maternal families did not show a significant decrease with distance for CALN, CALS,
or LOST populations (Pearson’s product-moment correlation p-value = 0.21, 0.47, and
0.69, respectively). Thus, further analysis using the KinDist method is not recommended
for these populations [43]. The estimated dispersal parameters for GRNT and GFOR
showed average pollen dispersal distance ranging from 572.8 to 2133.8 m respectively, and
leptokurtic dispersal kernels (i.e., b < 1.0). Since our goal here was to uncover general
pollen dispersal characteristics across the giant sequoia range, we focus the discussion on
the TwoGener results, as they provide evidence for more general patterns in the species.
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Table 3. Pollen dispersal parameters obtained using the TwoGener approach.

Population Scale (a) Shape (b) Average Distance, d (m)

(Ne/N = 0.5)
CALN 34.62 0.93 80.7
CALS 98.54 25.94 64.6
GRNT 0.55 0.37 74.2
LOST 34.62 0.93 80.7
GFOR 0.004 0.22 203.0

(Ne/N = 0.1)
CALN 215.96 6.84 141.9
CALS 82.85 1.05 152.5
GRNT 4.75 0.47 129.0
LOST 1.05 0.35 213.5
GFOR 0.37 0.31 252.1

4. Discussion

Our prior work on genetic structure within the range of giant sequoia indicated
relatively strong divergence among groves in the northern range (north of the Kings River
watershed), despite the close proximity of some of the groves, e.g., the two Calaveras groves
(CALN and CALS), Tuolumne and Merced, Nelder and Mariposa [29]. We proposed low
rates of seed and pollen dispersal to account for the divergence over such short distances.
In the southern range, the groves appeared to be more admixed, which raised questions
as to whether dispersal distances might be greater in the south, or whether the increased
admixture was a result of a lack of lineage sorting in this more contiguous range.

In the present work, we have addressed gene dispersal by estimating the distances
of total gene flow and of pollen dispersal inferred from progeny arrays sampled within
groves from the northern and southern range of the species. In addition, we assessed
mating system parameters in the same groves to determine whether their size or isolation
contributed to any differences in levels of inbreeding through selfing and bi-parental
inbreeding. Overall, we found that although giant sequoia is generally an outbreeding
species, it exhibits a low degree of selfing and moderate rates of bi-parental inbreeding. The
scales of pollen and gene dispersal were consistent across groves, suggesting that dispersal
distances for the species are predominantly short, which indicates that most pollination is
localized to within groves. The dispersal curves showed evidence of fat-tails, which could
indicate potential for some long-distance dispersal events.

4.1. Mating System and Pollen Pool Diversity

Consistent with our observations for giant sequoia, outcrossing rates in many wind-
pollinated trees typically range from 90 to 100% [16,49–53]. In slight contrast, we found
higher levels of bi-parental inbreeding in giant sequoia than in many other conifer
species [16,52,54,55]. Links between inbreeding and population size have been estab-
lished for some tree species, which can exhibit higher inbreeding (bi-parental or selfing)
in smaller populations [17,52,56]. From the five groves for which we obtained estimates
of inbreeding, we found no evidence of a relationship between grove size and level of
inbreeding, despite having data from two groves of less than 25 ha (CALN and LOST).
Interestingly, the average bi-parental inbreeding estimated from progeny arrays exceeded
the degree of inbreeding (FIS-statistic) estimated from adult trees in these five groves using
the same microsatellite loci (DeSilva, unpublished data). We believe this difference could be
attributable to a post-germination selective filter acting against inbred progeny in natural
populations.

We observed low pollen pool diversity in comparison to many other conifers, such as
Larix occidentalis (Nep u 35), Picea glauca (Nep = 62–143), Pinus pinaster (Nep = 21–56), and
Austrocedrus chilensis (average Nep = 13.9) [16,19,52,57], which supports our hypothesis that
pollen dispersal in these giant sequoia groves is spatially restricted. However, it should
be noted that our Nep estimates are similar to those reported for the wind-pollinated
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angiosperm trees Quercus lobata and Nothofagus nervosa [46,51], and our estimate of Nep is
likely somewhat reduced due to bi-parental inbreeding [58].

4.2. Evidence for Limited Dispersal

The high levels of fine-scale spatial genetic structure (FSGS) across the giant sequoia
range suggest limited dispersal capacity in this species. Although forest tree species com-
monly show significant genetic structure, our estimate of the Sp-statistic for giant sequoia
was higher than that reported for several other species [59–62]. For instance, in 25 popu-
lations of four conifer species, the Sp values varied from 0.0018 to 0.0035 [62], compared
to 0.024–0.044 in giant sequoia. Although peripheral populations (due to small size or
lower density) often demonstrate stronger FSGS as compared to core populations [59,63],
for giant sequoia the degree of FSGS was fairly consistent across populations (average
Sp = 0.0349, SD 0.0076). Moreover, we found no relationship between gene dispersal and
census population size or density, which points to underlying biological constraints on
gene dispersal.

Our results indicate that the majority of pollination in giant sequoia occurs over
short distances <253 m, which is typical for many tree species, including Pinus pinaster,
Quercus lobata, Nothofagus nervosa, and Larix decidua [16,46,48,64]. Moreover, gene dispersal
(a measure of the effective pollen and seed average) also appeared to occur over short
distances <370 m. Assuming an isolation-by-distance model, Crawford [65] showed that
the dispersal parameter (σ2

e ) is comprised of a seed and pollen dispersal component given

by σ2
e = σ2

Se +
σ2

Pe
2 . Therefore, substituting 370 m for σ2

e and 274 m for σ2
Pe, we obtain

244 m for our estimate of σ2
Se (seed dispersal), which is only slightly shorter than pollen

dispersal. Although we are unable to make comparisons between pollen and gene dispersal
for GRNT and LOST, the estimated dispersal parameters show general correspondence.
It is also important to note that the TwoGener estimation of pollen dispersal represents a
single round of reproduction, whereas the gene dispersal estimates represent evolutionary
dispersal. Thus, any direct comparisons should be treated with caution. We did not find
any significant differences in pollen or gene dispersal across the range due to census
population size or density (number of stems per hectare). However, variation in stand
structure could play a role in the movement of pollen. For example, air currents as a
vector of pollen movement would be very different over a uniform canopy in more even-
aged stands than over a canopy with emergent trees, as would be more typical in an
uneven-aged stand. Furthermore, the dynamics of pollen settling would likely vary with
stand structure, which could influence the distance of vector transport as well as the
correlation of paternity (number of pollen parents per mother tree). These aspects of pollen
dispersal interference have received little attention, but studies of a mixed oak beech stand
have shown that long-distance dispersal is important in the colonization of gaps, and
that understory vegetation presents an important barrier to pollen dispersal [66]. Fire
suppression in giant sequoia stands has led to an artificially high density of mid-story trees
that could act as a barrier to pollen and, to a lesser extent, seed dispersal. Nevertheless, the
strong congruence in dispersal distance in our study suggests the importance of inherent
biological controls on dispersal capacity. Interestingly, this finding also suggests that
seed and pollen may disperse at similar scales in giant sequoia, which is in contrast to
many wind-pollinated trees where pollen travels farther than seed [67–71]. The more
limited pollen dispersal in giant sequoia may be a result of less buoyant pollen, as giant
sequoia pollen lack the air-filled sacs typical of the members of the Pinaceae (e.g., Pinus spp.,
Abies spp., Picea spp.) [72–74]. It is important to note that estimates of dispersal using the
TwoGener method are closely tied to effective density [75]. Effective density will nearly
always be less than the census density of adult trees, as it takes account of variation in
reproductive success. Here, we assume that effective density is between 10 and 50% of
census density. Yet, we recognize that no formal studies have examined the effective
density of any giant sequoia populations. Our results suggest a general tendency for
increased average dispersal when effective density is reduced. Thus, our estimates of
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average dispersal are likely to be underestimates if effective density is lower than 10% of
census density. Additionally, any inaccuracies in the estimation of the census data of adult
trees could affect our estimates of effective densities and dispersal distances.

4.3. Evidence for Long-Distance Pollen Dispersal

In some conifer species, wind-dispersed pollen can account for extremely long-
distance dispersal [17–19,76]. Here, we found leptokurtic pollen dispersal for four out of
five populations examined, highlighting the potential for long-distance dispersal in giant
sequoia. This finding is consistent with our previous research that indicates connectivity in
the southern range of giant sequoia across populations between 2 and 10 km apart [29].
Yet, this is at odds with the apparent lack of gene flow between adjacent giant sequoia
populations in the north [29]. In the southern section of the giant sequoia range, multiple
populations are often within 10 km of each other, potentially allowing for more regional
LDD opportunities than in the north where very few populations exist. The reduced
kurtosis in the estimated shape of the dispersal kernels for CALN and CALS at Ne/N = 0.1
(Table 3) is potentially influenced by population isolation in the northern range, as any
LDD that does not reach a seed would go undetected. Our progeny data from the northern
section of the giant sequoia range have important limitations. The indirect TwoGener
method works best when few offspring are sampled from many mother trees that are
sampled both near and far [75]. Our data had relatively few maternal trees in the CALN
and CALS populations. Thus, a more extensive sampling of mother trees, or a detailed
parentage analysis, is likely needed to determine the existence of gene-flow across these
populations. Empirical studies consistently suggest that “fat-tailed” pollen dispersal curves
are typical for many wind-dispersed tree species [16,17,19,46–48,77]. Although we found
evidence of the leptokurtic dispersal of kernels for giant sequoia pollen, its capacity for
LDD may be more limited than many conifers with which it shares a habitat, which have
more buoyant pollen. Fat-tailed dispersal curves allow more opportunities for gene flow
among fragmented populations [1]. Gene flow can be a crucial factor facilitating population
persistence, as it can replenish the diversity lost through genetic drift and introduce new
variation into populations, which can be a source of adaptive potential [2,78]. In addition,
LDD can be an important factor that can mitigate potential inbreeding effects.

4.4. Evidence for Demic Structure in Giant Sequoia Groves

The reproductive dynamics of giant sequoia suggest that demes (local breeding
groups) within populations are an important factor influencing changes in genetic di-
versity over time. Dispersal limitation can result in demic structure within non-selfing
species, as mating among close relatives becomes more important. Our data indicate rela-
tively high rates of bi-parental inbreeding that were more or less consistent across groves
and highest in GRNT and GFOR groves. We observed predominantly local dispersal,
which, coupled with low diversity in the effective pollen pool sampled from mother trees,
indicates the importance of reproductive groupings within populations. Moreover, the
coupling of high levels of FSGS with predominantly local dispersal can beget the further
clustering of related individuals over time. Demic patterns within populations are impor-
tant because small reproductive neighborhoods can reduce the effective population size
and increase the risk of diversity erosion due to genetic drift [13,79]. Moreover, reduced
genetic diversity can eventually lead to inbreeding depression, which is a potential threat
to population survival [80].

5. Conclusions

We present evidence for predominantly local pollen dispersal in giant sequoia and
the potential for a limited degree of long-distance dispersal. The spatial restriction of
the majority of pollen dispersal has likely influenced the observed strong spatial genetic
structure, and created a demic structure within giant sequoia groves. We warn of potential
genetic diversity loss in many giant sequoia populations that may be effectively operating



Forests 2021, 12, 61 10 of 14

as smaller reproductive units. Thus, we suggest that small, isolated, and highly struc-
tured giant sequoia populations are at highest risk of erosion of genetic diversity. These
populations include, but are not limited to, CALN, NELD, GRNT, and DCRK. Although,
evidence of fat-tailed dispersal suggests that some of this diversity loss may be mitigated
by long-distance gene-flow. Yet, due to the rapid pace of current environmental changes,
we suggest that assisting in the movement of genetic resources by planting seedlings from
both local and non-local sources in these high-risk populations can be an effective means
of enhancing genetic diversity. Due to the presence of a demic structure in giant sequoia
populations, seed collections for planting programs should be conducted every 200–300 m
to capture the extant diversity of source populations. As climate changes, enhancing
extant genetic diversity may be important for the long-term persistence of giant sequoia
populations.
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Appendix A

Table A1. Total number of genotyped seeds per collection location. Collection locations noted by
population code and location ID.

Seed Collection ID Number of Seeds Genotyped

CALN 1 12

CALN 2 22

CALN 3 17

CALN 4 12

CALN 5 12

CALN 6 12

CALN 7 8

CALN 8 22

CALN 1 12

CALS 1 29

CALS 2 19

CALS 3 16

CALS 4 18

CALS 5 21

CALS 6 23

CALS 7 15

https://doi.org/10.6078/D1J12B
https://doi.org/10.6078/D1J12B
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Table A1. Cont.

Seed Collection ID Number of Seeds Genotyped

CALS 8 25

CALS 9 25

GRNT 1 13

GRNT 2 29

GRNT 3 27

GRNT 4 20

GRNT 5 20

GRNT 6 31

GRNT 7 18

GRNT 8 17

GRNT 9 11

GRNT 10 13

GRNT 11 13

LOST 1 10

LOST 2 23

LOST 3 25

LOST 4 24

LOST 5 21

LOST 6 26

LOST 7 13

LOST 8 10

GFOR 1 15

GFOR 2 20

GFOR 3 20

GFOR 4 9

GFOR 5 30

GFOR 6 22

GFOR 7 28

GFOR 8 21

GFOR 9 29

GFOR 10 20

GFOR 11 35

GFOR 12 18

GFOR 13 13

GFOR 14 34

GFOR 15 28

GFOR 16 28

GFOR 17 30

GFOR 18 10
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Appendix B

Table A2. Grove size, number of spatial groups, and distance within the first distance class for
populations analyzed with SPAGeDi.

Population Code Grove Size (ha) Number of Spatial
Groups

Distance Range within the
First Distance Class (m)

CALN 25 2 0–428

CALS 182 3 0–403

NELD 195 3 0–558

GRNT 163 3 0–293

RMNT 1466 6 0–415

LOST 21 2 0–138

GFOR 935 6 0–767

ATWL 542 5 0–236

MCTR 700 5 0–419

FMAN 580 5 0–456

LMDW 138 3 0–347

DCRK 21 2 0–269
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