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Abstract: Forest fire risk has increased globally during the previous decades. The Mediterranean
region is traditionally the most at risk in Europe, but continental countries like Serbia have experi-
enced significant economic and ecological losses due to forest fires. To prevent damage to forests and
infrastructure, alongside other societal losses, it is necessary to create an effective protection system
against fire, which minimizes the harmful effects. Forest fire probability mapping, as one of the basic
tools in risk management, allows the allocation of resources for fire suppression, within a fire season,
from zones with a lower risk to those under higher threat. Logistic regression (LR) has been used
as a standard procedure in forest fire probability mapping, but in the last decade, machine learning
methods such as fandom forest (RF) have become more frequent. The main goals in this study were
to (i) determine the main explanatory variables for forest fire occurrence for both models, LR and RF,
and (ii) map the probability of forest fire occurrence in Eastern Serbia based on LR and RF. The most
important variable was drought code, followed by different anthropogenic features depending on
the type of the model. The RF models demonstrated better overall predictive ability than LR models.
The map produced may increase firefighting efficiency due to the early detection of forest fire and
enable resources to be allocated in the eastern part of Serbia, which covers more than one-third of the
country’s area.

Keywords: occurrence of forest fire; machine learning; variable importance; prediction accuracy

1. Introduction

Forest fires, as global phenomena, present numerous forms of threats to many coun-
tries around the world, from Canada and Siberia through to Indonesia, Australia, Africa,
and the Amazonia. Although statistics show that the frequency of fires, alongside the
total burnt area, have been decreasing from year to year globally [1], several regions will
experience larger and more intense fires [2–4]. The Mediterranean region is traditionally
the most at risk in Europe [5], but in recent years, forest fires have also become an important
issue in Central Europe [6]. Among other European countries, Serbia experienced increased
fire activity during the last two decades [7].

The increasing risk and associated damage caused by fires are usually linked to
climate changes [8]. Considering the current climate scenario [9], which predicts an average
temperature rise of 4–6 ◦C by the end of this century [10,11], and a decrease in total rainfall
with an uneven distribution throughout the year in the south of Europe featuring long
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periods of drought in summer, an increased risk of forest fire is expected in Europe [5].
The greatest changes in Europe are expected in the transition between the Mediterranean
and Euro-Siberian regions [12], where the Balkan Peninsula is situated. The most dominant
oak and beech forest may be replaced by evergreen Mediterranean vegetation [13,14],
which is more prone to forest fire. Therefore, a further increase in forest fire risk can be
expected due to changes in the fuel type.

Aside from the direct damage in terms of wood loss, which is obvious and easy to
quantify, many other risks may appear following forest fires, due to the slow process of
regeneration, especially in conifer forests [15]. Secondary pests, such as bark (Coleoptera:
Curculionidae: Scolytinae) and ambrosia beetles (Coleoptera: Buprestidae) and diseases,
that attack physiologically weakened trees may reach an outbreak population level and
affect a much larger area than forest fire alone [16]. To minimize the harmful effects of forest
fires, it is necessary to create an effective protection system against fire. According to San-
Miguel-Ayanz [17], forest fire risk is defined as the probability of a fire happening and its
consequences. Therefore, any increase in fire probability or its consequences directly results
in an increase in fire risk. Our research has focused on forest fire occurrence probability
mapping as a component of the future system for forest fire risk assessment. Forest fire
probability mapping is a basic tool in risk management [18,19] and allows the allocation of
resources for fire suppression, within a fire season, from zones with a lower risk to those
under higher threat. Also, in the long run, mapping fire occurrence probability is a very
valuable tool in forest management planning that improves forest resilience to fire through
the implementation of various types of fire preventive silvicultural measures [20–23].

Among traditional methods, logistic regression (LR) is the most common when dealing
with binary outcomes, like the presence or absence of fire [24]. Conversely, machine learn-
ing (ML) methods, as a form of artificial intelligence, are widely used in wildfire science
and management, with more than 300 articles published on this topic since the 1990s [25].
Random forest (RF) belongs to the decision trees branch of the same group of ML meth-
ods [26]. Our study had the following objectives: (1) to map the probability of forest fire
occurrence in Eastern Serbia based on LR and RF; (2) to determine the main explanatory
variables for forest fire occurrence for both models.

2. Materials and Methods
2.1. Study Area

The study area is in the eastern and southern parts of Serbia (Figure 1). It has a total
land area of 30,235.5 km2. Broadleaved, conifer, and mixed forest cover 12,587.5, 170.7,
340.6 km2, respectively. Natural grasslands, transitional woodland-shrub, and sparsely
vegetated areas cover 925.7, 2949.5, and 48.0 km2, respectively, while other areas represent
agricultural, urban, or other non-wood areas. The elevation ranges from 28 to 2169 m.
It has been observed that durations of extremely hot weather last longer and periods of
extremely cold weather are shortened compared to the reference period of 1960–1990 [27].
These trends of extreme temperature conditions are most pronounced in the summer sea-
son [27]. A decrease in spring precipitation has been detected over the central and eastern
parts of Serbia [28]. The annual quantity of rainfall is often insufficient, and droughts are
evident in eastern and south-eastern parts of Serbia [28]. Scenarios where the monthly
quantity of precipitation falls in only a few days of the month are expected to become more
frequent, which will lead to more extreme weather events such as floods and droughts [29].
Serbia has two peaks in its fire season [30]. The first peak occurs in March, which is asso-
ciated with 25% of the annual burnt area, while the second and largest peak appears in
August [31]. In August 2012, more than 40 large fires were recorded, including two fires
that were more than 1000 ha in size [32]. More than 16,000 ha of forest land were destroyed
in 2007, with the value of the wood lost was estimated at 40 million euros [33].
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Figure 1. The geographic position of study area, Eastern Serbia, is marked in gray (latitudes 42.27–
44.82◦ N and longitudes 20.90–23.01◦ E) with the layer of forest fire hotspots obtained by NASA’s
Fire Information for Resource Management System (FIRMS) (MODIS fire hotspot) for the period of
2001–2018.

2.2. Data Preparation
2.2.1. Dependent Variable

Data regarding the fire location were obtained from NASA’s Fire Information for
Resource Management System (FIRMS), which distributes near real-time fire products from
Moderate Resolution Imaging Spectroradiometer (MODIS) from the Terra and Aqua plat-
forms with a spatial resolution of 1 km (https://firms.modaps.eosdis.nasa.gov). Each po-
sition of a MODIS-identified active fire represents the center of a 1 × 1 km pixel that is
labeled by the algorithm as containing one or more fires inside the pixel. Only fire pixels
with a confidence higher than 80% for the period from January 2001 to December 2018
were considered for further analysis, because in certain cases the product underestimates
the occurrence of fire [34].

2.2.2. Independent Variables

Independent variables were grouped into four categories: topography, vegetation,
anthropogenic factors, and climate. Specific variables within categories were selected
based on previous studies on forest fire occurrence [24,34–39]. Detailed information on
preselected variables is presented in Table 1.

https://firms.modaps.eosdis.nasa.gov
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Table 1. Independent variables considered for forest fire occurrence models with codes, units,
source and calculated variable inflation factors (VIFs).

Variable Code Units Source VIF

Vegetation

Broad-leaved forest BF m2

CORINE
2012

4.121
Coniferous forest CF m2 1.160

Mixed forest MF m2 1.224
Natural grasslands NG m2 2.114

Transitional
woodland-shrub TWS m2 2.482

Sparsely vegetated area SVA m2 1.066
1 Total forested area TFA m2

Anthropogenic

Distance to Municipality DisM m
OpenStreetMap

1.576
Distance to Road DisRo m 1.117
Distance to Rail DisRa m 1.224

Population Density PopD N/km2 CIESIN 1.147
Distance to Arable Land DisAL m CORINE

2012
1.012

Distance to Agricultural
Land DisAgL m 1.619

Topographic

Distance to Water DisW m OpenStreetMap 1.804
Slope Degree Classes * SD.C

DEM
1.606

Aspect Classes * A.C4 2.132
2 Elevation Classes* E.C2 1.009

Climatic

Drought code DC RHMS 1.365
1 excluded from further analysis due to high Spearman’s rho correlation coefficient with the distance
to agricultural land (DAgL). 2 included as matching criterion in propensity-score matching and
therefore excluded in further analyses * categorical explanatory variable.

Topographic parameters, elevation, slope, and aspect, were derived from the dig-
ital elevation model (DEM) with a precision of 3 arcsec previously downloaded from
the United States Geological Survey (http://landsat.usgs.gov//landsatcollections.php).
Average values of elevation, slope, and dominant aspect were calculated for each polygon
in a 1 × 1 km grid using ArcGIS software (ESRI, Redlands, CA, USA). Obtained values of
the slope and dominant aspect were divided into classes according to Carmo et al. [35],
while elevations were divided into classes of 200 m (Figure 2).

Vegetation and land cover data were obtained from the CORINE 2012 data set
(https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012). The vector layer
was intersected with polygon grid data. Objects in this vector layer were filtered for the
following CORINE 2012 land cover classes (CLCs): broad-leaved forest (BF), coniferous for-
est (CF), mixed forest (MF), natural grasslands (NG), transitional woodland-shrub (TWS),
and sparsely vegetated areas (SVA) (Figure 2). Intersecting the polygon grid data with
the polygon CLC layer filtered this way, a new polygon layer with a table of attributes
containing a polygon grid Object ID, CLC class ID with its description, and an area of CLC
class that falls into the respective grid polygon were generated.

http://landsat.usgs.gov//landsatcollections.php
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012


Forests 2021, 12, 5 5 of 17

Figure 2. Categorical predictors related to forest fire in Eastern Serbia. (a) Classes of elevation;
(b) aspect classes; (c) slope categories; (d) land cover categories obtained by CORINE 2012.

Data on drought code (DC), as a component of the Canadian Forest Fire Weather In-
dex [40], were obtained from the Republic Hydrometeorological Service of Serbia
(http://www.meteoalarm.rs/eng/fwi_osm.php) as tables with coordinates of meteoro-
logical stations with values on the drought code for each day in the observed period
(2012–2018). Each of these tables was then converted into a spatial point layer with points
representing meteorological stations and a respective table of attributes with values of
the drought code. The layer was then used for interpolation using the ordinary kriging
method [41], resulting in raster layers whose pixels represent values of drought code.
This way, we were able to calculate zonal statistics of drought code for each day and

http://www.meteoalarm.rs/eng/fwi_osm.php
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each polygon of a grid layer for raster layers that represent the observed period. Finally,
average values for each cell in the grid cells were calculated based on all of the drought
code data for the observed period.

Layers of roads, populated places, railroads, and agricultural land were used for the
calculation of the distance from each object of a 1 × 1 km grid to the nearest object of the
respective layer, so the attribute table of the generated point and polygon grid layer was
extended with distances to the nearest populated place, road, railway and agricultural land
(https://www.openstreetmap.org).

Population data were obtained from a raster dataset available for download in Geo-
TIFF format at the Center for International Earth Science Information Network (CIESIN),
Columbia University (http://dx.doi.org/10.7927/H4639MPP). The sum of the number of
people per polygon grid was also calculated by a zonal statistic tool.

At the end of the GIS portion of the analysis, Boolean values (Yes/No) were assigned
to the elements of the grid by using the Spatial Join tool. Values of Yes were assigned to the
elements for which the historical wildfire(s) occurred, and values of No were assigned to
those for which it did not.

Each cell with at least one historical record of a fire event from 2001 to 2018 was classi-
fied as a fire cell and coded as one (1). In total, 429 cells were selected as a fire cell for Eastern
Serbia. The use of binary LR alongside RF classification assumes that the predicted variable
is dichotomous. Therefore, necessary non-fire cells were sampled based on the propensity
score matching (PSM) method [42] and coded as zero (0). In general, a propensity score
analysis reduces the effect of confounding in observational (nonrandomized) studies and
can be used for matching, stratification, inverse probability of treatment weighting, and co-
variate adjustment, all based on the propensity score [43]. Thus, PSM forms matched sets
with equal ratio of treated and untreated subjects [44], in our case, of fire and non-fire cells,
who share a similar value of propensity score. Matching without replacement [45] was
applied for the selection of non-fire cells in this study. Namely, non-fire cells can be selected
only once as a match for a given fire cell. Among greedy and optimal matching procedures
of PSM, the latter was used in this study. Both approaches choose the same sets of controls
for the overall matched samples, but optimal matching does a better job of minimizing the
difference in propensity score value within each pair [46]. PSM was conducted in the R
package ‘MatchIt’ v 3.02 [47].

As it was important to avoid the selection of non-fire cells in the vicinity of the fire
cells, because of the similar environmental conditions, we tested distances among created
pairs of cells. The distance between pairs of fire and non-fire cells varied from 2.2 to
268.1 km, with an average of 134.2 km. Additionally, to validate the created models,
whole paired samples were randomly divided into two equal subsamples, training and
validation, with the same number of fire and non-fire cells [24,39,48,49].

One of the basic assumptions that must be met before applying LR is the absence of
high correlations (multicollinearity) among the explanatory variables (predictors) included
in the model. Explanatory variables were checked for multicollinearity by the variance
inflation factor (VIF) and Spearman’s rho correlation [50]. Only variables with VIF≤ 10
and a Spearman’s rho coefficient lower than 0.7 [51] were considered for model building.

2.2.3. Forest Fire Occurrence Frequency across Categorical Predictors

Forest fire distribution across categorical predictors was analyzed for all events
in the 15 years. Observed versus expected frequencies were analyzed and compared.
Observed frequencies represented the number of forest fires that occurred within the
explanatory variable category, while the expected frequencies were represented by the
surface covered by the respective variable category in the study area [24]. Comparisons
between observed and expected frequencies were based on chi-square statistics [52] at
a significance level of 0.001. Mean values were calculated for each class of categorical
predictors, and histograms were created accordingly.

https://www.openstreetmap.org
http://dx.doi.org/10.7927/H4639MPP
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2.3. Modeling Procedures

Based on collected and generated data, the model of probabilities for forest fire occur-
rences was generated for each cell of the polygon grid for the territory of Eastern Serbia.

2.3.1. LR Models

The algorithm obtained by the LR calculates the conditional probability of the fire
event occurring from one or more input variables [53]. Also, LR can be used for estimating
the contribution and significance of each variable by the Wald test [54], and afterwards
can select a combination of variables that can be introduced in more complex models [55].
To estimate forest fire occurrence probability in Eastern Serbia by LR, the following equation
was applied:

Pi =
1

1 + e− (α+β1Xi1+β2Xi2+···+βpXip)
(1)

with “Pi” as the probability of the forest fire occurrence, “α” as a constant, “β” as a
coefficient from regression, and “X” as original values of variables.

2.3.2. RF Models

This method uses a large number of decision trees, which produce their predictions
and combine them into a single, more accurate, prediction [56]. RF has gained popularity
in recent years, as it has been proven to perform better than LR according to several
studies [39,57,58]. Specifically, it considerably outperforms LR in the accuracy measured,
as well as the Brier score and area under curve (AUC) [59–61], on large and diverse datasets.
Thus, considering the similarity of forest fire probability prediction to other risk-assessment
applications, we considered RF as a strongly supported model of choice worth investigation.
Similar to LR, the RF method is also good at handling both categorical and continuous
types of explanatory variables.

The method proposed by Ye et al. and Genuer et al. [37,62] was applied for the variable
selection. Each variable was included in the model N − 1 times, where N represents the
number of variables considered as a predictor. RF models were run 16 times and an
additional variable was excluded in each iteration. The variable importance obtained from
each iteration was used for the calculation of relative variable importance, which represents
an average value for a specific variable ranked from 0 to 1. All variables were scored
from 1 to 16, according to the average importance. The variable with the highest average
importance was scored as 1, and the variable with the lowest importance was scored as
16. Then, a RF model with each of the 15 highest ranked variables was generated for
comparison with LR models. RF analyses were conducted by the default value of mtry (4),
which represents the number of variables at each split and the 100 trees in the forest (ntree).

2.4. Model Validation

Model evaluation was conducted by a receiver operating curve (ROC) analysis,
calculating the proportion of fire cells, classified as fire (sensitivity), and non-fire cells,
classified as non-fire (specificity), for the obtained models. A ROC curve plots the values
that represent sensitivity versus values that represent 1—specificity for the range of possi-
ble cut points [63]. AUC values between 0.5–0.7 indicate poor precision, values between
0.7–0.8 indicate acceptable precision, values between 0.8–0.9 indicate excellent precision,
and values higher than 0.9 indicate outstanding model precision [63]. Additional eval-
uation of the models was conducted by 2 × 2 classification tables based on the overall
accuracy. Thus, the tables are a result of the cross-classification of the dichotomous out-
come variable, whose values are derived from the predicted and observed probabilities.
Also, to compare the predictive capacity of the models produced, the distribution of fire
cells of the validation group across classes of forest fire occurrence probability was ana-
lyzed. Due to the limited size of data, the k-fold cross-validation (CV) method was also
applied to compare obtained models. Analysis was conducted in the R package ‘Caret’
v 6.0–86 [64] using “glm” and “rf” methods for LR and RF, respectively. ROC analysis,
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accuracy, and Kappa values obtained from CV were used to compare models, with k-value
set as 10.

To designate each cell as fire or non-fire, an optimal cutoff point must first be defined.
For the models selected by the LR and RF procedures, based on the ROC analysis and
prediction accuracy obtained under the training subsets, the optimal cutoff point was
determined by the sensitivity equals specificity method [65] using the easyROC web-
tool [66]. Then, the estimated probability for each cell was compared to the optimal cutoff
point. If the estimated probability for the particular cell exceeded the optimal cutoff point,
then that cell was designated as a fire cell. Conversely, if the estimated probability was
lower than the optimal cutoff point, a particular cell was designated as a non-fire cell.
Cutoff values were applied within selected models to both training and validation subsets.

2.5. Variable Importance Analysis

The quantification of variable importance is used for variable selection in many applied
studies. To assess the importance of individual variables selected by the LR procedure,
Wald statistics were applied to the models [67]. Variable importance in RF classification
could be assessed by the permutation importance indices [68] or by the Gini impurity
function for a classification problem [69]. For RF, the variable importance measures are
summed across all trees in the forest and scaled in the same manner so that the most
important variable has a value of 1.

2.6. Mapping Forest Fire Occurrence Probability

Forest fire occurrence probability calculated by the LR or RF models for fire cells and
non-fire cells was used to map the forest fire occurrence probability in Eastern Serbia in
ArcGIS 10.2. According to Nhongo et al. [34], the produced map was classified into five
categories: very low (0.01−0.20), low (0.21−0.40), medium (0.41−0.60), high (0.61−0.80),
and very high (0.81−1.00).

All statistical analyses related to LR and RF were conducted using the software
Statistica 13 (TIBCO Software Inc., Palo Alto, CA, USA).

3. Results
3.1. Forest Fire Occurrence Frequency

Forest fire distributions across the categorical explanatory variables are displayed
in Figure 3. An almost normal distribution of forest fires was recorded across elevation
classes, with higher frequencies at elevations between 200 and 1000 (with a less pronounced
peak in the class of 600−800 m), and with lower frequencies below and above this range
(Figure 3a). The frequencies of forest fire across elevation classes highly correspond to
surface area covered by the respective classes (χ2 =39.83, p < 0.001). This connection was
not significant between forest fire occurrence and aspect classes (χ2 = 1.11, p < 0.774).
Regarding aspect, the highest frequencies of fires occurred on southern aspects, then
almost equally eastern and western aspects, while the lowest frequency was recorded on
northern aspects (Figure 3b). The highest frequency of forest fire was recorded on the slopes
with an inclination between 10◦ and 19.99◦, then between 5◦ and 9.99◦, while the lowest
frequency was recorded at the lowest inclination (0−4.99◦). No fire was recorded at the
highest inclination of over 30◦ (Figure 3c). Forest fires were influenced by slope (χ2 = 47.54,
p < 0.001). Also, land cover type had a significant influence on forest fire occurrence
(χ2 = 107.89, p < 0.001). More than 55% of forest fires occurred in broad-leaved forests, and
almost 29% and 14% occurred in the transitional woodland-shrubs and natural grasslands
respectively, while less than 2% of forest fires occurred in the mixed forest and coniferous
forests. No forest fire was recorded in the sparsely vegetated area (Figure 3d).



Forests 2021, 12, 5 9 of 17

Figure 3. Frequencies of forest fires and areas covered by categorical variables: (a) elevation
classes, (b) aspect classes (exposure), (c) slope degree classes, and (d) vegetation classes obtained
from CORINE land cover 2012 that are present in Eastern Serbia: BF: broad-leaved forest; CF:
coniferous forest; MF: mixed forest; NG: natural grasslands; TWS: transitional woodland-shrubs,
and SVA: sparsely vegetated areas.

3.2. Models of Forest Fire Occurrence

In the first step, the total forested area (TFA) variable was excluded for further analysis
due to the high correlation (R = 0.84) with distance agricultural land (DAgL), as displayed
in Figure S1 (see the Supplementary Materials). The remaining 16 explanatory variables
met the conditions of VIF ≤ 10 and were considered for the future models. After several
iterations, the final models were created by LR and RF procedure for 15 variables. The high-
est impact on fire probability had a drought code, followed by distance to municipality,
distance to water, distance to railway, and distance to arable land, while a relative contri-
bution of mixed forest had the lowest impact in the RF model. Also, in the LR models,
the highest impact on fire probability had a drought code, while a relative contribution of
coniferous forest had the lowest impact on forest fire occurrence (Table 2).

The overall prediction accuracy of the LR and RF models, calculated by using an
optimal cut-off value, was 86.7 and 87.7%, respectively (Table 3). Moreover, the LR and RF
models display AUC values of 94.2% and 94.5%, respectively, affirming a high predictive
power (Figure 4b).
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Table 2. Explanatory variable importance evaluation based on Wald statistics for linear regression
(LR) and Gini impurity for random forest (RF) models.

LR RF

Variable Wald Variable Gini Impurity

Drought Code 44.968 *** Drought Code 1

Distance to Rail 36.085 *** Distance to
Municipality 0.697

Distance to
Agricultural Land 19.407 *** Distance to Water 0.688

Distance to Water 18.851 *** Distance to Rail 0.658

Natural Grasslands 17.136 *** Distance to Arable
Land 0.544

Transitional
Woodland-Shrub 13.054 *** Broad-Leaved Forest 0.503

Distance to Arable
Land 7.080 ** Distance to

Agricultural Land 0.461

Broad-Leaved Forest 4.182 * Transitional
Woodland-Shrub 0.365

Population Density 3.944 * Natural Grasslands 0.324
Distance to

Municipality 3.694 ns Population Density 0.283

Slope Degree Classes 3.226 ns Distance to Road 0.272
Distance to Road 1.914 ns Slope Degree Classes 0.204
Aspect Classes 1.868 ns Aspect Classes 0.185
Mixed Forest 1.313 ns Coniferous Forest 0.093

Coniferous Forest 0.034 ns Mixed Forest 0.085
ns not-significant, * significant at p < 0.05, ** significant at p < 0.01, *** significant at p < 0.001.

Table 3. Classification tables for the training and validation sets of data based on LR and RF models,
with applied cut off values, according to the sensitivity equals specificity method.

Model Cutoff

Predicted

Training Validation

0 1 % Correct 0 1 % Correct

LR 0.483
Observed 0 186 28 86.9 0 187 28 87.0

1 29 185 86.4 1 29 186 86.5
Overall % 86.7 86.7

RF 0.460
Observed 0 196 18 91.6 0 192 23 89.3

1 19 195 91.1 1 30 185 86.0
Overall % 91.4 87.7

Figure 4. Receiver operating curve (ROC) for LR and RF models: (a) training data set,
(b) validation data set.
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3.3. Relative Importance of Variables

In the LR models, drought code was the most important variable for fire occurrences,
followed by the distance to rail and agricultural land. Conversely, the lowest importance
of the forest fire occurrence was associated with the contribution of coniferous and mixed
forest, and also aspect classes (Table 2). In the RF models, drought code was the most
important variable followed by the distances to municipality, water, rail, and arable land.
Similarly, to the LR models, contribution of mixed and coniferous forest as well as aspect
classes had the lowest impact on the RF models (Table 2). Interestingly, distance to munici-
pality was recognized by RF as very important model variable, while in the LR models this
variable did not have a statistically significant effect on model performance.

3.4. Spatial Modeling of Probability of Fire Occurrence

Zones with a very high probability of forest fire occurrence were situated in the
southeastern part of the study area in both models and vary from 19.7% (LR) to 18.9%
(RF) of the forested area. Zones with a very low probability of forest fire occurrence were
situated in the northwestern part of the study area and range from 21.1% (LR) to 22.2%
(RF) of the forested area (Figure 5).

Figure 5. Maps of forest fire probability based on (a) LR models, (b) RF models.

3.5. Model Validation

LR models performed better in the very low fire distribution class, compared to the
RF models, identifying lower forest fire incidence in the validation set of data. On the
other hand, RF models performed better in high and very high classes than LR models,
identifying a higher number of forest fire events in the same set of data (Table 4). If the
two lowest classes (low and very low) classes are compared among models, then there is a
very slight difference between the LR and RF models (e.g., 23.3% vs. 23.7%, respectively).
On the other hand, the RF models classified 58.6% of forest fire events in the two higher
classes (high and very high), while the LR models classified 54.0% in the same classes of the
validation set of data. The overall prediction accuracy of the LR and RF models, based on
10-fold cross validation, was 86.5 (kappa = 0.7296) and 91.7% (kappa = 0.8345), respectively.
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Moreover, the LR and RF models display AUC values of 92.4% and 97.5%, respectively,
after 10-fold cross validation.

Table 4. Forest fire distribution (%) across different probability classes based on LR and RF models
for the validating set of data.

Forest Fire Probability Percentile Forest Fire Probability Class LR RF

0–20 Very low 4.7 8.4
20–40 Low 18.6 15.3
40–60 Moderate 22.8 17.7
60–80 High 21.4 22.3

80–100 Very high 32.6 36.3

4. Discussion

There has been a huge gap in forest fire risk assessment in Serbia without any system
for forest fire risk assessment at the national or even regional scale [70]. Within this study,
the first step has been made on that course by producing maps with forest fire occurrence
probability that cover more than one-third of the state territory. To map the forest fire
probability in Eastern Serbia, the area that has been the most affected by forest fires in the
past [32], two different methods were applied, LR and RF. Both methods have been widely
used in forest fire risk assessment within the past few decades, with the dominance of LR at
the beginning of this century [24,35,50,55,71], while the RF method has prevailed since the
last decade [25,37,58,60,70]. The RF models had slightly better performance than the LR
models in the training and validation sets. Better performance of the RF models over the LR
models in fire occurrence prediction is consistent with similar studies in our region [72,73]
and other regions [39,58]. The LR models shift performance from outstanding in training
data sets to excellent in validation data sets, while in the RF procedure this shift is less
pronounced according to applied model classification [63]. Based on the results obtained
within this study and literature survey, we can strongly recommend the use of the RF
method for the forest fire occurrence mapping of the entire territory of Serbia.

The propensity-score matching method was used to select non-fire events for known
fire events. This method was adopted from the field of medical sciences [74–77], like many
others, and it was used for the first time in natural hazard risk assessment by Hud-
son et al. [78] for evaluating the effectiveness of flood damage mitigation measures. We used
this method for the first time in forest fire risk assessment to pair historical fire event data
obtained from the NASA FIRMS with non-fire events using elevation as matching criteria.

Elevation had a significant and positive effect on forest fire occurrence probability,
with higher frequencies observed between 200 and 1000 m. The fire season is shorter at
higher elevations due to snow melting later, leading to a lower fire frequency [79]. Also,
a higher relative humidity due to a decrease in temperature of 1 ◦C per 100 m rise in eleva-
tion reduces chances for fuel ignition [80]. However, the rapid decrease in fire frequency at
altitudes over 1000 m, observed by Ramón González et al. [71], was not recorded in our
study. It is more likely that climate changes will influence a positive effect of the elevation
on forest fire frequency in the future, as has already been shown by Schwartz et al. [81].
Southern, intermediate slopes between 5◦ and 20◦ experienced increased fire activity in
our study due to the lower moisture of combustible material being exposed to the sun
radiation more than other aspects with milder and steeper slopes [34,81,82]. All topo-
graphical features strongly affect vegetation and its burn ability [83]. Forest fire frequency
was much higher in the broad-leaved forests than in the coniferous forests. The negative
effect of the distance to water on forest fire occurrence probability may be linked to the
NASA sensor’s ability to detect only larger forest fires, while a smaller fire is suppressed
easily when it is in the vicinity of the water bodies and the early phase of development are
thereby not detected. Conifers cover less than 1% of the study area and were scattered in
the higher mountains within the bigger broad-leaved forest complex and therefore were
lesser exposed to anthropogenic activity, explaining the negative effect of its proportion
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on fire activity. Transitional woodland-shrubs are usually situated in the zone between
forests and agricultural or arable land. Both types of land cover are connected to spring and
autumn burning activity, and therefore transitional woodland-shrubs had increased fire fre-
quency. Forests near human settlements and infrastructures that are densely populated are
more prone to small fires due to negligence and/or accidental ignitions [84], while distant
locations are prone to often larger, but less frequent, forest fires [85]. Therefore, an expected
decrease in the population density in rural areas in the southern part of the study area [86]
may result in lower fire activity in the future. Conversely, the expansion of urbanized areas
and road cover with an associated increase in population density due to migration from
south to north can be expected to lead to higher fire activity in the northern part of the
study area.

Zones with the highest probability for forest fire occurrence are located in the south-
eastern part of the study area in all models, which correspond to the more pronounced
drought periods during summer [27,28]. A higher drought code (higher temperature
and lack of precipitation) leads to the lower moisture of fuel and makes an area more
susceptible to ignition. It is well known that higher temperatures [87] reduce fuel moisture,
making the fuels highly susceptible to ignition. Additionally, a study by Chang et al. [88]
described low precipitation as a determinant factor for ignition. Drought code was the
most important variable, followed by anthropogenic features, in both the LR and RF
models. These results were consistent with other studies on determinant factors for the
occurrence of wildfire where climatic and anthropogenic predictors had a higher influence
on the fire occurrence probability [70,89–92]. All those models were efficiently applied
at a smaller scale (such as national parks or protected areas), while our models showed
similar efficacy at a larger scale. The produced maps can be used by firefighting services
for strategic and operative planning. Defined zones with higher forest fire occurrence
probability, in the southeast of the study area, should be intensively monitored during the
fire season, especially during the second peak in August [30], when the largest forest fires
can be expected [31]. Intense monitoring allows early detection of forest fires and leads to
rapid response. All of these measures, along with enhanced equipment for fire suppression,
can significantly decrease the burnt area in Eastern Serbia. Also, silvicultural measures
that reduce fire risk [23] can be applied under zones with a higher forest fire occurrence
probability according to the created maps. Thus, in the fire prone zone, less flammable tree
species [93] should be selected for afforestation. Additionally, to prevent the transfer of
ground fire to the crown, the introduction of silvicultural measures, such as pruning of the
lower branches, should be obligatory in order to reduce fire hazard in the vulnerable zones.
Other fuel reduction treatments, such as thinning, prescribed burning, and fuel breaks,
can be useful tools to achieve these objectives at the landscape level [20,21].

5. Conclusions

The overall accuracy of the RF models was higher than those of the LR models.
Both types of model identified drought code and anthropogenic features as the most
important forest fire predictors. The models displayed a very high predictive ability,
but the RF models were slightly more efficient and could be recommended for forest fire
occurrence mapping in the eastern part of Serbia. The obtained maps could improve the
efficacy of forest fire suppression in the study area in several ways. First, the fire probability
map could be used for position optimization of the devices used in the early detection of
forest fires. Also, firefighting resource allocation could be planned and applied in a manner
consistent with the fire frequency. Finally, forest management planning and silvicultural
measures should be adapted in terms of the forest fire risk reduction, based on the obtained
maps.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-4
907/12/1/5/s1: Figure S1: Correlation plot for all preselected variables based on Spearman’s rho
coefficient; Table S1: Tables of contingency for training and validation sets of data for the tested
random forest models.
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