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Abstract: Climate change is recognized as a major threat to global biodiversity and has already
caused extensive regional extinction. In particular danger are the plant habitats in subalpine zones,
which are more vulnerable to climate change. Evergreen coniferous trees in South Korean subalpine
zones are currently designated as a species that need special care given their conservation value, but
the reason for their decline and its seriousness remains unclear. This research estimates the potential
land suitability (LS) of the subalpine zones in South Korea for six coniferous species vulnerable to
climate change in the current time (1970–2000) and two future periods, the 2050s (2041–2060) and the
2070s (2061–2080). We analyze the ensemble-averaged loss of currently suitable habitats in the future,
using nine species distribution models (SDMs). Korean arborvitae (Thuja koraiensis) and Khingan fir
(Abies nephrolepis) are two species expected to experience significant habitat losses in 2050 (−59.5%
under Representative Concentration Pathway (RCP) 4.5 to −65.9% under RCP 8.5 and −56.3% under
RCP 4.5 to −57.7% under RCP 8.5, respectively). High extinction risks are estimated for these species,
due to the difficulty of finding other suitable habitats with high LS. The current habitat of Korean fir
(Abies koreana), listed as a threatened species on the International Union for Conservation of Nature
(IUCN) Red List, is expected to decrease by −23.9% (RCP 4.5) to −28.4% (RCP 8.5) and −36.5%
(RCP 4.5) to −36.7% (RCP 8.5) in the 2050s and 2070s, respectively. Still, its suitable habitats are also
estimated to expand geographically toward the northern part of the Baekdudaegan mountain range.
In the context of forest management and adaptation planning, the multi-model ensemble approach
to mapping future shifts in the range of subalpine tree species under climate change provides robust
information about the potential distribution of threatened and endanger

Keywords: climate change; subalpine trees; species distribution ensemble modeling; land suitability;
forest management

1. Introduction

Alpine and subalpine regions are known to be more vulnerable to climate change, due
to their unfavorable geographical, climatic, edaphic, and water conditions for the growth of
plants, as well as the restriction of plant migration [1]. The alpine or subalpine vegetation
that has adapted to these unfavorable environments for growth is very sensitive even to
small environmental changes from outside, and responses to these changes are reflected in
their physiological characteristics and growth rates, which, in turn, have huge influences
on the nearby ecosystems [2], and their high extinction risks under climate change, due
to their isolated distribution require addressing through more detailed observations of
their responses to climatic environmental changes [3]. Human-caused climate change has
resulted in alterations in the seasonal temperature and precipitation of forest ecosystems and
other extreme climate phenomena, which could influence the geographical or altitudinal
distributions of land suitable for plant growth [4]. The increase in the average temperature
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has increased the altitudes suitable for alpine or subalpine vegetation. It has, thus, decreased
the size of their habitats, which has consequently increased their risk of extinction [5].

The subalpine ecosystem in South Korea is mostly located in conservation areas,
such as national parks, around the highest areas of the Baekdudaegan mountain range,
which extends north and south, and its evergreen coniferous forests represent its high
conservation and scarcity value. Recently, the vertical elevation of the natural habitats of
evergreen coniferous trees and the reduction of habitat sizes have been observed along
with increased numbers of dead trees—all suspected to be related to climate change [6].
Among these species, Korean fir, also known as the Christmas tree, is an endemic species
of South Korea; its designation as an endangered species on the International Union for
Conservation of Nature (IUCN)’s Red List of Threatened Species [7] has recently drawn
the nationwide interest of South Koreans. In the effort to conserve the subalpine ecosystem
against the threat of climate change, the Korea Forest Service has selected ten coniferous
species and five bare land plant species, considered the most representative of South Korean
natural species, as the national index plants for climate change and conducted surveys on
their distributions within subalpine regions and growth conditions [8]. In 2016, the Korea
Forest Service also constructed a plan for the conservation of subalpine coniferous forests,
under which it has conducted ecosystem monitoring and other research and development
activities for the proliferation and restoration of coniferous species [9]. However, from
a long-term perspective, the decline of land suitable for subalpine coniferous species is
forecasted as inevitable under global warming. Thus, this requires surveying of the habitats
with higher extinction risks and their alternatives, which is indispensable for understanding
the possibility of their conservation and restoration in a national context.

Species distribution models (SDMs) can be used to mathematically estimate the poten-
tial suitability of the land for certain tree species based on their observed spatial distributions
and information about their growing environments. Using SDMs to simulate the climate-
change-driven future alterations in the suitable land for tree species and their colonies
usually involve prediction uncertainty, which could be caused by various reasons, such as
incomplete observations of species distributions, incomplete data entries of environmental
factors, inconsistent prediction capacities of different SDMs and their complexity, and the un-
certainty in climate forecasts and models [10]. To reduce this uncertainty inherent in species
distribution prediction, the ensemble approach uses multiple SDMs to produce average
value prediction surfaces, and for the weighted averages, the representation performance
from the evaluation metrics of SDMs for species distributions is generally used [11,12]. Since
the future climate variability drawn from the general circulation model (GCM) and regional
circulation model (RCM) based on the greenhouse gas emission scenarios usually appears
to be higher than the variability of SDMs’ predictabilities [13], various climate forecast data
selected for specific regions must be used to ensure accuracy.

The objective of this research is to support the planning formulation for the con-
servation of South Korean regional subalpine forests and their ecosystems, especially in
response to climate change. We analyzed the changes in land suitability of the subalpine
regions in South Korea to distribute subalpine coniferous forests and the extinction risks
of these species using multiple SDMs. Among the typical subalpine evergreen coniferous
tree species in South Korea, those of six species with available appearance data, namely,
Korean fir (Abies koreana E.H. Wilson), Khingan fir (Abies nephrolepis (Trautv.) Maxim.),
Sargent juniper (Juniperus chinensis L. var. sargentii Henry), Yeddo spruce (Picea jezoensis
(Siebold and Zucc.) Carrière), Korean yew (Taxus cuspidata S. et Z.), and Korean arborvitae
(Thuja koraiensis Nakai), were selected, and distributions of their potential land suitability
were simulated under two greenhouse gas emission scenarios (RCP 4.5 and RCP 8.5) of
the Intergovernmental Panel on Climate Change (IPCC) through the ensemble modeling
of nine SDMs. Based on the results of the simulation, the geographical distribution of
potential land suitable for each species in the future was constructed using the information
about these species and regions for conservation according to different climate change
scenarios in different time periods. The prediction uncertainty was also examined.
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2. Materials and Methods
2.1. Location Data for 6 Subalpine Forest Species in South Korea

For the data on the six evergreen coniferous species in the subalpine regions, we em-
ployed databases serviced by the National Ecological Survey [14], National Forest Inventory
(NFI), Baekdudaegan Mountain Range Ecological Survey [15], Korea National Arbore-
tum [16], the 6th National Forest Inventory survey, and Global Biodiversity Inventory
Facility [17]. Additional field surveys were conducted to determine the current distributions
of these species necessary for SDMs (Table 1). The accuracies of SDMs can vary according
to the sample sizes of presence sites [18,19]. This means that a smaller sample size could
increase the accuracy of the model, but with a higher probability of overfitting, as too
many environmental factors and sample size with too high density could produce many
limitations in model interpretation [20–22]. To ensure the integrity of the collected data,
cross-checking was performed to spatially rarefy the occurrence data [23], and the location
errors and overlapped coordinates were removed through spatial filtering. To prevent
sampling bias in SDM, the density of the data was adjusted to allow data from only one
location in a single 1 km resolution grid cell. Finally, a total of 930 presence sites for the six
subalpine coniferous species were collected, 448 of which were used for the study (Figure 1).
The analysis of the altitudes above sea level of the studied sites showed that 86.3% were
above 1000 m and the average altitude of all analyzed sites was 1254 ± 335 m.

Table 1. Number of cleaned (collected) occurrence sites of six subalpine forest species for species distribution modeling.

Name NES 1 BES 2 KNA 3 NFI 4 FES 5 GBIF 6 FS 7 Total

Abies koreana 9 (11) 30 (30) 33 (37) 10 (15) 40 (45) 4 (7) - 126 (145)
Abies nephrolepis 9 (9) 27 (45) - 7 (10) 14 (37) 0 (1) 37 (239) 94 (341)

Juniperus
chinensis 3 (7) 1 (1) 12 (16) - 12 (41) 2 (4) - 30 (69)

Picea jezoensis 3 (3) - 10 (16) 2 (4) - - 16 (16) 31 (39)
Taxus cuspidata 36 (74) 19 (25) 41 (67) 12 (50) 24 (57) 3 (14) - 135 (287)
Thuja koraiensis - - 24 (28) 1 (1) - 6 (19) 1 (1) 32 (49)

Total 60 (104) 77 (101) 120 (164) 32 (80) 90 (180) 15 (45) 54 (256) 448 (930)
1 NES: National Ecosystem Survey, 2 BES: Baekdudaegan Mountain Range Ecological Survey, 3 KNA: Korea National Arboretum, 4 NFI:
6th National Forest Inventory survey, 5 FES: Forest Ecological Survey, 6 GBIF: Global Biodiversity Information Facility, 7 FS: Field Survey.

Figure 1. Occurrence sites of six subalpine forest species in South Korea.
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The analysis of the conditions of the growing environments based on the occurrence
data showed an annual mean temperature of 7.14 ± 1.68 ◦C and annual mean precipitation
of 1521 ± 249 mm for the natural habitats of the species under research. The distribution
of annual mean temperature among the habitats showed that the habitat for Juniperus
chinensis had the highest annual temperature of 8.34 ◦C, while that for Abies nephrolepis had
the lowest, at 6.30 ◦C. Thuja koraiensis was growing naturally in habitats with an annual
mean precipitation of 1383 mm, while Abies koreana was growing in habitats with 1795 mm
precipitation. Abies koreana naturally grew in habitats with an average altitude above sea
level of 1381± 351.5 m, 14.6± 7.6◦ average slope, 7.73± 1.28 ◦C annual mean temperature,
and 1795 ± 254 mm annual mean precipitation.

2.2. Environmental Parameters

We downloaded the current climate data to predict the change in the distribution of
potential land suitable for subalpine coniferous forests, including 19 bioclimatic variables in
the WorldClim datasets [24], which were constructed using the average climate data for the
past three decades (1970–2000) with a spatial resolution of 30 arc seconds (about 1 km) [25].
Since the bioclimatic variables used as essential spatial variables to examine the distribution
of the suitable lands for plant growth were calculated from monthly average tempera-
tures and precipitation, there could be a multicollinearity problem [26]. To eliminate this
possible multicollinearity, based on principal component analysis and cross-correlation
matrix to avoid retaining highly correlated variables (Pearson’s r > 0.65), a total of six
variables (annual mean temperature, mean diurnal range, temperature seasonality, annual
precipitation, precipitation of wettest month, precipitation of driest month) among the
19 BioClim variables were selected for our research [27].

For future climate data, we referred to the HadGEM2-AO climate model, constructed
by the National Institute of Meteorological Sciences for the publication of IPCC Assessment
Report 5 (AR5), for two future time periods: The 2050s (2041–2060) and 2070s (2061–2080)
under the 4.5 and 8.5 RCP emission scenarios. The HadGEM2-AO climate model is a
general circulation model (GCM) with a spatial resolution of 135 km, and its bioclimatic
variables were downscaled to the spatial resolution of 30 arc-seconds using version 1.4 of
WorldClim for the actual analyses conducted for our detailed climate forecast in South
Korea. To predict the influence of the efforts to mitigate greenhouse gas emissions upon
ecosystems, each period in the negative climate change scenario under RCP 8.5 (meaning
no reduction of emissions from the current levels) was compared with RCP 4.5 (assuming
a partial reduction of emissions).

Local regions, like South Korea, have characteristic zonal patterns, which are hugely
influenced by geomorphic environments [28,29]. Since the vegetation is only present in
specific regions, especially reflecting zonal characteristics [30], the variables concerned with
certain geographic and edaphic features reflective of the nature of subalpine vegetations
were additionally identified for our analyses. The geographic variables altitude, slope,
and slope direction were drawn using a digital elevation model (DEM) from Shuttle
Radar Topography Mission (SRTM) with a spatial resolution of three arc-seconds [31–33].
The topographic position index (TPI) was also used to integrate various geographical,
environmental conditions [32]. For the edaphic variables, data provided by Korea Forest
Services regarding soil depth, soil texture, and soil moisture were used [34]. In particular,
we determined that soil-related variables could prevent overfitting of non-forested areas
because data were currently only available in forested areas.

Table 2 shows each environmental variable’s contribution to the common growth
environments for coniferous tree species in subalpine regions. The variable with the
greatest contribution in the nine SDMs of about six species under research was the alti-
tude (with the average value contribution of 54.2% ± 0.1%) and the second most was the
mean diurnal air temperature range (11.0% ± 5.8%), while the annual mean temperature
(9.7% ± 5.4%) and annual precipitation (8.5% ± 4.4%) were located next to those. This
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shows that bioclimatic variables usually have higher contributions to the growth environ-
ments with a higher variability across different tree species.

Table 2. Selected environmental variables with percent contribution of all species.

Code Description Unit Contribution (%)

Bio01 Annual mean temperature ◦C 9.7 ± 5.4

Bio02 Mean diurnal temperature
range

◦C 11.0 ± 5.8

Bio04 Temperature seasonality ◦C 5.5 ± 2.0
Bio12 Annual precipitation mm 8.5 ± 4.4
Bio13 Precipitation of wettest month mm 7.5 ± 3.7
Bio14 Precipitation of driest month mm 5.2 ± 3.2
DEM Elevation m 54.2 ± 0.1

LF Landforms index from TPI * - 4.9 ± 1.5
SP Slope position index from TPI * - 6.7 ± 1.8

SLP Slope ◦ 5.3 ± 0.7
ASP Cos(Aspect(rad)) - 5.1 ± 1.3
FSD Forest soil depth cm 6.7 ± 3.7
FST Forest soil texture - 5.4 ± 2.3
FSM Forest soil moisture % 4.6 ± 2.1

* TPI: topographic position index.

2.3. Species Distribution Ensemble Modeling and Land Suitability Analysis

To model the potential land suitability for the six subalpine coniferous tree species
in the future, the ensemble modeling was designed to consist of four different regression
models (general additive model (GAM), generalized boosted model (GBM), general linear
model (GLM), and multivariate adaptive spline (MARS)) and five machine learning models
(artificial neural network (ANN), classification tree analysis (CTA), flexible discriminant
analysis (FDA), random forest (RF), and maximum entropy (MaxEnt)), provided by the
Biomod2 package in R statistical language (Figure 2). We built individual models using
default settings provided by Biomod2 version 3.4.12 [35] and ensembled the outcomes of
SDM simulations with TSS value over 0.6 [36] to reduce the uncertainty of SDMs.

Figure 2. Schematic representation of the ensemble species distribution modeling approach.
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We used 80% of the occurrence data for each species for training the SDM, and the
remaining 20% was used to test its prediction accuracy. We constructed 10-fold cross-
validation (CA) by random selection from training datasets, and the possibility of species
occurrence for each SDM was calculated. For the data regarding absence locations, which
could directly influence the model performance [37], a total of 1000 pseudo-absence (PA)
points were generated randomly in forest areas using ‘dismo’ package [38]. Then 10 PA
datasets for SDMs were randomly selected by ‘biomod2′ from the 1000 PA points [39]. To
evaluate the prediction accuracies of the models, the area under the receiver operating
characteristics curve (AUC), true skill statistics (TSS), and Cohen’s kappa values were
considered together [40–43]. Generally, prediction capabilities of AUC and kappa values
of more than 0.7 indicate the good performance of a model, with >0.9 indicating excellent
performance; values above 0.6 and 0.8 for TSS indicate good and excellent performance,
respectively. Among the prediction data created through a total of 900 simulation runs of
nine SDMs for each species, those with TSS values above 0.6 of TSS were selected and used
for ensemble modeling [36].

As SDM results showed the possibility of each species’ occurrence in the form of
continuous distributions, they imply the importance of deciding the threshold to objectively
determine the presence of a given species for the integrity of the modeling results and
their interpretation [44]. For each selected simulation run, the point at which TSS had
the highest value (maxTSS) was defined as the threshold [45], and a binary map for the
presence/absence of each species was then drawn using the threshold. TSS values were
also used for calculating the weighted values for each model, and in the ensemble stage,
higher weighted values were assigned to the models with higher accuracies; by doing so,
the ensemble mean values were calculated [35]. As a result, the current land suitability
maps and 24 potential land suitability maps for each tree in different future periods under
different scenarios were created through the consensus summation of the binary maps to
calculate the probability of the presence of the tree of interest in each pixel. When a pixel
indicating the presence of the tree of interest in the current binary map became an absence
in the simulated future binary map in which only climatic environmental factors changed,
it was interpreted as indicating that a habitat loss would occur for that pixel. The scales of
the ensemble average habitat losses for each species were calculated in terms of different
climate change scenarios and future time periods.

3. Results
3.1. Model Accuracy and Current Potential Suitable Habitat Areas

Table 3 shows the accuracies of the SDMs tested through cross-validation. According
to the tests, GBM (TSS 0.830 ± 0.096) and RF (TSS 0.828 ± 0.092) were the two models with
the best performance in all evaluation indices (average value of AUC, kappa, and TSS). The
model with a relatively low performance was GAM (TSS 0.679 ± 0.141). The tree species
with the highest TSS values in all models was Abies nephrolepis (0.879 ± 0.073), whereas
Juniperus chinensis (0.539 ± 0.208) had the lowest. We observed significant deviation among
the model performances for different species.

Figure 3 shows the predicted distribution of land suitability of six subalpine forest
species in the current time period (1970–2000) calculated from the current climatic and
environmental data. The probability value for each pixel refers to the occurrence rate of
each species in the 900 simulation runs. The pixel is colored green when its land suitability
is 1.0. Most tree species appeared to have higher occurrence rates in the high-altitude
regions of the Baekdudaegan mountain range, which has higher altitudes of above sea
level and lower temperatures. Abies koreana was previously known for forming its habitats
mostly in the mountaintop area of Jiri mountain (127.5◦ E, 35.5◦ N) and Halla mountain
(126.5◦ E, 33.5◦ N) on Jeju Island, both located in the southern part of Korea [46]. Although
Gaya Mountain and Namdeogyu Mountain (128◦ E, 36◦ N) were generally considered
its northernmost habitats [47], the produced models show that the suitable lands for
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its growth could expand even to the northeastern mountainous regions of South Korea
(129◦ E, 38◦ N).

Table 3. Mean and standard deviation of model accuracy under area under the receiver operating
characteristic (AUROC), kappa, and true skill statistic (TSS) for the species distribution model and
each species.

Species Models AUC (0–1) kappa (0–1) TSS (0–1)

All species

ANN 1 0.903 ± 0.062 0.738 ± 0.110 0.783 ± 0.112
CTA 2 0.864 ± 0.065 0.635 ± 0.117 0.733 ± 0.117
FDA 3 0.895 ± 0.070 0.783 ± 0.103 0.779 ± 0.117
GAM 4 0.847 ± 0.074 0.643 ± 0.120 0.679 ± 0.141
GBM 5 0.929 ± 0.054 0.807 ± 0.100 0.830 ± 0.096
GLM 6 0.881 ± 0.071 0.673 ± 0.117 0.737 ± 0.137

MARS 7 0.881 ± 0.070 0.705 ± 0.115 0.742 ± 0.137
MAXENT 8 0.863 ± 0.081 0.706 ± 0.134 0.719 ± 0.156

RF 9 0.926 ± 0.051 0.808 ± 0.094 0.828 ± 0.092

Abies koreana

All models

0.947 ± 0.035 0.858 ± 0.005 0.860 ± 0.064
Abies nephrolepis 0.946 ± 0.037 0.846 ± 0.072 0.879 ± 0.073

Juniperus chinensis 0.761 ± 0.122 0.476 ± 0.189 0.539 ± 0.208
Picea jezoensis 0.906 ± 0.077 0.767 ± 0.122 0.811 ± 0.144

Taxus cuspidata 0.860 ± 0.050 0.681 ± 0.087 0.668 ± 0.091
Thuja koraiensis 0.905 ± 0.078 0.703 ± 0.143 0.796 ± 0.155

1 ANN: Artificial neural network, 2 CTA: Classification tree analysis, 3 FDA: Flexible discriminant analysis,
4 GAM: Generalized additive model, 5 GBM: Generalized boosting model, 6 GLM: Generalized linear model,
7 MARS: Multiple adaptive regression splines, 8 MAXENT: Maximum entropy, 9 RF: Random forest.

Figure 3. Land suitability maps of six subalpine forest species in Korea under the current (1970–2000)
climate conditions.

The species with the higher TSS-based ensemble average for the size of its suitable
land distribution was Abies nephrolepis (3021.7 km2, about 3.01% of the country), followed
by Abies koreana (1820.1 km2, about 1.82% of the country), Thuja koraiensis (1129.8 km2,
about 1.12% of the country), Taxus cuspidata (674.4 km2, about 0.67% of the country),
Picea jezoensis (448.6 km2, about 0.45% of the country), and Juniperus chinensis (307.4 km2,
about 0.31% of the country) (Table 4). The estimated altitude of the land suitable for the
endangered subalpine coniferous forest species was 923~1225 m, which is lower than the
average suitable land distribution altitude of 1200~1600 m [48]. To identify the uncertainty
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involving the ensemble average method, the ensemble averages of the suitable land sizes
weighted either by equal-weighted average or committee averaging (CA) were compared.
The results showed that under the use of equal value weighting, Abies nephrolepis will
experience the largest change in its suitable land size (−40.6% or −1225.9 km2), while Abies
koreana and Taxus cuspidata showed the two largest increases (+56.7% (+1032 km2) and
+66.1% (+445.8 km2), respectively) under the use of committee averaging. This implies that
the uncertainty could be roughly up to 50% using the ensemble method.

Table 4. Currently suitable habitat areas for subalpine forest species in Korea using true skill statistic (TSS) weighted average, equal
average, and committee averaging (CA)-based ensemble averaging methods.

Species Elevation of Habitat
(Mean ± SD, m)

TSS-Weighted Average Equal Value Average CA-Based Average

Area
(km2)

Fraction of
Country (%)

Area
(km2)

Fraction of
Country (%)

Area
(km2)

Fraction of
Country (%)

Abies koreana 1382 ± 352 1820.1 1.82 1823.0 1.82 2852.1 2.85
Abies nephrolepis 1297 ± 186 3021.7 3.01 1795.8 1.79 3021.7 3.02

Juniperus chinensis 1331 ± 340 307.4 0.31 334.3 0.33 649.7 0.65
Picea jezoensis 1338 ± 214 448.6 0.45 497.4 0.50 618.3 0.62

Taxus cuspidata 1092 ± 448 674.4 0.67 674.4 0.67 1120.2 1.12
Thuja koraiensis 1240 ± 263 1129.8 1.12 1065.7 1.06 1129.8 1.13

3.2. Future Changes in the Distribution of Suitable Habitat Area and Habitat Loss

The visualization of the predicted changes in the suitable habitats for the six subalpine
coniferous species (green-colored when the probability of LS was greater than 0.6) during
the 2070s (2061–2080) showed similar patterns of suitable land distributions in both RCP
4.5 and RCP 8.5 scenarios. Although all species are expected to lose some of their current
habitats, due to climate change, their future conditions could vary according to whether
they can colonize other suitable areas (Figure 4). Abies koreana and Taxus cuspidata are
expected to offset some of their loss of current habitats in Jiri and Halla Mountains, with
the new habitats be expanding to the mountainous areas of Gangwon-do province, located
in the northeastern part of South Korea. Abies nephrolepis, Juniperus chinensis, Picea jezoensis,
and Thuja koraiensis are not expected to find new habitats to offset their loss of current
habitat, which would place them at more significant risk of extinction in the future.

Table 5 presents the predicted ensemble-averaged area loss of currently suitable
habitats for the six species, showing that the current size of alpine coniferous forest in
South Korea is expected to change −13.2% ± 16.6% (Taxus cuspidata) to –59.5% ± 30.6%
(Thuja koraiensis) and −18.0% ± 22.5% (Taxus cuspidata) to −65.9% ± 34.2% (Thuja koraien-
sis) in the 2050s under the RCP 4.5 and RCP 8.5 scenarios, respectively. In the 2070s,
it is estimated to change from the current size to −17.7% ± 20.1% (Taxus cuspidata) to
−62.7% ± 33.8% (Thuja koraiensis) under RCP 4.5 and −26.7% ± 32.2% (Taxus cuspidata) to
−67.1% ± 39.1% (Thuja koraiensis) under RCP 8.5. Thuja koraiensis, Abies nephrolepis, and
Juniperus chinensis are the three species expected to be most vulnerable to extinction, due
to their lack of alternative habitats. Thuja koraiensis (−59.5% ± 30.6% under RCP 4.5 to
−65.9% ± 34.2% under RCP 8.5) and Abies nephrolepis (−56.3% ± 33.2% under RCP 4.5
to −57.7% ± 35.5% under RCP 8.5) are the two species for which the proactive plans for
their loss of the natural habitats will be required in the 2050s, given the possible forecast
fluctuations.

Abies koreana and Taxus cuspidate, currently gathered in the alpine areas of Jiri and Halla
Mountains, are expected to lose their current habitats, but expand to the Baekdudaegan
mountain range. The suitable habitat for Abies koreana is estimated to be reduced in
the 2050s by 23.9% ± 24.4% (RCP 4.5) to 28.4% ± 27.8% (RCP 8.5), and in the 2070s by
36.5% ± 25.4% (RCP 4.5) to 36.7% ± 35.6% (RCP 8.5), and the pace of its habitat loss during
the period from the 2050s to 2070s will be faster than that of from the current time to
the 2050s. The habitat loss of Taxus cuspidata is expected to be the least among the six
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species; its current habitat would be reduced by 13.2% ± 16.6% (RCP 4.5 to 18.0% ± 22.5%
(RCP 8.5) in the 2050s and by 17.7% ± 20.1% (RCP 4.5) to 26.7% ± 32.2% (RCP 8.5) in the
2070s. The species that showed the largest difference in the amount of the predicted habitat
loss between two greenhouse gas emission scenarios were Thuja koraiensis (6.4%) in the
2050s and Taxus cuspidata (9.0%) in the 2070s. This means that efforts to reduce greenhouse
gas emissions would be effective in preventing habitat loss, especially for these two species.

Figure 4. Land suitability maps of six subalpine forest species in South Korea for the 2070s (2061–2080)
under RCP 4.5 (upper) and RCP 8.5 (lower) emission scenarios.

Table 5. The projected loss of currently suitable habitat area, due to climate change for the 2050s and
2070s, based on RCP 4.5 and RCP 8.5 emission scenarios. ∆ is the areal loss difference between RCP
4.5 and RCP 8.5.

Species
Areal Loss in 2050s (2041–2060)

(%)
Areal Loss in 2070s (2061–2080)

(%)

RCP 4.5 RCP 8.5 ∆ RCP 4.5 RCP 8.5 ∆

Abies koreana 23.9 ± 24.4 28.4 ± 27.8 4.5 36.5 ± 25.4 36.7 ± 35.6 0.2
Abies nephrolepis 56.3 ± 33.2 57.7 ± 35.5 1.4 65.2 ± 34.7 62.2 ± 39.8 −3.0

Juniperus chinensis 37.2 ± 26.0 39.0 ± 29.5 1.8 43.9 ± 26.9 40.6 ± 33.2 −3.3
Picea jezoensis 22.1 ± 25.6 21.6 ± 26.5 −0.5 25.9 ± 30.3 23.7 ± 33.2 −2.2

Taxus cuspidata 13.2 ± 16.6 18.0 ± 22.5 4.8 17.7 ± 20.1 26.7 ± 32.2 9.0
Thuja koraiensis 59.5 ± 30.6 65.9 ± 34.2 6.4 62.7 ± 33.8 67.1 ± 39.1 4.4
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4. Discussion

The prediction of the latitudinal and altitudinal distribution of suitable habitats for
subalpine coniferous forest species in South Korea could provide information about the
extinction risks of each species and the possibility of their restoration, which is important
for in-situ or ex-situ conservation and forest management. The statistical prediction of
species distribution involves prediction uncertainty given the data quality of the observed
species occurrence sites and environmental variables, as well as different algorithms and
modeling parameters. Therefore, to minimize this uncertainty, we employed multiple
SDMs in this research for the ensemble average method, which provided more accurate
simulation performance to predict the suitable habitats of the species under study. However,
uncertainty remains about choosing the threshold for determining the range of the habitat
in each SDM and the ensemble average method. Among the nine SDMs used for this
research (ANN, CTA, FDA, GAM, GBM, GLM, MARS, MAXENT, and RF), those with the
highest values for their three evaluation indices (kappa AUC and TSS) were GBM and RF.
The variation among the different SDM simulation results, in comparison to the ensemble
average of the currently suitable habitat area, ranged from 11.5% (Picea jezoensis) to 34.1%
(Taxus cuspidata). However, the uses of different ensemble weighting methods resulted in
different outcomes for several species from their TSS-based ensemble averages (under the
equal value weighting method, the maximum deviation was −40.6% (Abies nephrolepis)
and 111% for Juniperus chinensis under CA-weighting), which implies special caution is
needed when deciding a proper weighting method to minimize the inter-SDM variation.

For the two decades after the mid-1990s, the size of the subalpine coniferous forest,
including Abies koreana, has been reduced by 25% [49], and the physiological stress caused
by various environmental factors, such as the rise in average temperatures in winter and
spring, drought, heatwave, and the decrease in the amount of snowfall, has been assumed
to be the major reason for the large-scale decline of the habitat areas [48]. To select the
candidate conservation and restoration areas for endangered subalpine coniferous forest
species, a more comprehensive consideration of the change in the suitable land distributions
caused by global warming and possible damage caused by severe weather phenomena
is necessary. The simulations for the 65 years from the mid-1990s until the end of the
2050s showed that the ensemble-averaged habitat loss speed for subalpine coniferous
forest would be −0.544%/year (−0.203%/year for Taxus cuspidata to −0.915%/year for
Thuja koraiensis) under the RCP 4.5 scenario and −0.591%/year (−0.277%/year for Taxus
cuspidata to −1.014%/year for Thuja koraiensis) under RCP 8.5. Even considering the
possible variations in outcomes among the different SDMs, the future habitat loss velocity
is expected to be slower than for the past twenty years (−1.25%/year). This suggests that
various environmental factors, including extreme weather events (i.e., cold dry wind),
inter/intraspecific competition, dispersal capabilities, etc., should be studied to better
understand the reasons for this extinction trend.

The suitable land for the growth of Abies koreana is expected to expand northward,
so this species would lose its current habitat at speeds of −0.368%/year (RCP 4.5) to
−0.437%/year (RCP 8.5) but, given the slow pace of plant migration, we may need to
examine whether it could avoid extinction risk through the altitudinal and geographical
migration and natural adaptation.

Even though the SDM-based prediction of the shift in the ranges of species under
climate change could provide valuable information for forest ecosystem conservation
and management, the predictive accuracy of SDMs is restricted by various factors, thus
resulting in uncertainty in the conservation and management plans. The outcomes of SDM
simulations, which appear to be affected by choices of algorithms and parameters, can
be managed through multi-model ensemble modeling to a certain degree. However, the
sampling biases at observation points and the uncertainties inherent in environmental
variables, such as future climate data from GCMs and RCMs, could be the source of the
uncertainty in the predicted distributions of habitats. Notably, in the case of mountainous
regions with large inter-regional weather differences, like those in South Korea, higher
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resolution is specifically required for local data. The data from WorldClim that we used for
simulations were the 1 km downscaled version of climate projection data from HadGEM2-
AO GCM (originally with a spatial resolution of about 135 km)—this was insufficient for
meteorological observation data of mountainous areas, which are limited for representing
the climate variability of these areas. Future research could use HadGEM3-RA RCM of
the Coordinated Regional Downscaling Experiment (CODEX) (http://cordex-ea.climate.
go.kr/cordex) for more dynamically downscaled climate prediction data (with a spatial
resolution of about 12.5 km).

From an ecological perspective, climate change is still a slow-paced phenomenon.
Given the slow pace of plant migration, studies of climate-change-related extinctions of
plant species need to use continuous observations of the changes over at least a 20- to
30-year period. No organism can exist in isolation. Therefore, the changes in the distribu-
tions of subalpine forests, their densities, biodiversity, and other phenological characteris-
tics should be examined within their complicated interrelations in an ecosystem. However,
for most endangered plant species, the data about their distributions, competitions, lo-
cations in an ecosystem, and adaptabilities are currently unavailable; thus, longer-term
surveys for these data are required.

5. Conclusions

The habitat loss of alpine and subalpine plant species is aggravated by the influence
of climate change, suggesting the necessity of efforts to maintain species diversity, such
as those for the collection and conservation of natural plant resources. As one of these
efforts, we estimated the current habitats of selected subalpine tree species with higher
conservation values and then constructed models to simulate their future changes under
different climate change scenarios. The findings of this research could be used for surveys
of the biodiversity on the Korean peninsula under climate change and for decision-making
regarding the selection of plant conservation and restoration sites. Severe weather events
caused by global warming/climate change are expected to increase the number of plants
dying and the severe competition amongst them. To reduce further damage, due to
climate change, the efforts of research institutes and experts are required for continuous
and longitudinal monitoring alongside more comprehensive modeling-based research to
examine the direct and indirect causes of die-offs, as well as to expand scientific data for
conservation and restoration projects.
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