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Abstract: Post-disturbance salvage logging mitigates economic loss after windthrow, and the value
of salvaged timber is strongly linked to its quality and dimensions. We studied the occurrence of
wind-induced damage of aspen in the hemiboreal forests of Latvia based on data from the National
Forest Inventory and additional measurements. Individual tree data from three re-measurement
periods were linked to follow a tree condition (live, broken, uprooted) and to link tree characteristics
to a respective snag. Three linear models were developed to assess factors affecting the snapping
height. An assortment outcome was calculated for undamaged and salvaged trees using the bucking
algorithm, and timber value was calculated at three price levels. Wind-induced damage occurred
for 3.4–3.6% of aspen trees, and among these, 45.8–46.6% were broken. The mean height of the
broken trees was 27.3 ± 0.9 m, and it was significantly higher (both p < 0.01) compared to the
height of undamaged and uprooted trees. The tested models indicated tree height as the main
explanatory variable for relative snapping height, with higher trees having a lower point of the
stem breakage. The other significant factor was the forest type group, indicating that trees growing
on dry mineral soils had lower relative snapping height than trees growing on drained mineral
soils. Stem breakage significantly (p < 0.001) reduced the volume of assortments, as compared to the
volume of undamaged trees. Relative volume loss of sawlogs showed a logarithmic trend with a
steep increase up to snapping height of 6 m, and it correlated tightly (r = 0.83, p < 0.001) with relative
value loss of the total stem. Timber value loss had a strong, positive relation to tree diameter at breast
height and fluctuated by 0.4% among different price levels. The mean volume reduction was 37.7%
for sawlogs, 11.0% for pallet blocks, and 8.9% for technological wood.

Keywords: wind damage; stem breakage; Populus tremula; timber value reduction; windthrow

1. Introduction

European forests encounter increased severity and frequency of natural disturbances [1]
that have substantial negative socio-economic consequences [2,3], especially in regions
that are highly dependent on the forest sector. The wind is among the key disturbance
agents [4,5], accounting for about half of the recorded damage in European forests over
the last two centuries [1]. In Northern Europe, such damage is expected to continue to
rise [6,7] due to a projected increase in the frequency of strong westerly winds in autumn [8]
combined with a shortened frozen soil period that enhances tree anchorage during this
season [9,10].

Post-disturbance salvage logging, i.e., removal of fallen and damaged trees, is conven-
tionally done to mitigate economic loss after windthrow [11,12]. In some cases, it also helps
to decrease the probability of a secondary disturbance [13,14]. Revenue from salvage log-
ging is usually substantially lower than could be obtained from undamaged trees, as storms
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also affect forests that have not reached target cutting age/dimensions, and stem damage
limits the possibility of obtaining the highest-graded assortments. Among the stem dam-
age, breakage has the strongest negative economic effect on revenue [15]. Stem breakage
occurs at the point where opposite sides of its cross-section experience compressive and
tensile stresses that exceed the resistance of stem fibers [16]. An earlier study has suggested
that bending stem with uniform wood properties subject outer wood layers to uniform
stress, and the possibility of breakage is constant over the length of the stem [17]. How-
ever, in real trees, deviations of leaning or non-circular stems, crown shape asymmetries,
stem defects, and other individual traits occur, which makes the presumption of uniform
wood properties infeasible.

From a financial perspective, it is more favorable for a tree to break closer to a top
because the monetary value of the stem is mainly determined by the recovery of the most
valuable timber assortment (for aspen: Sawlogs) obtained from the stem base. Practical
implications must link snapping height with easily detectable traits of the tree, such as
these derived from height and diameter, or other traits included in forest inventory. While
several studies have addressed tree- and stand-scale factors affecting the probability of
stem breakage [18–21], factors that affect the height of stem breakage (snapping height) are
seldom studied [22,23].

Historically, the main focus in Northern Europe has been put on the value of coniferous
timber, though in hemiboreal forests, broadleaved species constitute a substantial part of
growing stock. Studies of aspen timber, particularly, have been omitted under European
conditions. However, such information might allow adjusting management measures
to shape affecting factors, thus minimizing value loss. Considering that timber value is
strongly linked to its quality and dimensions, assessment of recovered timber assortments
provides information necessary to support salvage decisions that balance costs and returns
from logging in post-disturbance stands. This encompasses an important component for
evaluating/modeling possible storm outcomes and, hence, making forest policy decisions.

We hypothesized tree height and stem taper as the main tree-scale variables to explain
the relative height of the breakage. In this study, we aimed to characterize the snapping
height of European aspen and its effect on timber value loss.

2. Materials and Methods
2.1. Study Area

This study was conducted in hemiboreal forests (based on European forest types [24])
in Latvia (55◦60′ to 58◦10′ N, 20◦70′ to 28◦50′ E), in aspen (Populus tremula L.) dominated
and in mixed stands. According to the National Forest Inventory (NFI 2015–2019), forests
cover about 52% (3.24 million ha) of the territory of Latvia, with a total growing stock of
681 million m3. Several large-scale windstorms have affected forests in the territory of our
country, the most severe being in 1967 and 1969 when more than 26 million m3 of timber
were damaged [25], and in 2005 when about 7.4 million m3 of timber was damaged [26].
However, even in the absence of a large-scale storm, wind damage is the main disturbance,
accounting for 30% to 60% of annual sanitary clearcutting in the last years [27,28].

2.2. Data

We used data available from NFI for three consecutive five-year re-measurement
periods from 2004 to 2018, where each tree has a unique identification code (ID) that allows
following tree development throughout the measuring periods. Measurements are done in
clusters of four permanent circular sample plots that are systematically placed on a grid
of 4 × 4 km [29]. In each sample plot (area 500 m2), diameter at breast height (DBH) and
height (H) were measured for all trees with DBH ≥ 14.1 cm. A condition (live, broken,
uprooted, or other) of each tree was noted. The age of the dominant canopy was measured,
and forest type was noted according to Bušs [30].

First, we analyzed the occurrence of wind-induced stem breakage and uprooting
for aspen from all NFI sample plots that contained any aspen tree. We used paired
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measurement periods (P1: 2004–2008 with 2009–2013, and P2: 2009–2013 with 2014–2018)
to link individual tree data (tree and stand parameters) from the previous period with the
observed tree condition in the following period. We included aspen trees from sample
plots with the age of the dominant canopy ≥10 years and density of the dominant canopy
≥100 trees ha−1. The studied plots were characterized by the age of 10 to 171 years
(Table 1), mainly growing on dry and drained mineral soils (55.6% and 29.8% from all plots,
respectively), dominated by aspen, birch, and spruce (69.6%, 14.2%, and 7.0%, respectively).
Only trees that were live snapped and uprooted (excluding trees that died due to other
disturbances, e.g., cutting) at the latter paired measurement period (2009–2013 for P1 and
2014–2018 for P2) were used. In total, we used 7677 observations from 4636 aspen trees,
collected in 941 sample plots (Figure 1).

Table 1. Characteristics of sample plots. Number of observations for categorical variables, mean ± standard deviation (SD)
for continuous variables. P1—a paired period of 2004–2008 and 2009–2013, P2—a paired period of 2009–2013 and 2014–2018.

Stand Characteristics Description Classes/Range
Number of Observations/Mean ± SD

P1 P2

Age, years Age of the overstory
dominant species 10–171 50.9 ± 18.0 52.8 ± 19.7

Height, m Height of the overstory
dominant species 5.9–40.1 24.9 ± 5.1 25.9 ± 5.5

DBH, cm
Diameter at breast height

of the overstory
dominant species

6.9–74.3 26.3 ± 9.0 27.6 ± 10.0

Volume, m3 ha−1 The standing volume of the
dominant canopy 5–1058 370 ± 155 386 ± 168

Density, trees ha−1 Number of trees of the
dominant canopy 100–9020 1306 ± 1004 1181 ± 840

Basal area, m2 ha−1 Basal area of the
dominant canopy 1–76 32.9 ± 10.3 33.0 ± 10.6

Site type
Site type groups, based on
the depth of the peat layer

and moisture regime

Dry mineral soil 2221 2048
Wet mineral soil 350 305

Peat soil 36 73
Drained mineral soil 1309 978

Drained peat soil 196 161

Dominant species Overstory species with the
highest growing stock

Pine 140 135
Spruce 299 239
Birch 560 533

Black alder 82 58
Aspen 2884 2461

Grey alder 103 83
Other broadleaved species 44 56

Sample size Number of trees per plot 1–54 4.9 ± 6.8 4.6 ± 6.0

Pine—Pinus sylvestris L., Spruce—Picea abies (L.) Karst., Birch—Betula pendula Roth. and B. pubescens Ehrh., Black alder—Alnus glutinosa
(L.) Gaertn., Aspen—Populus tremula L., Grey alder—Alnus incana (L.) Moench. Other broadleaved species—Salix spp., Ulmus glabra Huds.
and U. laevis Pall., Acer platanoides L., Tilia cordata Mill., Quercus robur L., Fraxinus excelsior L.



Forests 2021, 12, 28 4 of 12

Figure 1. The location of the National Forest Inventory sample plots used for the analysis of wind-
induced damage occurrence (dark circles) and analysis of stem assortment recovery (clear circles).
Grey background coloring indicates forest areas.

2.3. Modeling of Snapping Height

Factors affecting the relative height of stem breakage were analyzed by measuring
the snapping height of snags and pairing these data with available parameters of the same
tree from the previous NFI re-measuring period. Model parameters were selected based on
possible impacting factors, i.e., with biological meaning. The data set included individual
tree height and diameter, the height of the snag (snapping height), mean age, basal area,
volume, and density of the dominant canopy, and the forest type. For each tree, we cal-
culated the slenderness coefficient (height to DBH (HD−1) ratio), as it is commonly used
to determine tree resistance to loading. However, smaller trees are found to have higher
slenderness than taller, older trees when the competition is not a limiting factor [31,32],
thus we also tested the effect of quadratic-height to DBH (H2D−1) ratio as a measure of
tree slenderness that considers tree height. Relative snapping height was calculated as a
ratio between snapping height and tree height and converted to a percentage. To test the
effect of the forest type group, only forest types with the highest occurrence of aspen and a
sufficient number of trees per each group were included: Dry mineral soils (no peat layer,
rooting depth unsaturated with water) represented by Hylocomiosa and Oxalidosa forest
types and drained mineral soils (peat depth <20 cm) represented by Myrtillosa mel. and
Mercurialiosa mel. forest types. To be able to test the effect of site conditions, only data of
trees on these site types were used, assembling in total 105 trees. Due to the relatively low
number of observations and collinearity of several of the parameters, it was not possible
to develop the most promising model by stepwise regression. Alternatively, we made
three linear models including parameters of tree dimensions (height and age), its social
status within the stand (slenderness coefficients), and site conditions (forest type as an
indicator of soil fertility, moisture regime, and structure). The developed models included:
(1) Tree height and H2D−1, (2) stand age and HD−1, and (3) tree height and forest type
group. Variance inflation factors (VIF) analysis was performed for each of the three models,
and in all cases, VIF values were below 1.5, showing that there is no significant collinearity
between the variables. Only in a few cases, there were more than one snapped tree per plot



Forests 2021, 12, 28 5 of 12

(stand), thus, no nested effect was applied. The selection of the best performing model was
based on the comparison of the Akaike information criterion (AIC).

2.4. Calculations of Timber Assortment Recovery

The effect of snapping height on timber assortment recovery was based on data of
525 snags. Tree height was obtained from the studied stands, based on the mean tree
height for the respective DBH. The assortment outcome was manually calculated for each
sample tree using a bucking algorithm developed by Ozolins [33] and modified by J. Donis
(unpublished). The modification was applied to calculate parameters of stem form equation:
Gaffrey’s generalized diameter-height regression [34] parameterized on NFI data was used
instead of the default algorithm. The bucking algorithm is based on tree parameters (H and
DBH) and pre-defined timber assortments (Table 2), and it maximizes production of the
most valuable assortment, i.e., sawlog production was prioritized where dimensions were
sufficient, followed by pallet blocks (timber for pallet production), and technological wood.
A section of stem at least one meter above and below the snapping height was counted as
residual wood (based on the mean of measurements in the tree pulling tests, unpublished).
The residual wood section was calculated longer if the length between the snapping point
and top-end of the previous assortment was smaller than needed for the full length of
assortment. Again, the stem part above the residual section was primarily used for the
production of the most valuable assortment regarding stem diameter at a particular height.
Two assortment outcomes of the broken trees were calculated: (1) Undamaged—based
only on dimensions of the tree, (2) salvaged—considering the impact of snapping.

Table 2. Description and price of aspen timber assortments, applied from Joint Stock Company ‘Latvia’s State Forests’.

Assortments
Dimensions Price a, EUR m−3

Diameter c, cm Length, m 2016 2017 2018 2019 2020 b Mean

Aspen sawlogs ≥24.0 2.4 38.71 39.67 47.65 51.74 49.77 45.51
Pallet blocks 12.0–23.9 2.4 32.68 30.64 39.78 40.75 33.98 35.57

Technological wood d 5.0–11.9 3.0 26.94 27.04 33.68 34.71 29.00 30.27
a mean weighted price, b calculated from the first and the second quarter, c diameter at the narrowest end of the log, d comprised by
two-thirds of technological wood and one-third of firewood.

Assortments and their prices were applied from Joint Stock Company ‘Latvia’s State
Forests’ (Table 2, [35]). Four assortments are available at the current timber market for
aspen: Large-dimension sawn materials are used for sawlog production, whereas the
small dimension, lower quality sawn material is used for pallet production (pallet blocks),
and tops of the large logs are used as a technological wood and firewood. We integrated
firewood under an assortment of technological wood, as they mainly differ by quality
properties that were not possible to distinguish by available data. The price for this
assortment was calculated, accounting for two-thirds of technological wood and one-third
of firewood. The sensitivity of results to fluctuations in the timber market was reflected by
three price levels: Average (mean of 2016–2020), minimum (the year 2016), and maximum
(the year 2019). The total value of the tree was calculated as a sum of the volume of each
assortment multiplied by its value for a particular price level. The residual wood did not
contribute to the total tree volume.

We used a one-way analysis of variance, followed by Tukey’s honest significance test
to detect significant differences in DBH and height of undamaged, broken, and uprooted
trees. A chi-squared test was used to assess differences in timber volume and timber value
of assortments between salvaged and undamaged trees. Wilcoxon test was used to compare
the mean volume per tree of a certain assortment between salvaged and undamaged trees.
The relation between tree variables (DBH and snapping height) and value loss per tree
and relative value loss, as well as the relation between a particular assortment volume
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loss and total tree value loss, was assessed by Pearson’s correlation. Mean values ±95% of
confidence intervals are shown throughout the paper.

3. Results

Among the studied stands, 3.6% of trees (148 out of 4112 aspen tree) were wind dam-
aged during the first paired period (P1: 2004–2008 and 2009–2013), and 3.4% of trees (120
out of 3565 aspen tree) were wind damaged during the second paired period (P2: 2009–2013
and 2014–2018). Among the damaged trees, almost half (46.6% and 45.8%, respectively)
were broken. No statistically significant differences were found among the mean DBH of
undamaged, broken, and uprooted trees: 28.2 ± 0.2, 29.3 ± 2.1, and 28.1 ± 2.2 cm, respec-
tively. The mean height of broken trees was 27.3 ± 0.9 m, and it was significantly higher
than the height of undamaged (25.8 ± 0.1 m, p = 0.006) and uprooted trees (25.3 ± 0.9 m,
p = 0.005). Mean snapping height was 7.2 ± 0.4 m.

The tested models indicated tree height as the main explanatory variable for rela-
tive snapping height (Table 3), and higher trees had a lower point of the stem breakage
(Figure 2a). The other significant factor was the forest type group, indicating that trees
growing on dry mineral soils had lower relative snapping height than trees growing on
drained mineral soils (Figure 2b). No significant influence on snapping height was detected
for any of the tested tree slenderness ratios (H2D−1 and HD−1) and stand age.

Table 3. Parameter and model estimates of the relative snapping height models.

Model
Explanatory

Variables

Parameter Estimates Model Estimates

Est. SE t-Value p-Value Adj. R2 AIC p-Value

1
Tree height −1.42 0.42 −3.37 0.001

0.090 939.1 0.003H2D−1 0.20 0.24 0.82 0.412
Intercept 66.11 10.34 6.39 <0.001

2
Stand age 0.01 0.12 0.10 0.918

−0.015 950.6 0.808HD−1 4.58 7.10 0.65 0.520
Intercept 27.12 10.29 2.63 0.001

3
Tree height −1.30 0.36 −3.62 <0.001

0.131 934.3 <0.001Forest type group −10.61 4.52 −2.35 0.021
Intercept 76.14 10.81 7.04 <0.001

H2D−1—tree quadratic-height to diameter-at-breast-height ratio, HD−1—tree height to diameter-at-breast-height ratio, Est.—estimate,
SE—standard error, Adj. R2—adjusted R-squared, AIC—Akaike Information Criterion.

Figure 2. Relative snapping height in relation to tree height (a) and forest type group (b). The grey area (a) and error bars (b)
represent ±95% confidence interval. Dry—forest types on dry mineral soil, drained—forest types on drained mineral soil.
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Stem breakage reduced the volume of all assortments compared to the volume of
undamaged trees (p = 0.034, Figure 3). For all assortments, the mean volume per tree
significantly differed between salvaged and undamaged trees (all p < 0.001). The volume
reduction was 37.7% for sawlogs, 11.0% for pallet blocks, and 8.9% for technological wood,
in total 24.7%. The volume of residual wood (i.e., stem wood that did not qualify for any
assortment type) comprised about one-third (34.0%) of the total volume of salvaged trees
and was more than double that of undamaged trees.

Figure 3. The proportion of assortment and residual wood volume for salvaged and undamaged
trees (n = 525).

According to the bucking algorithm, theoretically, sawlogs could be obtained from
undamaged trees with DBH at least 25 cm (242 trees out of the total 525). However,
trees with DBH 25–27 cm tended to have a low snapping height (1.5 to 3.2 m), hence,
this assortment was produced only for trees with DBH at least 27 cm (Figure 4).

The total loss of a certain assortment volume was rare (Figure 4). In the analyzed
sample, all assortment volume was reduced for 3.7% of trees for sawlogs, 1.3% of trees for
pallet blocks, and 3.6% of trees for technological wood on average. The majority of trees
(90.1%) had reduced some volume of sawlogs. For pallet blocks and technological wood,
no volume loss was found for 54.9% and 85.9% of trees, respectively.

The sawlog volume loss varied greatly along the DBH, with no clear tendencies.
Volume loss of pallet blocks and technological wood also showed great variation, but larger
values of the reduced timber volume were clustered for smaller diameter trees (Figure 4).
The relative snapping height had a logarithmic relationship with the relative loss of sawlog
and pallet block volume: Both showed a steep increase up to snapping height of 6 m and
remained stable for trees with higher snapping height (Figure 4). No clear trends were
found for technological wood.

Stem breakage significantly affected total timber value at all price levels (all p < 0.001,
Figure 5). Larger diameter trees had a higher value loss (at all price levels, r = 0.83,
p < 0.001). However, the relative value loss (value loss divided by the value of undamaged
tree) was rather similar regardless of tree DBH (among price levels r = 0.18 . . . 0.19, p < 0.05),
and followed the same logarithmic trend as found for sawlog and pallet block volume loss.
The relative value loss was strongly and significantly correlated with the relative volume
loss of sawlog timber (r = 0.72, p < 0.01), whereas pallet block and technological wood
volume showed weak but significant (r = 0.44, p < 0.001) and no link (r = −0.03, p > 0.05) to
relative value loss of total stem, respectively.



Forests 2021, 12, 28 8 of 12

Figure 4. The relative volume loss of salvaged trees for (a,d) sawlogs (n = 242), (b,e) pallet blocks
(n = 525), and (c,f) technological wood (n = 525) in relation to tree diameter-at-breast-height (DBH)
classes (left side) and snapping height (right side).

Figure 5. Timber value for salvaged and undamaged timber (n = 525) according to high (the year
2019), average (mean for 2016–2019), and low (the year 2016) prices.
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The assortment prices (obtained from the actual market) fluctuated among the years,
with the highest difference of 25.2% for sawlogs, 19.8% for pallet blocks, and 22.4% for
technological wood (Table 2). Price fluctuations significantly affected the calculated tim-
ber value of assortments for undamaged trees (p = 0.004), as well as for salvaged trees
(p = 0.022). Total timber value under different price levels fluctuated by 0.4%, while value
reduction for each assortment was constant regardless of price level: 37.7% for sawlogs,
11.0% for pallet blocks, and 8.9% for technological wood (Figure 5).

4. Discussion

Stem breakage occurred for almost half of the wind damaged trees studied in a pe-
riod of 15 years. These results predominantly refer to the intensity of a gap disturbance
dynamics, as the studied sample plots included any windblown sites, and the type of
wind-induced damage is primarily affected by wind speed [36]. Under intense distur-
bance, the proportion of broken trees might be different, as indicated by a slightly lower
proportion (41% of damaged trees) of broken aspen in a study of two successive severe
windstorms [37].

The factors affecting the possibility of a stem breakage are often studied after wind-
induced damage in forests (e.g., [18,19,38]), whereas the height of this breakage along
the stem is generally omitted in studies. The negative effect of stem breakage on assort-
ment outcomes might be reduced if management actions could alter the snapping height.
Our results suggest that the relative height of the stem breakage could be best explained
by a linear model, including explanatory variables tree height and forest type. Both of
these parameters and the intercept were significant, however, the model explained a rather
small part of the variation of the snapping height. The significant effect of forest type
on lower relative snapping height of aspen growing on dry mineral soils than for aspen
growing on drained mineral soils is hard to explain but presumably might be related to soil
composition. Both of these forest type groups have unsaturated soil at the rooting depth,
but drained soils typically comprise an upper peat layer that allows more flexible swaying,
i.e., more dynamic response to wind gusts [39].

Tree height showed a significant effect on two of the tested models. Our results
indicate that broken trees were significantly higher than undamaged and uprooted trees
and are in line with several studies [40–42] that have linked vulnerability to damage with
increased tree height. Other studies, however, have argued that for a fixed taper, increasing
tree height has almost no effect on the critical wind speed for overturning or damage [36,40].
Thus, increased damage could also be related to other tree characteristics that are changing
along with the tree height.

The stand age showed a non-significant effect on relative snapping height, likely
because the age of the aspen trees might differ from the age of the dominant canopy,
especially in mixed-stands. However, higher trees are presumably to be older, and have
age-related wood quality characteristics that might affect the relative snapping height
but were not possible to be included in our models. Older trees are more likely to have
stem defects (e.g., branch nodes, wounds), and aspen is particularly prone to heart rot
caused by Phellinus tremulae (Bond.) Bond. and Borisov. [43] and galleries at the tree
stump level created by wood borer Saperda carcharias L. [44]. Such internal stem and
root defects decrease structural resistance and might serve as a snapping point, partly
explaining our observed negative relation between relative snapping height and tree
height. Indeed, studies have shown that borer activity is linked to the breakage of the
damaged stem segments of Populus clones [45]. Prior stem damage is also found to lower
snapping height [23] and to decrease necessary loading for stem breakage [46], meaning
that internally damaged trees are broken more easily.

Suppressed, slender trees are less stable than dominant trees [39]. Additionally, studies
of freely growing trees have found smaller trees to be more slender than larger trees [31,32],
indicating that slenderness is also related to tree development and not exclusively to its
social status within a stand or stand density. For this reason, we also tested the slenderness
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coefficient with a higher weight on tree height. However, both our tested slenderness ratios
(HD−1 and H2D−1) did not reveal a significant effect on the relative snapping height.

Stem breakage had a substantial negative effect on assortment production, with the
largest impact on sawlogs. Our calculated total loss of volume was close (25% vs. 27%)
to that observed after a catastrophic storm in Ireland [22]. We found no trend between
snapping height of a particular diameter and sawlog outcome, which could largely be a
consequence for a small number of trees per each group combined with the relatively large
effect of each produced log, e.g., in a case when tree dimensions are sufficient to obtain two
sawlogs, snapping might reduce sawlog outcome by half or even all log volume that could
be produced from an undamaged tree.

The wind had damaged trees younger and with smaller DBH than would be harvested
according to national legislation in undamaged conditions, i.e., trees that have not reached
potential dimensions for highest-priced assortments. Although harvesting younger trees
could result in less residue wood due to a lower incidence of rot, smaller dimension trees
contribute less to the most valuable assortment (sawlog) production. The studied sites
did not include any windthrown stands, hence, the loss of assortments would be smaller
than under intense disturbance. In a catastrophic case, as much as 60% to 85% of the total
harvested volume could be suitable only for chip production [47]. Moreover, the high
loss of potential income is accompanied by increased harvesting costs that are higher than
for undisturbed stands [48]. For a period from 2000 to 2017 in Sweden, the difference in
salvaged and ordinary thinning costs was 21%, and for salvaged and ordinary final felling
64% [49]. In Finland, such differences were 35–64% for cutting stems with a volume of 0.3
to 1.5 m3 and 10–30% for logging windfalls [48].

Our calculations showed significant value reduction due to stem breakage. These
calculations were based on ordinary market prices, whereas large scale forest disturbances
cause timber markets to decrease prices due to a sudden increase in the supply of timber
entering the market [12]. For example, after a storm Gudrun in 2005, prices in Sweden
dropped on average by 37% for spruce sawlogs and by 24% for pine sawlogs, in comparison
to prices a year before the storm [40]. However, while logging of a small scale (gap)
disturbance might be decided based on economic calculations, salvage logging after a stand-
replacing storm in managed forests might be inevitable to promote stand regeneration and
to minimize loss of land value, even if these operations are not profitable in the short term.

5. Conclusions

Stem breakage has a substantial negative effect on sawlog volume production that,
in turn, reduces the monetary value of the whole stem. The negative effect of stem breakage
is most pronounced for trees whose dimensions are potentially suitable for the production
of only one sawlog. Breakage closer to the stem base has a highly variating effect on sawlog
volume reduction, whereas breakage higher than 6 m in all cases reduces sawlog volume by
30% to 50%. Quantitative estimates of the wind impact on assortment structure in salvage
logging can be used in post-storm harvest planning as well as modeling of long-term
influence of changes in storm frequency and/or intensity on the financial and economic
value of forests.
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