Knowledge Production for Resilient Landscapes: Experiences from Multi-Stakeholder Dialogues on Water, Food, Forests, and Landscapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Stakeholder Platforms for Co-Production of Knowledge
2.2. Targeted Reviews
3. Results
3.1. Conceptualising the Role of Water in Landscapes
3.2. Drivers of Change (A)
3.3. Impacts on Landscape Hydrology (B)
3.4. Water-Related Ecosystem Services (C)
4. Discussion
4.1. Coordination and Management Arrangements
4.2. Monitoring, Evaluation, Learning and Capacity Development
4.3. Financing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eriksson, M.; Samuelson, L.; Jägrud, L.; Mattsson, E.; Celander, T.; Malmer, A.; Bengtsson, K.; Johansson, O.; Schaaf, N.; Svending, O.; et al. Water, Forests, People: The Swedish Experience in Building Resilient Landscapes. Environ. Manag. 2018, 62, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. The IPBES Assessment Report on Land Degradation and Restoration; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2018.
- Balint, P.J.; Stewart, R.E.; Desai, A.; Walter, L.C. Wicked Environmental Problems: Managing Uncertainty and Conflict; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- Sayer, J.; Margules, C.; Boedhihartono, A.K.; Dale, A.; Sunderland, T.; Supriatna, J.; Saryanthi, R. Landscape approaches; what are the pre-conditions for success? Sustain. Sci. 2014, 10, 345–355. [Google Scholar] [CrossRef]
- Sayer, J.; Sunderland, T.; Ghazoul, J.; Pfund, J.-L.; Sheil, D.; Meijaard, E.; Venter, M.; Boedhihartono, A.K.; Day, M.; Garcia, C.; et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl. Acad. Sci. USA 2013, 110, 8349–8356. [Google Scholar] [CrossRef] [Green Version]
- UN Environment. Global Environment Outlook–GEO-6: Summary for Policymakers; Cambridge University Press (CUP): Cambridge, UK, 2019. [Google Scholar]
- World Economic Forum. The Global Risk Report 2019; World Economic Forum: Davos, Switzerland, 2019. [Google Scholar]
- Eberhardt, U.; Springgay, E.; Guitierrez, V.; Casallas-Ramirez, S.; Cohen, R. Advancing the Forest and Water Nexus: A Capacity Development Facilitation Guide; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2019. [Google Scholar]
- Pohl, C.; Rist, S.; Zimmermann, A.; Fry, P.; Gurung, G.S.; Schneider, F.; Speranza, C.I.; Kiteme, B.; Boillat, S.; Serrano, E.; et al. Researchers’ roles in knowledge co-production: Experience from sustainability research in Kenya, Switzerland, Bolivia and Nepal. Sci. Public Policy 2010, 37, 267–281. [Google Scholar] [CrossRef] [Green Version]
- Mauser, W.; Klepper, G.; Rice, M.; Schmalzbauer, B.S.; Hackmann, H.; Leemans, R.; Moore, H. Transdisciplinary global change research: The co-creation of knowledge for sustainability. Curr. Opin. Environ. Sustain. 2013, 5, 420–431. [Google Scholar] [CrossRef] [Green Version]
- Clark, W.C.; Harley, A.G. Sustainability Science: Toward a Synthesis. Annu. Rev. Environ. Resour. 2020, 45, 331–386. [Google Scholar] [CrossRef]
- Melo, V. Collaborative Efforts for Sustainable Development: Surveying the Literature on Multistakholder Initiatives to Realize the Sustainable Development Goals; Task Team CSO Development Effectiveness and Enabling Environment: The Hague, The Netherlands, 2018. [Google Scholar]
- Tengberg, A.; Bargues-Tobella, A.; Barron, J.; Ilstedt, U.; Jaramillo, F.; Johansson, K.; Lannér, J.; Petzén, M.; Robinson, T.; Samuelson, L.; et al. Water for Productive and Multifunctional Landscapes; Stockholm International Water Institute: Stockholm, Sweden, 2018. [Google Scholar]
- Samuelson, L.; Bengtsson, K.; Celander, T.; Johansson, O.; Jägrud, L.; Malmer, A.; Mattsson, E.; Schaaf, N.; Svending, O.; Tengberg, A. Water, Forests, People-Building Resilient Landscapes; Stockholm International Water Institute: Stockholm, Sweden, 2015. [Google Scholar]
- Wilk, J.; Wittgren, H.B. Adapting Water Management to Climate Change; Stockholm International Water Institute: Stockholm, Sweden, 2009. [Google Scholar]
- Falkenmark, M.; Galaz, V. Agriculture, Water and Ecosystems, Policy Brief No. 6; Swedish Water House: Stockholm, Sweden, 2007. [Google Scholar]
- Gustafsson, M.; Creed, I.; Dalton, J.; Gartner, T.; Matthews, N.; Reed, J.; Samuelson, L.; Springgay, E.; Tengberg, A. Gaps in science, policy and practice in the forest-water nexus. Unasylva 2019, 70, 36–45. [Google Scholar]
- Swedish FAO Committee. Water, Food and Human Dignity-a Nutrition Perspective; Swedish FAO Committee: Stockholm, Sweden, 2015. [Google Scholar]
- Swedish Water House. The Water Journey; Stockholm International Water Institute: Stockholm, Sweden, 2017. [Google Scholar]
- Enfors-Kautsky, E.; Järnberg, L.; Quinlan, A.; Ryan, P. Wayfinder: A Resilience Guide for Navigating towards Sustainable Futures; GRAID Programme, Stockholm Resilience Center: Stockholm, Sweden, 2018. [Google Scholar]
- Robert, S.; Ash, N.; Millennium Ecosystem Assessment (Eds.) Ecosystems and Human Well-Being: Current State and Trends: Findings of the Conditions and Trends Working Group; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestial Ecosystems; Intergovernmental Panel on Climate Change: Bonn, Germany, 2019.
- Rockström, J.; Falkenmark, M.; Folke, C.; Lannerstad, M.; Barron, J.; Enfors, E.; Gordon, L.; Heinke, J.; Hoff, H.; Pahl-Wostl, C. Water Resilience for Human Prosperity; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Lundqvist, J.; Unver, O. Alternative pathways to food security and nutrition–water predicaments and human behavior. Hydrol. Res. 2018, 20, 871–884. [Google Scholar] [CrossRef] [Green Version]
- World Resources Institute. World Resources Report: Creating a Sustainable Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050; World Resources Institute: Washington, DC, USA, 2018. [Google Scholar]
- UN-Habitat. Urbanization and Development: Emerging Futures. World Cities Report 2016; UN-Habitat: Nairobi, Kenya, 2016. [Google Scholar]
- Tengberg, A.; Valencia, S. Integrated approaches to natural resources management-Theory and practice. Land Degrad. Dev. 2018, 29, 1845–1857. [Google Scholar] [CrossRef]
- Nilsson, C.; Thompson, W.G.; Goldstein, S.L. Fragmentation and Flow Regulation of the World’s Large River Systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Poff, N.L.; Olden, J.D.; Merritt, D.M.; Pepin, D.M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl. Acad. Sci. USA 2007, 104, 5732–5737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaramillo, F.; Destouni, G. Local flow regulation and irrigation raise global human water consumption and footprint. Science 2015, 350, 1248–1251. [Google Scholar] [CrossRef] [PubMed]
- Savo, V.; Lepofsky, V.S.D.; Benner, J.P.; Kohfeld, K.E.; Bailey, J.; Lertzman, J. Observations of climate change among subsistence-oriented communities around the world. Nat. Clim. Chang. 2016, 6, 462–473. [Google Scholar] [CrossRef]
- Creed, I.F.; van Noordwijk, M. Forest and Water on a Changing Planet: Vulnerability, Adaptation and Governance Opportunities: A Global Assessment Report; International Union of Forest Research Organisations: Vienna, Austria, 2018; Volume 38. [Google Scholar]
- Ellison, D.; Wang-Erlandsson, L.; van der Ent, R.; van Noordwijk, M. Upwind forests:manageing moisture recycling for nature-based resilience. Unasylva 2019, 70, 14–26. [Google Scholar]
- Ellison, D.; Morris, C.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; Van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Ilstedt, U.; Malmer, A.; Verbeeten, E.; Murdiyarso, D. The effect of afforestation on water infiltration in the tropics: A systematic review and meta-analysis. For. Ecol. Manag. 2007, 251, 45–51. [Google Scholar] [CrossRef]
- Bargués-Tobella, A.; Reese, H.; Almaw, A.; Bayala, J.; Malmer, A.; Laudon, H.; Ilstedt, U. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso. Water Resour. Res. 2014, 50, 3342–3354. [Google Scholar] [CrossRef] [Green Version]
- Gordon, L.; Steffen, W.; Jönsson, B.F.; Folke, C.; Falkenmark, M.; Johannessen, A. Human modification of global water vapor flows from the land surface. Proc. Natl. Acad. Sci. USA 2005, 102, 7612–7617. [Google Scholar] [CrossRef] [Green Version]
- Gordon, L.; Peterson, G.D.; Bennett, E.M. Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol. Evol. 2008, 23, 211–219. [Google Scholar] [CrossRef]
- Gordon, L.; Finlayson, C.M.; Falkenmark, M. Managing water in agriculture for food production and other ecosystem services. Agric. Water Manag. 2010, 97, 512–519. [Google Scholar] [CrossRef]
- Acreman, M.C.; Holden, J. How Wetlands Affect Floods. Wetlands 2013, 33, 773–786. [Google Scholar] [CrossRef] [Green Version]
- Leigh, C.; Sheldon, F.; Kingsford, R.T.; Arthington, A.H. Sequential floods drive ’booms’ and wetland persistence in dryland rivers: A synthesis. Mar. Freshw. Res. 2010, 61, 896–908. [Google Scholar] [CrossRef] [Green Version]
- Falkenmark, M.; Wang-Erlandsson, L.; Rockström, J. Understanding of water resilience in the Anthropocene. J. Hydrol. X 2019, 2, 100009. [Google Scholar] [CrossRef]
- Tengberg, A.; Fredholm, S.; Eliasson, I.; Knez, I.; Saltzman, K.; Wetterberg, O. Cultural ecosystem services provided by landscapes: Assessment of heritage values and identity. Ecosyst. Serv. 2012, 2, 14–26. [Google Scholar] [CrossRef]
- Good, S.P.; Noone, D.; Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 2015, 349, 175–177. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.; Wang, Q.; Guo, L.; Lin, H.; Chen, X.; Sun, Y.; Ning, S. An enhanced rainfall–runoff model with coupled canopy interception. Hydrol. Process. 2020, 34, 1837–1853. [Google Scholar] [CrossRef]
- Crockford, R.H.; Richardson, D.P. Partitioning of rainfall into throughfall, stemflow and interception: Effect of forest type, ground cover and climate. Hydrol. Process. 2000, 14, 2903–2920. [Google Scholar] [CrossRef]
- Neumann, R.B.; Cardon, Z.G. The magnitude of hydraulic redistribution by plant roots: A review and synthesis of empirical and modeling studies. New Phytol. 2012, 194, 337–352. [Google Scholar] [CrossRef]
- Prieto, I.; Armas, C.; Pugnaire, F.I. Water release through plant roots: New insights into its consequences at the plant and ecosystem level. New Phytol. 2012, 193, 830–841. [Google Scholar] [CrossRef]
- Myers, N. Environmental services of biodiversity. Proc. Natl. Acad. Sci. USA 1996, 93, 2764–2769. [Google Scholar] [CrossRef] [Green Version]
- Spracklen, D.; Baker, J.C.A.; Garcia-Carreras, L.; Marsham, J. The Effects of Tropical Vegetation on Rainfall. Annu. Rev. Environ. Resour. 2018, 43, 193–218. [Google Scholar] [CrossRef]
- Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. [Google Scholar] [CrossRef] [Green Version]
- Teuling, A.; Taylor, C.M.; Meirink, J.F.; Melsen, L.A.; Miralles, D.G.; Van Heerwaarden, C.C.; Vautard, R.; Stegehuis, A.I.; Nabuurs, G.-J.; De Arellano, J.V.-G. Observational evidence for cloud cover enhancement over western European forests. Nat. Commun. 2017, 8, 14065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeem, S.; Duffy, J.E.; Zavaleta, E. The Functions of Biological Diversity in an Age of Extinction. Science 2012, 336, 1401–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keys, P.W.; Wang-Erlandsson, L.; Gordon, L. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service. PLoS ONE 2016, 11, e0151993. [Google Scholar] [CrossRef]
- Van Der Ent, R.J.; Savenije, H.H.G.; Schaefli, B.; Steele-Dunne, S.C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 2010, 46, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Keys, P.W.; Van Der Ent, R.J.; Gordon, L.J.; Hoff, H.; Nikoli, R.; Savenije, H.H.G. Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences 2012, 9, 733–746. [Google Scholar] [CrossRef] [Green Version]
- Makarieva, A.M.; Gorshkov, V.G. Reply to A. G. C. A. Meesters et al.’s comment on “Biotic pump of atmospheric moisture as driver of the hydrological cycle on land”. Hydrol. Earth Syst. Sci. 2009, 13, 1307–1311. [Google Scholar] [CrossRef]
- Makarieva, A.M.; Gorshkov, V.G.; Sheil, D.; Nobre, A.D.; Li, B.-L. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmos. Chem. Phys. Discuss. 2013, 13, 1039–1056. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.; Turner, J. Tamm Review: Nutrient cycling in forests: A historical look and newer developments. For. Ecol. Manag. 2019, 444, 344–373. [Google Scholar] [CrossRef]
- Hao, M.; Zhang, J.; Meng, M.; Chen, H.Y.H.; Guo, X.; Liu, S.; Ye, L. Impacts of changes in vegetation on saturated hydraulic conductivity of soil in subtropical forests. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandler, K.R.; Chappell, N.A. Influence of individual oak (Quercus robur) trees on saturated hydraulic conductivity. For. Ecol. Manag. 2008, 256, 1222–1229. [Google Scholar] [CrossRef]
- Stuart-Haëntjens, E.; De Boeck, H.J.; Lemoine, N.P.; Mänd, P.; Kröel-Dulay, G.; Schmidt, I.K.; Jentsch, A.; Stampfli, A.; Anderegg, W.R.; Bahn, M.; et al. Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Sci. Total Environ. 2018, 636, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Konar, M.; Todd, M.J.; Muneepeerakul, R.; Rinaldo, A.; Rodríguez-Iturbe, I. Hydrology as a driver of biodiversity: Controls on carrying capacity, niche formation, and dispersal. Adv. Water Resour. 2013, 51, 317–325. [Google Scholar] [CrossRef]
- Maes, J.; Paracchini, M.; Zulian, G.; Dunbar, M.; Alkemade, R. Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol. Conserv. 2012, 155, 1–12. [Google Scholar] [CrossRef]
- Ilstedt, U.; Tobella, A.B.; Bazié, H.R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; et al. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Sci. Rep. 2016, 6, 21930. [Google Scholar] [CrossRef]
- Neary, D.G.; Ice, G.G.; Jackson, C.R. Linkages between forest soils and water quality and quantity. For. Ecol. Manag. 2009, 258, 2269–2281. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, Y.; Yu, P. A review on the study of water use efficiency of tree species. Chin. J. Ecol. 2005, 24, 417–421. [Google Scholar]
- Delzon, S.; Loustau, D. Age-related decline in stand water use: Sap flow and transpiration in a pine forest chronosequence. Agric. For. Meteorol. 2005, 129, 105–119. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Renault, D.; Wallender, W. Nutritional water productivity and diets. Agric. Water Manag. 2000, 45, 275–296. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, Y.; Wei, Y.; Wang, G. Socio-hydrological water balance for water allocation between human and environmental purposes in catchments. Hydrol. Earth Syst. Sci. 2015, 19, 3715–3726. [Google Scholar] [CrossRef] [Green Version]
- Nyberg, G.; Bargués-Tobella, A.; Kinyangi, J.; Ilstedt, U. Soil property changes over a 120-yr chronosequence from forest to agriculture in western Kenya. Hydrol. Earth Syst. Sci. 2012, 16, 2085–2094. [Google Scholar] [CrossRef] [Green Version]
- Swank, W.T.; Swift, L.W.; Douglass, J.E. Streamflow Changes Associated with Forest Cutting, Species Conversions, and Natural Disturbances. In Forest Hydrology and Ecology at Coweeta; Springer: New York, NY, USA, 1988; pp. 297–312. [Google Scholar]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Ghazoul, J.; Sheil, D. Tropical Rain Forest Ecology, Diversity, and Conservation; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Marques, R.F.D.P.V.; Terra, M.D.C.N.S.; Mantovani, V.A.; Rodrigues, A.F.; Pereira, G.A.; Da Silva, R.A.; De Mello, C.R. Rainfall Water Quality under Different Forest Stands. Cerne 2019, 25, 8–17. [Google Scholar] [CrossRef]
- Almuktar, S.A.A.A.N.; Abed, S.N.; Scholz, M. Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environ. Sci. Pollut. Res. 2018, 25, 23595–23623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ElZein, Z.; Abdou, A.; Elgawad, I.A. Constructed Wetlands as a Sustainable Wastewater Treatment Method in Communities. Procedia Environ. Sci. 2016, 34, 605–617. [Google Scholar] [CrossRef] [Green Version]
- Minhas, P.; Yadav, R.; Lal, K.; Chaturvedi, R. Effect of long-term irrigation with wastewater on growth, biomass production and water use by Eucalyptus (Eucalyptus tereticornis Sm.) planted at variable stocking density. Agric. Water Manag. 2015, 152, 151–160. [Google Scholar] [CrossRef]
- Aronsson, P.; Perttu, K. Willow vegetation filters for wastewater treatment and soil remediation combined with biomass production. For. Chron. 2001, 77, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; De Courcelles, V.D.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Mechanisms of Carbon Sequestration in Soil Aggregates. Crit. Rev. Plant Sci. 2004, 23, 481–504. [Google Scholar] [CrossRef]
- Alexandrov, G.A.; Brovkin, V.; Kleinen, T.; Yu, Z. The capacity of northern peatlands for long-term carbon sequestration. Biogeosciences 2020, 17, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Quijas, S.; Boit, A.; Thonicke, K.; Murray-Tortarolo, G.N.; Mwampamba, T.H.; Skutsch, M.; Simoes, M.; Ascarrunz, N.; Peña-Claros, M.; Jones, L.; et al. Modelling carbon stock and carbon sequestration ecosystem services for policy design: A comprehensive approach using a dynamic vegetation model. Ecosyst. People 2018, 15, 42–60. [Google Scholar] [CrossRef] [Green Version]
- Wardle, D.A.; Jonsson, M.; Bansal, S.; Bardgett, R.D.; Gundale, M.J.; Metcalfe, D.B. Linking vegetation change, carbon sequestration and biodiversity: Insights from island ecosystems in a long-term natural experiment. J. Ecol. 2011, 100, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Hesslerová, P.; Pokorný, J.; Brom, J.; Procházková, A.R. Daily dynamics of radiation surface temperature of different land cover types in a temperate cultural landscape: Consequences for the local climate. Ecol. Eng. 2013, 54, 145–154. [Google Scholar] [CrossRef]
- Roberts, J. Forest transpiration: A conservative hydrological process? J. Hydrol. 1983, 66, 133–141. [Google Scholar] [CrossRef]
- Hirons, M.; Comberti, C.; Dunford, R. Valuing Cultural Ecosystem Services. Annu. Rev. Environ. Resour. 2016, 41, 545–574. [Google Scholar] [CrossRef]
- Bell, S.; Tyrväinen, L.; Sievänen, T.; Pröbstl, U.; Simpson, M. Outdoor Recreation and Nature Tourism: A European Perspective. Living Rev. Landsc. Res. 2007, 1. [Google Scholar] [CrossRef] [Green Version]
- Tenerelli, P.; Püffel, C.; Luque, S. Spatial assessment of aesthetic services in a complex mountain region: Combining visual landscape properties with crowdsourced geographic information. Landsc. Ecol. 2017, 32, 1097–1115. [Google Scholar] [CrossRef]
- Coscieme, L. Cultural ecosystem services: The inspirational value of ecosystems in popular music. Ecosyst. Serv. 2015, 16, 121–124. [Google Scholar] [CrossRef]
- Jiménez, A.; Saikia, P.; Garriga, R.G.; Avello, P.; Leten, J.; Lymer, B.L.; Schneider, K.; Ward, R. Unpacking Water Governance: A Framework for Practitioners. Water 2020, 12, 827. [Google Scholar] [CrossRef] [Green Version]
- NYDF Assessment Partners. Protecting and Restoring Forests: A Story of Large Commitments Yet Limited Progress: New York Declaration on Forests Five-Year Assessment Report; Climate Focus Forestdeclaration.org: New York, NY, USA, 2019. [Google Scholar]
- Springgay, E.; Ramirez, S.C.; Janzen, S.; Brito, V.V. The Forest–Water Nexus: An International Perspective. Forests 2019, 10, 915. [Google Scholar] [CrossRef] [Green Version]
- United Nations Development Programme. Pathway for Increasing Nature-Based Solutions in NDCs: A Seven-Step Approach for Enhancing Nationally Determined Contributions through Nature-Based Solutions; United Nations Development Programme: New York, NY, USA, 2019. [Google Scholar]
- United Nations Environment Programme; International Union for Conservation of Nature. Gender and Environment Statistics: Unlocking Information for Action and Measuring the SDGs; UN Environment: Nairobi, Kenya, 2018. [Google Scholar]
- World Wildlife Fund; CERES. A Recipe for AgWater Stewardship; AgWater Challenge: Gland, Switzerland, 2016. [Google Scholar]
- Karpouzoglou, T.; Zulkafli, Z.; Grainger, S.; Dewulf, A.; Buytaert, W.; Hannah, D.M. Environmental Virtual Observatories (EVOs): Prospects for knowledge co-creation and resilience in the Information Age. Curr. Opin. Environ. Sustain. 2016, 18, 40–48. [Google Scholar] [CrossRef] [Green Version]
MSP Reports | Water for productive and multifunctional landscapes [13] | 2018 |
Water, forests, people—building resilient landscapes [14] | 2015 | |
Adapting Water Management to Climate Change [15] | 2009 | |
Agriculture, Water and Ecosystems. Swedish Water House [16] | 2007 | |
Policy Briefs | Managing the Forest-Water Nexus: Opportunities for Climate Change Mitigation and Adaptation | 2019 |
Agroforestry for adaptation and mitigation to climate change | 2019 | |
How landscapes and water mitigate climate change | 2018 | |
Water for productive and multifunctional landscapes | 2018 | |
Championing the Forest-Water Nexus: Report on the meeting of key forest and water stakeholders | 2018 | |
Water, forests, people—building resilient landscapes | 2015 | |
Scientific papers | Gaps in science, policy, and practice in the forest-water nexus [17] | 2019 |
Water, Forests, People: The Swedish Experience in Building Resilient Landscapes [1] | 2018 | |
Others | Publications under the Ethiopia Water and Landscape Governance Programme | 2020 |
Sweden’s Government Agency for Development Cooperation (Sida) International Training Program 2021–2025: Locally Controlled Forest Restoration—LoCoFoRest A Governance and Market Oriented Approach for Resilient Landscapes | 2020 | |
Water tools results report to Sida and the involved companies | 2018 | |
Contribution by the Forest-Water Champions to the Talanoa Dialogue | 2018 | |
Water, food, and human dignity—a nutrition perspective [18] | 2015 | |
Water journey | 2015 |
Ecosystem Services (ES) | Ecosystem Processes |
---|---|
Supporting ES | |
Supporting the hydrological cycle | Transpiration and evapotranspiration [44] Canopy interception [45,46] Hydraulic redistribution, moving water from moist to dry soil through plant roots [47,48] Plants play a part in hydrological cycles by controlling water runoff [49] Release of volatile organic compounds contributing to: Intensification of rainfall and an overall cooling effect by blocking incoming solar energy [50]; Secondary organic aerosol condensing atmospheric moisture [51]. Trees recharge atmospheric moisture [34] and influence cloud formation [52] Vegetation helps to regulate climate by cycling vast amounts of water and maintaining the gaseous composition of the atmosphere [53] Terrestrial moisture recycling [54,55] Precipitation recycling [34,56] The biotic pump theory—precipitation in continental interiors from atmospheric circulation driven and maintained by large, continuous areas of forest starting from the coastline [57,58] Arial rivers—cross-continental transport of atmospheric moisture affecting downwind water availability [34] |
Supporting nutrient cycling | Forests and vegetation support biogeochemical (nutrient) cycling in four components [59]: The atmosphere The pool of available nutrients in the soil Organic materials (living and dead) Minerals in soils and rocks |
Supporting soil formation/quality | Tree roots and soil organic matter from litter inputs improve soil structure, enhance aggregate stability, and promote faunal activity [36] Organic matter in soil affects the saturated hydraulic conductivity by slowing down water movement [60,61] |
Supporting biodiversity | Hydrology as a driver of biodiversity, supporting primary production, carrying capacity and niche formation [62,63] Water as a connector linking organisms and supporting pollen and propagule dispersal [53] Habitats that safeguard fisheries and biological diversity [64] |
Provisioning ES | |
Provision of freshwater | Tree density influence groundwater recharge [65,66] Tree species influence water yield [67] Tree age influence water yield [68] Nutritional water productivity, i.e., ‘crop per unit volume of water’ [24,69,70] |
Provision of food and medicines | Ecosystems provide the conditions for growing and harvesting food and extracting medicines [21] |
Provision of wood, fibre, and fuel | Ecosystems provide raw materials for construction, production, and fuel, including wood, biofuels, and plant oils [21] |
Regulating ES | |
Regulate water flow | Water retention capacity [71,72] Stream-flow regulation [73] Increased infiltration from tree roots and enhanced levels of soil organic matter [36] Increased infiltration capacity reduces soil evaporation losses [35] Fog, mist, and cloud water capture, i.e., condensation on plant surfaces [74,75] |
Water purification and wastewater treatment | Trees filter precipitation and reduce sedimentation into water courses [67] Reduce pollutants entering water courses [76] Natural and constructed wetlands remove pollutants [77,78] Fast-growing tree species are planted to filter wastewater [79,80] |
Climate regulation | Carbon sequestration in soil [81,82] Carbon sequestration in above ground and below ground vegetation [83,84,85] Regulating local temperature through evapotranspiration [86,87] |
Cultural ES | |
Heritage value and cultural identity | Landscape-related ‘‘memories’’ from past cultural ties, mainly expressed through characteristics within cultural landscapes [43] |
Spiritual experiences | Holy or spiritual places important to spiritual or ritual identity, e.g., River Ganges in India, sacred forest groves, sacred plants or animals [88] |
Wellness, recreation and (eco)tourism | Pleasure, comfort, discovery and socialisation that takes place in leisure in nature and observing natural elements [89] |
Education and research | Climate, topography, water cycle or soil and biota used for education and research [88] |
Aesthetic appreciation and inspiration | Visual perception of ecosystems and landscape [90] Lakes and rivers represented in songs [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tengberg, A.; Gustafsson, M.; Samuelson, L.; Weyler, E. Knowledge Production for Resilient Landscapes: Experiences from Multi-Stakeholder Dialogues on Water, Food, Forests, and Landscapes. Forests 2021, 12, 1. https://doi.org/10.3390/f12010001
Tengberg A, Gustafsson M, Samuelson L, Weyler E. Knowledge Production for Resilient Landscapes: Experiences from Multi-Stakeholder Dialogues on Water, Food, Forests, and Landscapes. Forests. 2021; 12(1):1. https://doi.org/10.3390/f12010001
Chicago/Turabian StyleTengberg, Anna, Malin Gustafsson, Lotta Samuelson, and Elin Weyler. 2021. "Knowledge Production for Resilient Landscapes: Experiences from Multi-Stakeholder Dialogues on Water, Food, Forests, and Landscapes" Forests 12, no. 1: 1. https://doi.org/10.3390/f12010001
APA StyleTengberg, A., Gustafsson, M., Samuelson, L., & Weyler, E. (2021). Knowledge Production for Resilient Landscapes: Experiences from Multi-Stakeholder Dialogues on Water, Food, Forests, and Landscapes. Forests, 12(1), 1. https://doi.org/10.3390/f12010001