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Abstract: Despite recent advances in understanding tree species sensitivities to climate change,
ecological knowledge on different species remains scattered across disparate sources, precluding their
inclusion in vulnerability assessments. Information on potential sensitivities is needed to identify
tree species that require consideration, inform changes to current silvicultural practices and prioritize
management actions. A trait-based approach was used to overcome some of the challenges
involved in assessing sensitivity, providing a common framework to facilitate data integration
and species comparisons. Focusing on 26 abundant tree species from eastern Canada, we developed
a series of trait-based indices that capture a species’ ability to cope with three key climate change
stressors—increased drought events, shifts in climatically suitable habitat, increased fire intensity
and frequency. Ten indices were developed by breaking down species’ response to a stressor into its
strategies, mechanisms and traits. Species-specific sensitivities varied across climate stressors but
also among the various ways a species can cope with a given stressor. Of the 26 species assessed,
Tsuga canadensis (L.) Carrière and Abies balsamea (L.) Mill are classified as the most sensitive species
across all indices while Acer rubrum L. and Populus spp. are the least sensitive. Information was
found for 95% of the trait-species combinations but the quality of available data varies between
indices and species. Notably, some traits related to individual-level sensitivity to drought were
poorly documented as well as deciduous species found within the temperate biome. We also discuss
how our indices compare with other published indices, using drought sensitivity as an example.
Finally, we discuss how the information captured by these indices can be used to inform vulnerability
assessments and the development of adaptation measures for species with different management
requirements under climate change.
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1. Introduction

Climate change is expected to profoundly alter the frequency, duration, and severity of extreme
events such as drought and fire [1,2]. In addition, forests will experience altered growing conditions
due to rapid increases in temperature and shifting precipitation trends [3,4]. These stressors could result
in declining forest health or increasing mortality, and potentially precipitate abrupt shifts in species
composition [5–7]. To anticipate potential impacts of these stressors on forest ecosystems and develop
corresponding adaptation strategies, forestry practitioners are increasingly using climate-based
vulnerability assessments [8,9]. These assessments traditionally rely heavily on exposure, i.e.,
the magnitude of projected environmental change [10–12]. In recent years, several authors have
pointed out critical gaps in this approach, notably the lack of ecological information on underlying
species response to stressors [13–15]. Specifically, there is a growing interest in capturing species-specific
sensitivity, i.e., the degree to which a given species is likely to be affected by (or respond to) a stressor [16].

How tree species respond to climate change stressors is a complex phenomenon that
involves multiple mechanisms operating at different biological, spatial and temporal scales [17–20].
Species-specific sensitivities cover a wide array of strategies, including species ability to tolerate stress,
to avoid damage or to re-establish after impacts. Empirical assessments of species sensitivity requires a
series of direct measurements on a large number of individuals across life stages (e.g., from provenance
trials in Europe and North America [21,22]). Because this type of assessment is logistically difficult
to conduct, knowledge of tree sensitivities is available only for a limited number of commercial
tree species (e.g., Picea mariana (Mill.) B.S.P. [23]). Breaking down species’ responses to a stressor
into the mechanisms underlying these strategies can overcome these challenges and help capture
different aspects of impacts associated with climate change (see Figure 1). Our understanding of these
mechanisms has increased considerably in recent decades (for instance, see review in [13]), but their
integration into vulnerability assessments remains limited.
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A trait-based approach can help overcome some of the challenges involved in tree species
sensitivity assessment by providing a common framework to facilitate data integration and species
comparisons [14,26,27]. Traits are morphological, physiological, and phenological attributes that
determine an organism’s functional response to a given environmental filter [25]. Traits are therefore
linked to ecological functions and can capture the mechanisms that allow species to persist under a
changing climate [18,28–30]. Because this information is not species-specific, a trait-based approach
provides a common basis to express these mechanisms across many species at once, even those not
typically considered together [31,32]. Traits could therefore inform vulnerability by providing a
synthetic assessment of species-specific sensitivity [13,33,34].

Using a trait-based framework also provides advantages in the context of adaptation to climate
change. Trait-based approaches can guide such decisions and inform practitioners on the mechanisms
and strategies underlying species sensitivity to climate change and thus identify species that require
special management consideration [35,36]. Furthermore, because it is based on a reproducible and
generalizable framework, information can easily be updated as new data become available or as new
species are considered.

Such approaches require information from a variety of disciplines. This can be challenging because
different fields of research (e.g., tree ecophysiology, ecology) have evolved largely independently,
and their information is scattered throughout the scientific literature and elsewhere. The inherent
heterogeneity and complexity of the data needed to accurately capture the various strategies and
mechanisms underlying tree responses to climate change stressors adds to the challenge of such data
integration [37,38]. Synthesising ecological knowledge from various sources into a workable format is
therefore an important step towards refining vulnerability assessments [13,21,27].

Building on the frameworks proposed by [13], we show how a trait-based approach can be used
to evaluate tree species sensitivity to three key climate change stressors: increased drought events,
shifts in climatically suitable habitat, increased fire intensity and frequency. First, for 26 abundant
species in eastern Canada, we document and synthesize available data on tree traits that capture
species-specific ability to cope with each stressor. We review the quality of this information and
identify knowledge and data gaps that can steer future research and data aggregation efforts. Second,
we propose a series of trait-based indices that emphasize tree species that could present climate-related
sensitivities, as well as identify groups of species with common sensitivities across indices. We discuss
how this information can be used by practitioners in vulnerability assessments and evaluate how
our indices compare with other published indices. Finally, we discuss how such indices can inform
adaptive silvicultural practices in the face of future climate stressors.

2. Materials and Methods

2.1. Trait Documentation

We documented the tree sensitivity of 26 tree species that are among the most abundant in
eastern Canada and represent approximately 63% of Canada’s forests total aboveground biomass [39].
Many of these species are commercially important and are considered in forest management planning,
while others are important components of the boreal and mixed-temperate forest ecosystems in eastern
Canada (see species list in Table 1).

Documented traits were selected based on existing frameworks of key mechanisms and traits for
each of the three climate change stressors under study [13]: more frequent drought events, shifts in
suitable climate conditions, and more frequent and intense fires. These three frameworks are organised
around a common conceptual synthesis of the relationship between traits and tree response to climate
change impacts (Figure 1). This review identified physiological and ecological traits and related metrics
(hereafter called traits) underlying tree response to each stressor (Schemes 1–3). The development of
each of the three frameworks is described in more detail in the Supplementary Materials.
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From each framework, we selected a set of traits that are (1) climate-sensitive, i.e.,
mechanistically associated with a specific stressor and that characterise differences in species responses
(as reviewed by [13]), (2) for which data are available for most species, and (3) without major data
comparability issues, i.e., for which available data are comparable among species (selected traits
in bold in Schemes 1–3). We documented the selected traits for our species from an extensive
literature review and the TOPIC database [37]. All trait data are available through the TOPIC website
(http://cfs.cloud.nrcan.gc.ca/ctn/topic.php).

2.2. Index Development

We developed a series of indices corresponding to the strategies identified in each stressor
framework (Schemes 1–3). Each index (10 in total) ranks the relative ability of the 26 tree species
to cope with a stressor based on five classes: low, medium-low, medium, medium-high and high.
For the purposes of our classification, species with a low or medium-low score are considered sensitive
while tolerant species are those with a medium-high or high score. As our goal was to rank the
26 species studied here, we attributed an index value based on available information from the literature
depending if it suggested sensitivity or tolerance (see Section S1 for how values were attributed by
strategy). Section S1 and Tables S1–S3 describe index development and species classification.
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and the key traits (inner text) defining species sensitivity to drought. Strategies, mechanisms and traits
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Drought stress is expected to be an increasingly important factor that could constrain plant
growth and survival over the coming century [40,41]. At the level of an individual, a complex set of
mechanisms interact during a drought, balancing trade-offs to mitigate water stress, such as carbon
gain and water loss [18,42–44]. These trade-offs can be summarised within four broad strategies,
three of which were used in index development (further detailed in Table S1):

(1) Drought avoidance by maintaining internal water levels: As the water levels drop at the soil
surface during drought, continued access to the water and uptake capacity from deeper horizons
are crucial to avoid drought (Breda et al. 2006). Shallow rooting species will therefore be the
most sensitive.

(2) Resistance to drought-induced damage by maintaining circulation when internal water levels are low:
When water access decreases but demand remains constant, mechanisms such as xylem resistance
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to cavitation become important to avoid mortality. Ψ50 (xylem water potential at which 50% of
conductivity is lost) is a widely used metric of xylem resistance [45,46]. Traits that characterize
stomatal sensitivity are also important to consider because they underlie species’ ability to limit
water loss during prolonged droughts [47].

(3) Population recovery after mortality: the ability of a species to rapidly recolonize an area after
drought-induced mortality will influence its persistence in the landscape. Population may
recover from several mechanisms including resprouting ability, ability to produce seed rapidly
post-disturbance and to store seeds in the seed bank. Traits related to seedling survival are also of
importance but was not considered here because of the lack of data on ontological differences in
trait expression.

(4) Individual recovery after drought: Several mechanisms influence the ability of individual stems to
recover after drought. This includes the capacity to resume hydraulic conductivity after xylem
have been embolised and/or produce new conductive tissues [48]. However, questions remain
regarding which physiological mechanisms are responsible [49]. Survival may also be influenced
by non-structural carbohydrate storage (NSC; [50]), though the exact relationship between NSC
and recovery remains an active area of research [51–53]. Therefore, we did not develop an index
for this strategy.
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Large shifts in suitable habitat are projected under climate change by the end of the century and,
as a result, several species are expected to fall outside of their suitable climate envelope [3,54]. In such
situations, the magnitude and velocity at which climate shifts are expected will require tree species to
migrate great distances to keep up [55,56]. Three main strategies drive species range movement and
migratory ability: (detailed further in Table S2):
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(1) Reproductive capacity: Successful migration is dependent on the reproductive capacity of the
source population as well as the time to reach sexual maturity. Propagule pressure, determined
by seed production, is an important determinant of the success of recruitment, locally and at their
advancing front [57–59].

(2) Dispersal ability: Dispersal is the primary mechanism through which species expand their
distribution [57,60,61] and species able to disperse seeds over long distances have a higher
likelihood of keeping up with rapidly shifting suitable habitats [28,62].

(3) Colonization potential at the advancing front: Once dispersules reach a new site, their ability
to germinate, survive, and reproduce will largely determine which species can colonize [63].
Once colonised, species’ ability to tolerate inbreeding and successfully reproduce or propagate in
small populations will play a critical role in its migration success [64,65].
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Fire frequency and intensity are expected to increase as the climate becomes drier [66,67]. After a
fire, a species can persist on the landscape through specific adaptations that protect individual stems or
by population recovery after fire [29]. Post-fire tree community composition will depend on intrinsic
species characteristics that we organised into four broad strategies (Table S3):

(1) Stem protection from burn injury: Surviving stems are contingent on maintaining intact vascular
systems capable of circulating water and sap. Stem physical protection, or the ability to reduce
heat transmission through the outer layers to the vascular system (e.g., thick bark), influences
whether a stem will survive or not [68]. Additionally, certain leaf traits and crown properties
influence flammability and may affect fire intensity and spread [69].

(2) Population recovery by seed, from seed sources on-site or from peripheral areas not affected by
the fire. Protecting seeds from fire, i.e., through aerial or soil banks or by protective structures,
ensures a direct source of dispersules to re-establish populations [70,71]. When species lack
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adaptations to protect seeds or when subjected to very intense fires, seeds must originate from the
unburnt forest along the edge and beyond, making dispersal ability and seed production crucial
mechanisms [72]. Germination requirements also influence post-fire recruitment [73].

(3) Population recovery by vegetative propagation. Resprouting ability is determined mainly by the
location of meristematic tissues on the plant and how well protected these tissues are [74].
Like seeds in the soil bank, underground buds may be protected in the soil and consequently have
higher survival probabilities, especially in low-intensity fires. The type of vegetative reproduction
will also influence the rapidity of population recovery, particularly for species with extensive
clonality [75].

(4) Adaptation to shorter fire intervals. Multiple fires in a short time frame may prevent species from
re-establishing from seed, even for fire-adapted species [76]. Hence, short fire return intervals
favour species that can mature and start to produce seed rapidly after a fire has occurred. Seeds that
remain viable for long periods in the soil bank could also provide a source of propagules [70].

2.3. Confidence Scores

We attributed a confidence score to each index score based on the quality and quantity of the
information available, i.e., (1) whether the data used was quantitative or ordinal; (2) whether the trait is
known to exhibit substantial variation along environmental or temporal gradients (i.e., intraspecific trait
variation); (3) the number of independent values available (excluding replicates stemming from circular
referencing), (4) the source of the data (primary empirical research, compendium, expert opinion).
This information was ranked into five confidence classes (unknown/low, medium-low, medium,
medium-sufficient, sufficient), each class receiving a quantitative value (10, 20, 30, 40, 50).

2.4. Defining Species Groups

A principal component analysis (PCA) was conducted on index scores to distinguish groups of
species with similar sensitivities. To highlight groups in the PCA, strategy axis scores were ranked
from low to high ability and numerical values were attributed to facilitate interpretation (10, 20, 30, 40,
50). Hierarchical clustering was performed on the strategy index scores using a Ward D classification
based on Euclidian distances to evaluate whether certain trait values were common to clusters of
species. A visual assessment of the plot of within-group sum of squares showed that k = 8 was an
appropriate number of clusters.

2.5. Development of Integrated Indices of Drought Sensitivity and Comparison with Other Published Indices

To illustrate different ways species can respond to drought, we showcase two ways of aggregating
the information provided by our indices: (a) stem-level only: an integrated index of sensitivity to
drought-induced mortality at the stem level that combines the strategies Drought avoidance and Resistance
to damage, (b) stem and population levels: an integrated index that combines our three drought strategy
indices, covering both stem sensitivity to drought and population recovery after mortality.

To evaluate how our integrated indices compare with other published indices, we surveyed the
literature and databases for other indices of drought tolerance/sensitivity and for which data were
available for most or all of our 26 species. Six indices were selected from published literature sources
and online databases. Spearman rank correlations were used to test the level of association between
these indices and their significance as well as between our two integrated indices.

3. Results

Our set of indices outlines species-specific sensitivities to climate change stressors (Figures 2–4)
and the PCA shows species with common abilities (Figure S1, for group description). Cluster analysis
on the PCA scores reveals eight groups of species (Figure S1, Figure 2); the descriptions of the groups
are located in Section S2. Of the 26 species assessed, Tsuga canadensis (L.) Carrière and Abies balsamea
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(L.) Mill are classified as the most sensitive species (i.e., classified as low ability across multiple
indices), while Acer rubrum L. and Populus spp. emerge as the least sensitive (i.e., classified as high
ability; Figures 2–4, Index scores). Tree sensitivity to climate change also varies according to the
stressor. For instance, Pinus banksiana Lamb. and Quercus rubra L. possess high drought avoidance
and resistance (Figure 2, Index), while early successional deciduous species (Populus spp. and Betula
papyrifera Marsh.) possess traits that ensure good reproductive capacity and migration ability (Figure 3,
index). With the exception of Pinus spp., many species such as Picea rubens Sarg. and Acer saccharum
Marsh. are considered as having a low ability to persist under a more frequent and intense fires
(Figure 4, index).Forests 2020, 11, x FOR PEER REVIEW 8 of 23 
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Figure 2. Tree species ability to cope with drought for three main strategies: Drought avoidance,
Resistance to drought-induced damage, Population recovery after drought. Each index ranks the relative
ability (from low/sensitive to high/tolerant, reds) of tree species for a specific strategy (see Scheme 1
for which mechanisms/traits were considered). Species for which information was not available
were attributed an intermediate value, depending if there was evidence of tolerance or not (diagonal
hatched stripes: dark red hatched—evidence of low ability; light red hatched—evidence of high ability).
Confidence associated with available data is also presented, as ranked from low to sufficient (blues).
Species for which no data was available were considered as Unknown (grey). For more details on
definitions and ranking, see Table S1.
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Figure 3. Tree species ability to track shifts in suitable climate conditions, as considered using three
main strategies that influence migration: Reproductive capacity, Dispersal ability and Colonization potential.
Each index ranks the relative ability (from low/sensitive to high/tolerant, reds) of tree species for a
specific strategy (see Scheme 2 for which mechanisms/traits were considered). Confidence associated
with available data is also presented, as ranked from low to sufficient (blues). Species for which no
data was available were considered as Unknown (grey). For more details on definitions and ranking,
see Table S2.

We were able to find information for 95% of the trait-species combinations across the 10 indices.
The quality of available data varies widely across stressors, strategies and/or mechanisms (Figures 2–4,
Confidence). Traits related to individual-level sensitivity to drought are generally poorly documented
with 62% and 100% of species categorised as low or medium-low confidence for Drought Avoidance and
Drought Resistance. By comparison, data coverage for traits related to the ability to track climate and to
fire sensitivity was better, with only 23% and 14% of species classified as low to medium-low confidence
on average. Among species, conifer species are generally better documented than deciduous ones
(average confidence for conifer 37% and 29% for deciduous), reflecting the higher data availability
of commercial species (e.g., Picea spp., Pinus spp., and Abies balsamea). Data availability is also
generally lower for the temperate biome, with only the most commercially important deciduous
species sufficiently documented such as Acer saccharum (9 of 10 indices considered medium confidence
or higher), Quercus rubra and Betula alleghaniensis Britt. (both 8 of 10). Species such as Fraxinus spp.,
Alnus incana subsp. rugosa (Du Roi) R.T. Claussen, Tilia americana L. and Ostrya virginiana (Mill.) K. Koch.
are generally poorly documented (at least 6 of 10 indices with low to medium-low confidence).
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Our two integrated indices of drought sensitivity (stem-level only and stem and population
levels) show some variation in species ranking (Table S4). The largest differences between these
two integrated indices arise from Prunus pensylvanica L.f., Populus spp., Fraxinus nigra Marsh. and
Acer rubrum, because these species show strong potential for population recovery. Nevertheless,
Spearman rank correlations between these two integrated indices are relatively high (r = 0.72, p < 0.01;
Table 1). There was substantial variation between these integrated indices and the six indices published
in the literature. Our stem-level integrated index was most closely correlated with Niinemets and
Valladares [34] (Stem only - r = 0.61, p < 0.01; Table 1) and our stem- and population-level integrated
index correlated most closely with Boulet and Huot (Stem and population: r = 0.63, p < 0.01, [77]).
Our integrated indices did not correlate well with qualitative indices such as the USDA PLANTS
database (Stem only - r = 0.0034, p = 0.99; Stem and population r = −0.061, p = 0.77; [78]). We also
observed substantial variation between the published indices: Hightshoe [79] showed the highest
correlation with Boulet and Huot (r = 0.65, p < 0.01, [77]), whereas the former showed weaker correlation
with USDA NRCS (r= −0.13, p= 0.55. [78]) and the OFGAC database (r = −0.27, p= 0.19; [80]).Forests 2020, 11, x FOR PEER REVIEW 10 of 23 
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Figure 4. Tree species ability to persist through more frequent and intense fires, as characterised by
four main strategies: Protection from burn injury, Population recovery by seed, Population recovery
by vegetative propagation, Adaptation to shorter fire intervals. Each index ranks the relative ability
(from low/sensitive to high/tolerant, reds) of tree species for a specific strategy (see Scheme 3 for
which mechanisms/traits were considered). Species for which information was not available were
attributed an intermediate value, depending if there was evidence of tolerance or not (diagonal hatched
stripes: dark red hatched—evidence of low ability; light red hatched—evidence of high ability).
Confidence associated with available data is also presented, as ranked from low to sufficient (blues).
For more details on definitions and ranking, see Table S3.
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Table 1. Spearman correlations between the drought indices developed in this paper and other published indices that use various definitions of sensitivity/tolerance
(definitions provided below). All indices were standardised to facilitate cross-comparisons (see Table S4). Spearman correlations between indices are indicated at the
bottom. * p < 0.1, ** p < 0.05, *** p < 0.01.

Drought
Sensitivity—Stem
and Population 1

Drought
Sensitivity—Stem

Only 2

Niinemets and
Valladares
(2006) [34] 3

Matthews et al.
(2011) [81] 4

Boulet and Huot
(2013) [77] 5

USDA NRCS
(2009) [78] 6

Hightshoe
(1988) [79] 7

OFGAC Native
Trees and Shrubs

Database [80] 8

Drought
sensitivity—stem and

population 1
0.72 *** 0.40 ** 0.18 0.63 *** −0.061 0.59 *** 0.028

Drought
sensitivity—stem only 2 0.61 *** 0.35 * 0.49 ** 0.0034 0.26 0.30

Niinemets and Valladares
(2006) 3 0.34 * 0.53 *** 0.11 0.22 0.37 *

Matthews et al. (2011) 4 0.21 0.50 ** 0.077 0.27
Boulet and Huot (2013) 5 0.019 0.65 *** 0.17

USDA NRCS (2009) 6 −0.13 0.19
Hightshoe (1988) 7 −0.27
1 Sensitivity to drought-induced mortality and population recovery ability, as characterised by individual drought avoidance and resistance to drought-induced damage, and population
recovery ability. Source: Trait data. 2 Sensitivity to drought-induced mortality of adult stem as characterised by individual drought avoidance and resistance to drought-induced damage.
Source: Trait data. 3 Stem drought sensitivity characterised by physiological tolerance to water stress as well as morphological and life cycle strategies to cope and ratio of potential
evaporation to actual precipitation in areas where a species grows. Source: Trait data and climate data. 4 Drought tolerance characterised as ability to survive extended duration and increased
frequency of periods without access to water Source: Partially from trait data. 5 Drought tolerance but definition not provided. Source: Partially from trait data. 6 Drought tolerance
defined by type of soil a given species typically grows in, with species that grow in coarse-textured soils considered tolerant. Source: Inferred from environmental tolerances. 7 Sensitivity to
drought-induced mortality and population recovery ability, as characterised by individual drought avoidance and resistance to drought induced damage, and population recovery ability.
Source: Trait data. 8 Drought tolerance defined by species moisture requirements (dry to wet). Source: Inferred from environmental tolerances.
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4. Discussion

In this paper, we provide a series of trait-based indices on the sensitivities of the most abundant
tree species in eastern Canada to three important climate change stressors: increased occurrence of
drought, shifts in suitable climate conditions and more frequent and intense fires. Instead of developing
a single catch-all index, we provide a set of indices that capture different strategies and mechanisms
involved in species sensitivity to the different climate stressors. Each index was developed from a
set of traits with a clear conceptual link with each stressor and following a reproducible dataflow.
New species can be documented when needed, for instance, when applying this approach to other
regions of the world or documenting tree species that are expected to become more abundant in
the studied region with climate change (e.g., at their northern limit). Based on current knowledge
(as shown in Figures 2–4), several key traits lack sufficient information to compare across species and
could be added in the future as more data becomes available.

In recent decades, many sensitivity (or inversely, tolerance) indices have been developed using
different approaches and objectives. In this paper, we reviewed the various drought sensitivity indices
from the published and grey literature. Which species are considered sensitive varied substantially
across indices, and largely (Table S4) relate to differences in the definitions employed. For instance,
Pinus resinosa Sol. ex. Aiton is classified as highly tolerant to drought by Boulet and Huot [77],
intermediate by Hightshoe [79] and Niinemets and Valladares [34], and drought sensitive by USDA
NRCS [78] and Matthews et al. [81]. We show that species ranking can vary considerably when using
different definitions of drought sensitivity in our own set of indices; we obtained different rankings
for some species depending on whether population level recovery mechanisms were included or
not. Our stem-level drought sensitivity classification was most comparable to the index proposed
by Niinemets and Valladares [34] and which incorporates ecophysiological and morphological data
(Table S4). This demonstrates the importance of providing methodology, definitions and data workflow
when creating such indices.

The use of a single catch-all index risks missing important response mechanisms by oversimplifying
species’ responses to climate change. Breaking down species’ responses to a stressor into mechanisms
can capture complementary aspects of sensitivity or tolerance and the relative importance one
gives to different strategies can be accounted for in index development. This can facilitate the
interpretation of species responses like stem survival and population resilience to stressors. For example,
drought-induced mortality can be influenced by drought duration, stand characteristics, soil type
and hydrology as well as species characteristics [40,82]. In addition, Populus tremuloides Michx. is
generally classified as having low drought tolerance (e.g., [34,81]; Table S4) but can be regarded as
drought tolerant if we consider population-level recovery mechanisms. The value of our strategy-based
sensitivity indices is that users can combine these strategies into integrated indices that matter for
their management objectives, i.e., depending on whether they are more concerned with mature stem
mortality or maintaining species presence on a specific landscape. Indeed, the intended goal of this
manuscript is to provide a flexible framework to document species sensitivity that could be later
supplemented by users. This is the reason the rationale and data workflow behind each index building
is made available in Section S1.

In the future, these indices could be refined as new data becomes available, such as, for instance,
intraspecific variation in trait values. Many of the traits included in our framework show intraspecific
variability that is linked to life stage, and adaptation to local environmental conditions. For example,
inclusion of variation in hydraulic traits like resistance to cavitation, especially between life stages or
across the geographical distribution, could inform drought indices such as ours [83,84]. Variation in
seed production through time would also be informative for an index of migration ability [85],
and particularly where temperature imposes constraints on phenology [86,87]. Building upon this
variability, our sensitivity indices could be adjusted for different tree populations of the same species
exhibiting different phenotypes or to account for variation for species with broad ecological amplitudes



Forests 2020, 11, 989 13 of 22

(e.g., Acer rubrum). However, low data availability at the intraspecific level currently limits this
potential [84,88].

4.1. Limitations of Trait-Based Indices

Index quality is highly dependent on data availability. Some important mechanisms and traits
remain insufficiently understood and/or documented to be included in our index (see traits in grey
in Schemes 1–3). Still, identifying clear knowledge gaps helps define a research agenda to address
these disparities. For instance, evidence suggests that xylem cavitation resistance using Ψ88 instead of
Ψ50 shows a stronger relationship with drought tolerance in angiosperms [89], but not enough data
could be found for our species to include it here. With growing interest in considering its importance
in drought tolerance [13,45,90], it is likely that these data will become available in the future.

In addition to this uncertainty, differences in trait documentation can impose bias on the quality
and interpretability of sensitivity indices. For example, commercial species in Canada (mostly conifers)
are generally better documented than species with low economic value (which includes several
broadleaved species). While some temperate forests dominated by broadleaved species are expected
to be exposed to higher fire activity in the future [91] many traits underlying their response to fire are
not systematically documented (e.g., leaf ignition temperature and leaf time to ignition). Breaking the
cycle by which only well documented species are included and extensively studied is necessary to
build comparable indices between species.

An additional challenge in developing trait-based indices is the quality of trait data itself [92],
even in the case of widely documented traits. Several quantitative traits remain documented mainly
in qualitative terms which are then aggregated into large classes, severely limiting comparative
analyses. For example, the quantitative values associated with “deep” roots in eastern Canada
(e.g., Pinus banksiana, P. resinosa and P. strobus L.; 2–5 m) are different than what is considered “deep” in
western North America (e.g., Pinus ponderosa, range from 2 to 24 m; [93–96]). Another example is
seed dispersal distance; ideally, this should be documented from seed dispersal kernels but kernels
are available for only a handful of species [97]. Dispersal ability is generally inferred from broad
classes of dispersal vectors [98]. Recently, efforts have been made to develop standardised measures
of seed dispersal distance based on seed traits (e.g., dispeRsal, [99]), but these models still require
field validation. Similarly, some categorical traits may show some variation in quantitative values.
For instance, we consider serotiny to be a well-documented categorical trait; however, this does
not take into account the variation in the proportion of cones exhibiting serotiny, such as shown by
Picea mariana [100].

An important step in developing trait-based indices is to identify the extent to which index values
capture differences in tree responses. Indices that compare species among each other risk artificially
amplifying differences in sensitivity if the species pool is limited to those with similar sensitivities.
Although we focused on species common to eastern Canada, our set of 26 tree species does represents
a wide range of species’ sensitivity. Similar to our indices, another ecological classification of 11 tree
species in Central Europe did not find such redundancies [92], finding instead that certain traits
(e.g., Leaf area index, Winter frost sensitivity, and Maximum tree height) were useful to distinguish
between various successional groups. Indeed, we found that the drought index most closely related to
ours ([34], which assessed drought tolerance of 806 trees and shrubs across 3 continents) had values
for our set of 26 species ranging from 1 to 4 out of a scale of 5 (mean value of 2.3 ± 0.69, Table S4),
which reflects a substantial part of the range they considered. Likewise, the large differences in
migration capacity of our 26 species are exemplified by the range of values for traits underlying
reproductive and dispersal abilities. Our selected species show both high variation in viable seed
production (22000 seeds—Fagus grandifolia Ehr. to 500 million seeds for Acer rubrum), and dispersal
ability (e.g., short-distance dispersal—Quercus rubra (seed weight estimated at 276 seeds/kg) vs.
long-distance dispersal—Populus tremuloides (seed weight estimated at 70 million seeds/kg)). Our set
of species includes those that are common in boreal forests, where fire is a major force shaping tree
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adaptations, and temperate forests, where the ecological role of fire is more limited. The functional
diversity in sensitivity to increased fire intensity and frequency is further emphasised by incorporating
divergent strategies during disturbance and afterwards (e.g. protection from injury for Pinus spp. vs.
population recovery for Populus spp.).

4.2. Species Sensitivity to Inform Adaptation Practices

Considering the magnitude of projected climate change, practitioners will likely need to revisit
current management approaches and silvicultural practices and assess whether they are suitable
under anticipated conditions [101,102]. Sensitivity indices such as those provided here can serve to
assist managers in developing climate adaptation strategies by highlighting which species could be
favoured—or not—by future climate conditions. As such, trait-based indices could provide some
guidance on species that represent potential investment risk or opportunities. From this coarse
assessment, more in-depth empirical studies would be needed to assess whether a species effectively
tolerates such conditions. Species’ response to a climate stressor depends on site-level factors and
is highly affected by synergistic effects of cumulative stressors (e.g., drought and pests; [6,103]),
as well as species intrinsic capacity to adapt [17,104]. All components of vulnerability (i.e., exposure,
sensitivity and adaptive capacity), as well as the uncertainty related to climate projections [105],
should therefore be considered when adapting management approaches. These sensitivity indices can
be used in conjunction with such comprehensive assessments to consider which adaptation measures
could be employed and under which situations they should be considered (sensu [100]).

Our results suggest that certain species may require less active intervention or may even be likely
to be favoured by climate change (e.g., Pinus spp., Populus spp. and Acer rubrum: groups 1 and 2
in Figure 5), while others could require considerable investment to retain in their current location
(e.g., Abies balsamea, Acer saccharum and other species of group 8 in Figure 5). The first groups of species
may thus represent better options for passive adaptation measures [106], whereas long-term planned
and transformational (sensu [107]) actions might be required for certain species, including the assisted
migration of those species in the last group [108].

Forest adaptation is also commonly presented as a portfolio of options that aim to resist change,
promote resilience of forest ecosystems (i.e., its capacity to recover following a disturbance) or facilitate
its transition to alternate state [9,36,109]. Our sensitivity indices can guide species selection under
these various scenarios. For example, with drier, more fire prone conditions expected under climate
change [6,91], Pinus spp. are the native species most likely to resist change in eastern Canada because
they possess traits that favour drought avoidance and protection from burn injury (group 1 in Figure 5).
In contrast, despite relatively low resistance of individuals, Populus spp. and Acer rubrum have the
highest potential of population recovery following drought and fire as well as the highest capacity to
migrate. Stands comprised of these species may therefore be more resilient to change than resistant
to it. Other species groups might represent different combinations of resistance or resilience options
depending on the stressor considered. For example, the group comprised of Larix laricina (Du Roi) K.
Koch, Picea spp. and Prunus pensylvanica (group 3 in Figure 5) has a low sensitivity to drought damage
but might be resilient to fire because of their high ability to re-establish from seed and their adaptation
to shorter fire return.

Species that are sensitive at stem and the population levels could be candidates for the transition
option (e.g., Acer saccharum and other species in group 8). Transition can be achieved by replacing
local seed sources with provenances of the same species that are better adapted to future conditions or
with more resistant or resilient species depending on the management objectives [17,102]. Similarly,
species that are transitioned out of one site might become translocated species in another [110].
For example, the climatic conditions suitable for Acer saccharum are predicted to shift northward
beyond its current range and at a rate that will exceed its migration capacity [54,56]. Because this
species has a low resistance to both drought and fire and possesses a low potential for population
recovery, assisted range expansion of this species northward might be a viable option [102]. However,
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translocating tree populations is expensive and may have mixed success especially for species whose
colonisation potential is limited due to specialised requirements, such as those found in groups 6 and
7 (Figure 5). For these species, assisted migration should be combined with targeted interventions
to ensure seedling establishment. An example of such measures includes seedbed preparation by
scarification to favour regeneration of Betula alleghaniensis [111].

Our results also highlight that certain species that are likely to cope well under climate change,
i.e., those with a high recovery potential and migration capacity (species from group 2 and 4;
Figure 5) are currently undesired species from an economic point of view. Their presence may affect
competition dynamics with species of higher commercial value (e.g., Pinus spp. and Picea spp.),
especially if these species are sensitive to climate change (e.g., Acer saccharum, Betula alleghaniensis).
Conversely, evidence suggests that some potentially climate-resilient species may favour the successful
establishment and migration of other more commercially important species by promoting changes
in stand characteristics. For instance, in sites dominated by conifers that are currently limiting the
establishment of commercial hardwood species [112,113], Populus spp. and Acer rubrum could act as
catalysers of change by improving soil nutrient status and seedling establishment conditions [114].
New management approaches – and possibly new market opportunities—will be needed for resilient
species found in sites where other commercially valuable species are found.
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5. Conclusions

In this paper, we evaluated the sensitivity of 26 tree species to stressors associated with climate
change and provided a set of trait-based indices that are reproducible and can be adjusted to the
specific context of the user and as new data becomes available. Overall, species like Populus spp.,
Pinus spp. and Acer rubrum could be favoured under climate change, while others like Abies balsamea
and Acer saccharum could face considerable challenges in persisting under increasing prevalence of
climate-related disturbances. While a trait-based approach provides an important perspective in
addressing species sensitivities, the interpretability of such indices is still limited by data availability
and quality, as well as by which species are considered and the breadth of sensitivities or tolerances
they represent. Additionally, such an approach does not provide insight as to which stressor—drought,
fire or ability to track suitable conditions as well as others not considered here (e.g., pests, disease)—will
be most important for forest health (on their own or synergistically), and could result in ecological
surprises that are difficult to anticipate [115]. Despite these challenges, these indices could nevertheless
help adaptation decision making, by improving models based on climate change exposure, identifying
species that may require specific management consideration or rethinking species that may become
economically non-viable in some regions. Despite a new offering in the toolbox, this paper underscores
the difficult task of managing species in a changing climate [100,116,117]. These issues outline how
knowledge gaps are still important roadblocks towards the development of robust indicators and a
better understanding of the thresholds at which species are sensitive. This highlights the continued
need for foundational research into species biology and the invaluable field data collections that are
necessary for synthesis, comparisons between species, and modelling.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/9/989/s1.
Table S1: Index development of species’ sensitivity to drought for three main strategies, their component
mechanisms and traits. Table S2: Index development of species’ ability to track shifting climate conditions
(i.e., migration ability), their component mechanisms and traits. Table S3: Index development of species’ ability
to persist in more frequent and intense fires, their component mechanisms and traits. Table S4: Comparison of
the integrated drought sensitivity indices developed in this paper with six published drought tolerance indices.
Figure S1. Principal component analysis showing overlapping sensitivities for the 26 tree species.
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