Supplementary Table 1. Current state of epigenetics in trees for development, abiotic stress or priming, biotic stress or priming, and markers, breeding and biotechnology topics. 2,4-D: 2,4-dichlorophenoxyacetic acid; 5-Azac: 5-Azacytidine; 5-mC: 5-methylcytosine; 5-mdC: 5methyldeoxycytidine; ABA: Abscisic acid; AcH3: Acetylated histone H3; AFLP: Amplified Fragment Length Polymorphism; AnAc: Anacardic Acid; AREB1: Abscisic acid-Responsive Element 1; BA: Benzyladenine; BS-seq: bisulfite sequencing; ChIP: Chromatin ImmunoPrecipitation; ChIP-seq: Chromatin ImmunoPrecipitation sequencing; CsDML: Castanea sativa DEMETER-like; DCL3: DICER-like 3; DDM1: Decreased DNA Methylation 1; GA: Gibberellic Acid; HATs: Histone Acetyl Transferases; HDACs: Histone DeACetylases; DNase-seq: DNase sequencing; GDM: Global DNA Methylation; GeLC-Orbitrap/MS: Gel enhanced Liquid Chromatography - Orbitrap/Mass Spectrometry; IAA: Indole Acetic Acid; IBA: Indole-3-butyric acid; HPCE: High-Performance Capillary Electrophoresis; HPLC: High-Performance Liquid Chromatography; MACE-seq: Massive Analysis of cDNA Ends sequencing; MeDIP: Methylated DNA ImmunoPrecipitation; MeDIP-chip: Methylated DNA ImmunoPrecipitation chip; MeDIP-seq: Methylated DNA ImmunoPrecipitation sequencing; miRNA: microRNA; miRNA-array: microRNA array; MRE-seq: Methylation-sensitive Restriction Enzyme sequencing; MS: Mass Spectrometry; MS-PCR: Methylation Sensitive PCR; MS-RAPD: Methylation Sensitive - Random Amplified Polymorphic DNA; MSAP: Methylation-Sensitive Amplification Polymorphism; PARE-seq: Parallel Analyses of RNA Ends sequencing; rasiRNA: repeat associated small interfering RNAs; RNAi: RNA interference; RNA-seq: RNA sequencing; RRBS: Reduced Representation Bisulfite Sequencing; RT-qPCR: Reverse Transcription quantitative PCR; SAHA: Suberolylanilide Hydroxamic Acid; SAMs: Shoot Apical Meristems; SEs: Somatic Embryos; SMVs: Single-Methylation Variants; SNP: Single Nucleotide Polymorphism; sRNA: small RNAs; sRNA-seq: small RNA sequencing; TEs: Transposable Elements; TF: Transcription Factor; TLC: Thin Layer Chromatography; TSA: TrichoStatin A; WGBS: Whole Genome Bisulfite Sequencing.

AGING Sequoiadendron giganteum Clonal lines from a 100-years-old giant tree, apical shoot Nature-type HPLC higher DNA methylation than [1] outdoor-origin shoots from a outdoor-origin shoots from a number outdoor outdoor lines from a number outdoor-origin shoots from a number outdoor-origin shoots from a number outdoor outdoor-origin shoots from a number outdoor outdoor-origin shoots from a number outdoor outdoor outdoor-origin shoots from a number outdoor outdoor outdoor outdoor-origin shoots from a number outdoor	Topics	Species	Plant Material	Experimental Conditions	Epigenetic Analysis	Main Conclusions	Reference
In vitro meristem- tissue with juvenile- Shoots with a juvenile-like AGING Sequoiadendron giganteum Clonal lines from a 100-years-old giant tree, apical shoot like characteristics leaf morphology showed HPLC higher DNA methylation than outdoor-origin shoots from [1]				DEVELOPMENT			
grans and rooted the same clone.	AGING	Sequoiadendron giganteum	Clonal lines from a 100-years-old giant tree, apical shoot	<i>In vitro</i> meristem- tissue with juvenile- like characteristics vs. Mature-type outdoor lines from grafts and rooted	HPLC	Shoots with a juvenile-like leaf morphology showed higher DNA methylation than outdoor-origin shoots from the same clone.	[1]

AGING	Acacia mangium	Clones, buds	(1) apical buds from juvenile- and mature- like microshoots of juvenile and mature sources. (2) mature source clones: apical and axillary buds collected from field elongating shoots vs. apical buds from <i>in</i> <i>vitro</i> microshoots exhibiting the same mature-like phyllode	HPLC	The higher rate of DNA methylation in juvenile buds and shoots vs. mature ones in <i>A. mangium</i> supports that DNA methylation in plants does not always increase with aging.	[2]
BUD	Castanea sativa	3-year-old trees, buds	morphology. Buds from different positions on trees from several provenances grown in the same location were collected at different stages of bud burst and set. Collection of cones	HPCE, Protein Gel Blot, Immunolocalization	The increased global DNA methylation and decreased H4 histone acetylation levels patterns during bud set were inverted during bud burst. These patterns differ in apical vs. axillary buds.	[3]
ORGANOGENESIS	Pinus radiata	Cultured and mature embryos	over 3 consecutive years. <i>In vitro</i> culture of embryos under growth regulator treatments (BA, ABA, IBA 2 4-D)	Genomic DNA methylation, Immunofluorescence	Several growth regulators in apical meristems are epigenetically regulated during organogenic processes.	[4]
DAY/NIGHT CYCLE	Populus nigra	4-month-old clones, mature leaves	Greenhouse conditions. Sampling	MeDIP-seq	Methylated genes were prevalent in the poplar	[5]

			at 8:00 (day) and 24:00 (night).		genome but only a few of these participated in diurnal genes expression regulation. The reduction in genome-	
DEVELOPMENTAL REGULATION	Quercus lobata	5-month-old seedlings, leaves	Collection of acorns from 8 localities (California, USA). Greenhouse: foliar application of 5-Azac (a methylation inhibitor) for 27 days.	WGBS	wide methylation resulted in differential gene expression and substantial reduction in new growth. DNA methylation is involved in seedlings' gene expression and phenotypic variations and the removal of DNA methylation affects plant	
DEVELOPMENTAL REGULATION	Populus trichocarpa and Populus deltoides x Populus nigra	Shoot apical meristematic cells	Rooted stem cuttings from 10-year-old mother plants were grown in a glasshouse (15-27°C).	MeDIP, BS-seq	development. DNA methylation is widespread and variable among genes in open chromatin of meristematic cells.	
EVOLUTION	Populus balsamifera	Mature trees, leaves and vegetative buds	Trees grown under natural conditions. Weekly sampling during June and July.	sRNA-seq	A large fraction of miRNAs varies in comparison with <i>Populus trichocarpa</i> . Non- conserved miRNAs may regulate cellular, physiological or developmental taxa-specific processes. All miRNAs seem to target genes with similar biological functions indicating similar selection pressures on both miRNA types.	

[6]

[7]

[8]

EVOLUTION	Populus trichocarpa	Several genotypes, roots and leaves	Sampling of clonally replicated genotypes (across USA). Plants grown in hydroponic systems.	MeDIP-seq	Geographic differentiation at multiple scale of structure populations (i.e. allele frequency,) effective population size) reveal that genetic drift has played a significant role in the recent evolutionary history of <i>P.</i> <i>trichocarpa</i> . Locus-specific methylation	[9]
LEAF	Eucalyptus globulus	Ramets of a selected clone produced by cuttings, leaves	Field genetic trial (Chile): juvenile leaves (after 6 months) vs. adult leaves (more than 2 years).	MeDIP-seq, MRE-seq	could be major regulators of vegetative phase change, which may be useful in conservation programs, e.g. selecting the best methylomes for a particular environment in a restoration project. Further investigations are required to define the loci associated with heterochrony/heteroblasty (the change in the timing or rate of developmental events during ontogeny) regulated	[10]
NEEDLE MATURATION	Pinus radiata	App. 15-year-old adult trees, needles	Field plantation: mature (12-month- old) vs. immature (3– 5-week-old, active growth) needles.	HPCE, MSAP, Protein Blot, 5mC- Immunolocalization	by DNA methylation. Needle maturation (associated with decreased organogenic capability) is related to an increase in heterochromatin- related epigenetic markers (high DNA methylation and	[11]

			Calli induced from		histone H3 methylated at lys 9). DNA methylation of palisade parenchyma cell layers during the transition from immature to mature scions is associated with the loss of the capacity to induce adventitious organs. Needle maturation correlates	
NEEDLE MATURATION	Pinus radiata	Mature, developed and immature needles, calli	needles collected in test-garden. 1-year- old seedlings grown in greenhouse were submitted twice to SAHA (inhibitor of HDACs) or to AnAc (inhibitor of HATs).	RT-qPCR, BS-seq, ChIP	with changes in global DNA methylation and histones levels. Photosynthetic carbon fixation regulation is associated to a crosstalk between histone H4 acetylation and H3K9me3 at the promoter level. Histone acetylation positively	[12]
PHOTOSYNTHESIS	Populus simonii x Populus nigra	5-month-old plants - leaves, stem chlorenchyma and vascular tissues, roots	Seedlings grown in greenhouse conditions. Spraying with 2.5 and 5 µM of the HDAC specific inhibitor TSA for 2 days.	ChIP	regulates the tissue- dependent expression pattern of the poplar homologs of C4 photosynthetic enzymes genes. This regulatory mechanism seems to be conserved among the C3 and	[13]
HORMONE REGULATION	Populus tomentosa	1-year-old clones, mature leaves	Greenhouse conditions. 100µM IAA treatment daily	WGBS, HPLC, MSAP, RNA-seq	C4 species. IAA treatment induces a change in DNA methylation pattern and is manifested by a	[14]

low acetylated histone H4 levels, and the presence of

			for 1 week.		long-term growth inhibition.	
			Pollen cones (in		Many conserved miRNAs	
			dehydration for		showed stage-dependent	
			dormancy and		expression in mature and	
ΡΟΓΓΕΝ	Pinne taoda	Pollon grains	dispersal) collected	miRNA_array	germinated loblolly pine	[15]
IOLLEIN	1 11115 111211	i onen granis	from field grown	iiiiki vA-airay	pollen, indicating that the two	[15]
			pines. Mature		stages of the male	
			(ungerminated) vs.		gametophyte examined are	
			germinated pollen.		regulated at the miRNA level.	
			Strobili from fertile			
		Second-generation	vs. sterile male trees		Both conserved and species-	
POLLEN	Cryptomeria	offspring male trees,	from the field	sRNA-seq	specific sRNAs contribute to	[16]
	јаропіса	strobili	(Japan). Sampling at	1	the development of male	
			early stages of pollen		strobili.	
			development.		The aDNIA methyway a have	
		Constically distinct	immature cones in		higher activity in female than	
REPRODUCTIVE	Pinus	individuals	hotanic gardens	SRNA-SOA PARF-SOA	in male copes and the miRNA	[17]
DEVELOPMENT	tabuliformis	immature cones	(China): male vs	(China): male vs. female.	pathways are the main sRNA	[17]
			female.		pathways	
					Identification of a large	
					number of miRNAs in mature	
					female and male leaves, which	
			T		are likely involved in the	
REPRODUCTIVE	Cinckoo biloha	30-year-old trees,	Trees grown under	DNA 207	regulation of primary	[10]
DEVELOPMENT	Ginkgo bilobu	mature leaves	matural conditions:	skinA-seq	biological processes such as	[10]
			male vs. lemale.		plant-pathogen interactions,	
					plant hormone signal	
					transduction, and flavonoid	
					biosynthesis.	
REPRODUCTIVE	Populus	Several 29-years-old	Trees from natural	BS-seq	miRNA 172b might play an	[19]

DEVELOPMENT	tomentosa	clone trees, flower	populations		important role in the	
		(last phase of	representative of the		regulation of bisexual flower	
		development, before	geographic		development-related gene	
		pollination)	distribution (China):		expression in	
		-	male vs. female		andromonoecious poplar, via	
			flowers from		modification of methylation.	
			andromonoecious		Hyper-methylation in	
			trees. Validation with		andromonoecious and	
			flowers from		gynomonoecious poplar	
			gynomonoecious		might function as an	
			clones, male poplar		important regulator in	
			flowers, and female		bisexual flower development.	
			poplar flowers.			
ROOT	Populus trichocarpa	Seedlings, roots	In vitro stem segments. Shoots developed from the axillary buds were treated with 0, 1, and 2.5 μ M of the HDAC specific inhibitor TSA.	HDACs Colorimetric Assay, RNA-seq	HDACs were required for <i>de</i> <i>novo</i> organogenesis and normal growth of poplar roots. Several genes differentially expressed depending on TSA concentration are probably regulated by HDACs during root development.	[20]
SEED	Picea glauca	Three populations (from the same orchard), seeds	Populations with different fertilization timing and seed set duration. Collection and dissection of seeds at early, middle and late seed set.	sRNA-seq	Lacking of 24-nt sRNAs at the late conifer seed developmental phase may result in less constraints in TE activities, thus contributing to the massive expansion of genome size.	[21]
SOMATIC	Quercus suber	SEs	Developmental	RT-qPCR, DNA	Change in the expression of	[22]

EMBRYOGENESIS			stages from immature to fully developed embryos were studied. Immature acorns	sequencing	genes associated with epigenetic regulation is needed for the correct development of <i>Q. suber</i> SEs. There is a specific epigenetic-	
SOMATIC EMBRYOGENESIS	Quercus suber	SEs	were collected during fruit development, isolated and cultured under sterile conditions.	Genomic DNA methylation, Immunofluorescence	related spatial-temporal regulation during embryogenesis, which play an important role in correct maturation and germination of SEs.	[23]
TISSUE	Cunninghamia lanceolata	Seedlings, adult leaves, stems, calli	Plants grown under greenhouse conditions: seedlings, adult leaves, and stems; dry seeds; and calli derived from immature seeds (<i>in</i> <i>vitro</i>).	sRNA-seq	Four conserved and one novel miRNAs displayed developmental stage-specific expression patterns. The DCL3-dependent rasiRNA generation pathway, which had been considered absent in conifers, was found in Chinese fir.	[24]
TISSUE	Populus trichocarpa	Mature leaves, vegetative buds, fine roots, xylem, phloem, male and female catkins (inflorescence)	Tissues obtained from 2-years-old clones or mature trees.	MeDIP-seq	DNA methylation is tissue- specific and gene-body DNA methylation (i.e. in transcribed regions) has a more repressive effect on transcription than promoter methylation.	[25]
XYLEM	Eucalyptus grandis	7-years-old ramets, developing secondary xylem	Field-grown clonal trees. Sampling in early Spring.	ChIP-seq	The enrichment of the activating histone modification H3K4me3 is an indicator of active	[26]

					transcription in developing		
					xylem.		
		AB	IOTIC STRESS OR PRIMIN	IG			
			Hybrids grown in				
			common garden		Higher 5-mC signal and lower		
	Populus	A-vear-old hybride	(Spain). Temperature		H4 signal in winter may		
WINTER DORMANCY	tremula x	2-year-old branches	during harvesting	Immunofluorescence	reveal an epigenetic control of	[27]	
	Populus alba	2 year old branches	were 3.6°C in Winter		winter dormancy in poplar		
			and 22.5°C in		stems.		
			Summer.				
			24 short-day		DEMETER-like CsDML gene		
	Populus	Plantlets, shoot	induction of wild-	5-mC	induces bud formation		
WINTER DORMANCY	tremula ×	apices	type and CsDML-	Immunodetection	needed for the survival of the	[28]	
	Populus alba	-1	overexpressing lines		apical meristem under winter		
			vs. Non-induction.		conditions.		
					A chilling-dependent		
			Wild-type and		DEMETER-like DNA		
	Populus		knockout lines shoot		demethylase is a component		
WINTER DORMANCY	tremula × Populus alba	Clonal trees, apical meristems	apical meristems	HPLC, WGBS	of the mechanism underlying	[29]	
			collected close to bud		the shift from winter		
			burst (from January		dormancy to a condition that		
			to April, Spain).		precedes shoot apical		
					Differential DNA methylation		
			Three populations		and expression of adaptation		
		Mature seeds,	located in porthern		related genes contribute to		
WINTER DORMANCY	Pinus sylvestris	megagametophytes	and southern	GDM	local adaptation in Scots pine	[30]	
	aı	and embryos	Finland		populations under climate		
			i intaria.		change conditions		
CLIMATE/GEOGRAPHIC			Clonal arboretum	MSAP, MS-PCR	Population epigenetic		
DISTRIBUTION	Populus simonii	Natural populations	from root segments	HPLC	distance and geographic	[31]	

			from natural populations (representative of the geographic distribution in China, including several provenances).		distance showed a significant correlation, suggesting that environmental factors affect epigenetics. DNA methylation markers associated with phenotypic traits, explaining part of the phenotypic variance. The differentially methylated genes found may play important roles in leaf development and regulation of photosynthesis.	
CLIMATE/GEOGRAPHIC DISTRIBUTION	Quercus lobata	Natural populations, mature leaves	Sampling in 58 localities throughout its entire distribution (California, USA), covering the entire climate gradient.	RRBS	Climate and spatial variables explain more overall variance in CG-SMVs among individuals than in SNPs, CHG-SMVs or CHH-SMVs. This suggests a role of CG methylation in locally adaptive evolution or plasticity in plant response. Patterns of (epi)genetic	[32]
CLIMATE/GEOGRAPHIC DISTRIBUTION	Quercus lobata	Expanding leaf/flower bud tissue or mature leaves	Three climatologically distinct populations.	RRBS	differentiation indicate that local adaptation is operating on large portions of the oak genome: while CHG methyl polymorphisms do not play a significant role and would make poor targets for natural	[33]

selection, CpG methyl polymorphisms are involved

HEAVY METALS	Populus alba	Cuttings of a selected clone, leaves	Greenhouse conditions: plants (1) inoculated or not with arbuscular mycorrhizal fungi (AMF) and (2) grown on heavymetal polluted (HM) or unpolluted soil. Sampling 4 and 6 months after the start of the experiment.	MSAP	Modest cytosine methylation changes at the first sampling, followed by extensive hypomethylation after 6 months in mycorrhizal plants grown in HM soils. The expression of genes selected based on DNA methylation status varied in response to HMs and/or AMF inoculation, with the upregulation of genes involved in RNA processing, cell wall and amino acid metabolism in the presence of AMF.	[34]
NUTRIENT-EPIGENETIC MEMORY	Populus trichocarpa	Clonal cuttings from different sites	Cuttings transferred into a fully nutrient supplied environment - phosphorus nutrition.	WGBS	Differential site-dependent growth was associated with DNA methylation, and few differentially methylated miRNA and its target genes were dependent on phosphorous nutrition. This may explain habitat or seasonal memory and site-	[35]
RADIATION	Pinus sylvestris	20-25-year-old trees, needles	Populations growing in the Chernobyl- affected zone	RNA-seq, SNP	dependent growth. Adaptive responses of Scots pine under chronic exposure of radiation involve	[36]

in local adaptation, either directly or through linkage to regions under selection.

			(contaminated with radionuclides): Reference plot vs. Low contaminated vs. Highly contaminated.		modulation of redox process, enhanced expression of chaperones and histones and control of ion balance.	
RADIATION	Acer palmatum	Yellow-leaves mutant	Leaves grown in different light conditions: half of the plant in full sunlight condition vs. 30% of full sunlight.	RNA-seq, sRNA-seq	Gene differentiation associates with A. palmatum leaf coloration in different light conditions.	[37]
RADIATION	Pinus radiata	5-6-month-old selected seedlings, needles	Grown in controlled environment greenhouse and submitted to UV-B stress. Samplings at 24, 48, 72 or 96 h and after 1 month recovery.	RT-qPCR	The expression levels of stress-related genes were upregulated, while genes involved in photosynthesis and epigenetic regulation were downregulated.	[38]
SALINITY	Laguncularia racemosa	Adult trees, young and undamaged leaves	Two nearby habitats: riverside (RS) vs. near a salt marsh (SM).	MSAP	In spite of SM plants being smaller, little genetic but abundant DNA methylation differentiation was found between RS and SM plants, suggesting that epigenetic variation in natural populations is crucial for plants to cope with different environments	[39]
SALINITY	Phoenix	5-week-old	Growth chamber:	sRNA-seq	Date palm contains a large	[40]

	dactylifera	seedlings, leaves and roots	watered regularly or treated with a 300 mM NaCl solution at 72h intervals. Sampling 1 week after treatment.		population of conserved and non-conserved miRNAs that function at the post- transcriptional level and are important for adaptation to salinity.	
SALINITY	Populus alba x Populus glandulosa	Hybrid clone, defoliated stems	Liquid culture system: 24h 100 mM NaCl treatment, followed by 3-days recover and another 24h stress cycle. Sampling at 0, 1, 3, 6, and 12h for each stress cycle.	RNA-seq	Important transcriptional reprogramming and finding of new genes involved in salt stress response and adaptation in Populus after repeated stress cycles, mainly including genes involved in hormone signaling, cell wall biosynthesis and modification, negative regulation of growth, and epigenetic regulation.	[41]
TEMPERATURE	Hevea brasiliensis	Three high-yield clones with different sensitivities to cold conditions, tender sprouts	Plants from each clone selected from two different climatic regions: control vs. cold stress.	BS-seq, RAPD	Highly divergent phenotypic characters and epigenetic variations in responses to environmental variations among Hevea clones.	[42]
TEMPERATURE	Populus simonii	50 cm tall plants of one clone, leaves	Greenhouse: control vs. heat (42°C) or cold (4°C) stress. Sampling after 3, 6, 12, and 24 h for each stress.	MSAP, PARE-seq, BS-seq	DNA methylation probably regulates the expression of miRNA genes, thus affecting expression of their target genes, likely through the gene-silencing function of miRNAs, to maintain cell survival under abiotic stress	[43]

			Controlled climate			
TEMPERATURE	Quercus suber	8-month-old plants, fully expanded leaves	chamber: gradual increase by 10 °C every 3 days from 25°C to 55°C, maintaining peak	HPCE, MS-RAPD, Protein Gel Blot, 5- mC and AcH3	Epigenetic mechanisms such as DNA methylation and histone H3 acetylation have opposite and particular dynamics that can be crucial	[4
			temperature for 3h. Sampling at 3rd day during peak heat hours at 25°C, 35°C, 45°C and 55°C.	Immunolocalization	for the stepwise establishment of cork oak into high heat stress, allowing its acclimation and survival.	1
TEMPERATURE - EPIGENETIC MEMORY	Picea abies	Single genotype, terminal buds and needles from the previous year	Field trial using two epitypes of the same genotype originated from cold (18°C) and warm (28°C) somatic embryogenesis environments.	RT-qPCR	Epigenetic memory affects the timing of bud burst phenology and the expression of bud burst related genes in genetically identical Norway spruce epitypes in a manner usually associated with ecotypes.	[4
TEMPERATURE - EPIGENETIC MEMORY	Picea abies	Seedlings of two full-sib families	Seeds developed in a cold vs. warm environment.	sRNA-seq	Norway spruce contains a set of conserved miRNAs and a large proportion of novel non- conserved miRNAs. Only one family showed distinct epigenetic differences in bud set together with differential expression of specific miRNAs indicating its putative participation in epigenetic regulation.	[4

[44]

conditions.

[45]

[46]

TEMPERATURE - EPIGENETIC MEMORY	Picea abies	SEs (morphogenesis)	Epitype-inducing temperatures: 18°C vs. 30°C.	MACE-Seq	Temperature-dependent gene expression changes are putatively based on chromatin modifications.	[47]
TEMPERATURE - EPIGENETIC MEMORY	Picea abies	SEs	Epitype-inducing temperatures: 18, 23 and 28°C.	RNA-seq	The differential expression of epigenetic regulators during embryogenesis at different epitype-inducing conditions, mainly involved in DNA and histone methylation, and sRNA pathways supports that these mechanisms are crucial for the establishment of an epigenetic memory. miRNAs differentially	[48]
TEMPERATURE - EPIGENETIC MEMORY	Picea abies	SEs	Epitype-inducing temperatures: 18, 23 and 28°C.	sRNA-seq	expressed at different epitype- inducing temperatures putatively target transcripts of proteins involved in the signal- transduction of environmental stimuli into molecular responses. Fine- tuning of the miRNA production likely participates in both developmental regulation and epigenetic memory formation in Norway	[49]
TEMPERATURE - EPIGENETIC MEMORY	Picea abies	Terminal and lateral buds	2 epitypes originated from in vitro SEs cultured in cold	HPLC, Immunofluorescence	Presence of oxidized forms of 5-mC (5- hydroxymethylcytosine and	[50]

TEMPERATURE - PRIMING	Pinus radiata	6-month-old seedlings, leaves nuclei	(18°C) and warm (28°C) conditions. Buds were collected from 13-year-old trees. Climate chamber: seedlings exposed to 45°C for 10 days followed by recovery.	GeLC-Orbitrap/MS, Immunolocalization of 5-mdC	5-formylcytosine) in the P. abies genome implying their probable non-spontaneous generation, which may play a role to sense environmental changes and cope with harsh conditions. Nuclei proteome profiles revealed an accumulation of H2A histone and methyl cycle enzymes after recovery, indicating that thermopriming may be linked to H2A histone abundance and overaccumulation of spliceosome elements. Epigenetic mechanisms seem to play a key role in heat stress tolerance and priming mechanisms	[
SEVERAL STRESSES	Populus simonii	Stress-tolerant genotype, leaves	Greenhouse: control vs. 150mM NaCl, 30% PEG 6000, 42 °C, or 4 °C. Sampling after 3, 6, 12, and 24h. Long-term changes evaluated after 1 and 2 (treated leaves), and 6 months (newly emerged leaves after dormancy) of stress	HPLC, MSAP	Different patterns of cytosine methylation in response to cold, osmotic, heat and salt stresses. Methylation levels decreased progressively after stress relief, with the exception of the methylation- regulated gene MIRNA6445a which showed long-term expression stability.	[

[51]

[52]

SEVERAL STRESSES	Jatropha curcas	Young leaves	56 samples from Thailand and other countries, including samples with high- yield production, γ- irradiation and non- toxic varieties.	MSAP	Differences in DNA methylation levels were observed among samples, with samples from saline areas and some hybrids showed specific patterns. Some DNA methylation polymorphisms differed between toxic and non-toxic samples. MSAP is a powerful technique to study the genetic diversity of organisms with a narrow genetic base.	[53]
SEVERAL STRESSES	Populus alba x Populus tremula and Populus trichocarpa	Xylem, phloem, bark vascular tissues	(1) gravitropism experiment on xylem tissues from hybrid, wild-type, and mutants with GA treatment; (2) xylem and bark vascular tissues from well- watered, drought stressed and drought stressed and drought recovered trees; (3) collection of xylem from 20 common gardens; (4) collection of xylem and phloem from a riparian site.	ChIP-seq, DNase-seq, RNA-seq	Conserved gene coexpression modules associated with biological processes in wood formation were identified as highly preserved across diverse environmental conditions and genetic origin.	[54]

relief.

WATER AVAILABILITY	Acer platanoides and Acer pseudoplatanus	Embryonic axes, cotyledons, and 3- month-old seedlings	Gradual dissecation of orthodox (desiccation-tolerant) vs. recalcitrant (desiccation- sensitive) seeds.	TLC	Variations of DNA methylation level during water stress are both tissue and seed specific and highly correlated with recalcitrant seed viability. Global 5-mC changes in response to desiccation were only retained in the DNA isolated from seedlings derived from strongly desiccated orthodox seeds.	[55]
WATER AVAILABILITY	Eucalyptus globulus	5-month-old rooted cuttings, leaves	Climate chamber: acute drought stress (7 and 11 days after water withholding) and relief (2h and 3 days after rewatering).	RAPD, 5-mC Immunolocalization	A parallel induction of redox (i.e. shift in the major antioxidant pools, increase of lipid peroxidation) and complex DNA methylation (i.e. increase of 5-mC, specific demethylation events) changes occurred during drought stress and recovery.	[56]
WATER AVAILABILITY	Pinus halepensis	Cuttings of a mature tree from a semi-arid area with suboptimal growth conditions, needles	Greenhouse with semi-controlled conditions: Well- irrigated plants vs. Water withholding for 34 days vs. Recovery.	RNA-seq	Drought adaptative responses and recovery involve several transcripts related with redox activity, photosynthesis and phytohormones and a differential expression of methylation-related transcripts.	[57]
WATER AVAILABILITY	Populus tomentosa	57-day-old plantlets	Untreated vs. dehydration) vs.	sRNA-seq, RT-qPCR	Significant changes in the expression of both conserved	[58]

			flooding.		miRNA families and novel miRNAs were observed in response to drought and flooding. These were involved in plant regulation targeting genes encoding TFs, enzymes, and signal transduction components implicated in the abiotic stress response.	
WATER AVAILABILITY	Populus trichocarpa	3-month-old clonally propagated plants, debarked stem	Controlled growth chamber: control vs. 5- and 7-days drought treatment.	RNA-seq, ChIP-seq, RT-qPCR	AREB1 protein establishes a coordinated histone acetylation and TF-mediated gene activation for drought response and tolerance in Populus species.	[59]
WATER AVAILABILITY	Populus trichocarpa	45 cm tall seedlings, mature leaves	Greenhouse: sufficient irrigation vs. modest dehydration.	sRNA-seq, PARE-seq	Five upregulated and seven downregulated miRNAs were discovered in response to drought stress.	[60]
WATER AVAILABILITY	Populus trichocarpa	75 cm tall seedlings, mature leaves from the same position	Greenhouse: well- watered and water- stressed.	BS-seq	DNA methylation in response to stress regulates genes by methylating TEs in promoters and gene body of TFs.	[61]
WATER AVAILABILITY	Quercus ilex	Natural populations, fully expanded leaves from the sunny top canopy	Unstressed forest plots vs. plots experimentally exposed to drought for 12 years at levels projected for the coming decades.	MSAP	Hypermethylated loci (as a quantitative variable) percentage increased and fully methylated loci (in opposition to hemi- methylated loci) percentage decreased under drought stress, indicating a rapid	[62]

WATER AVAILABILITY - EPIGENETIC MEMORY	Populus × euramericana and Populus trichocarpa	Winter-dormant shoot apical meristems	Stressful environmental growing conditions during the vegetative period/preceding summer period	HPLC, MeDIP-chip	to prevent growth decrease and higher mortality, DNA methylation changes occurred together with a dampening in such decreases as the long- term treatment progressed. Global DNA methylation variation between sites was correlated with genotype and biomass production capacity. Differentially methylated regions were identified 6 months after summer, mainly targeting abiotic stress and developmental response genes, which supports the development of and epigenetic memory in Norway spruce shoot apical meristems.	[63]
WATER AVAILABILITY - EPIGENETIC MEMORY	Populus nigra	Clones from three populations, shoot apical meristems	Grown under two watering regimes in a common garden.	HPLC	genetic marker of natural population differentiation under drought in a pedoclimatic context	[64]
WATER AVAILABILITY - EPIGENETIC MEMORY	Populus spp.	Clones of commercial hybrids derived from two different locations, leaves	Drought.	HPLC	Variation in global DNA methylation is dependent on geographic region and history of clone. An epigenomic basis was suggested for the clone	[65]

3]

acclimation. Although unable

					history-dependent transcriptome divergence observed. Shoot apical meristems	
WATER AVAILABILITY - EPIGENETIC MEMORY	Populus x euroamericana	Shoot apical meristems	Greenhouse: water deficit-rewatering cycle.	HPLC, MeDIP-chip, BS-seq	response to water availability changes involved variations in DNA methylation and gene expression, mainly targeting genes involved in hormone pathways, which may enable phenotypic plasticity. Rewatering conditions showed the highest variation.	[66]
WATER AVAILABILITY - EPIGENETIC MEMORY	Populus x euroamericana	Several genotypes, leaves	Greenhouse: well- watered vs. moderate water-deficit conditions. Two contrasting pedoclimatic conditions.	HPLC	Only the first leaves emerging from SAMs displayed genotype- and pedoclimatic site-dependent variations of DNA methylation under changing water conditions.	[67]
		Bi	OTIC STRESS OR PRIMINO	3		
BIOTIC	Fraxinus excelsior	Grafts, leaves	Greenhouse: genotypes with high vs. low susceptibility to ash dieback (ADB).	WGBS	Identification of a set of genes with differential methylation between genotypes with high and low susceptibility to ADB genotypes, providing a valuable basis to study the role of epigenetics in gene dosage compensation and susceptibility to ADB in ash.	[68]
BIOTIC	Paulownia	30-day-old tissue-	Plantlets with and	ChIP-seq	Several genes involved in	[69]

HORMONES - PRIMING	fortunei Populus euphratica	cultured plantlets, terminal buds	without Paulownia witches'-broom phytoplasma infection. Greenhouse: control vs. watering with 300 µM ABA solution. Sampling 1 and 4 days after ABA treatment.	sRNA-seq	metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, plant-pathogen interaction and plant hormone signal transduction were differentially modified by the histone marks studied under phytoplasma infection. Differential histone methylation and acetylation affected phytoplasma- responsive genes. Changes of miRNAs expression were inversely correlated with the expression profiles of their putative targets and might be involved in some biological process related stress tolerance. The results provide comprehensive view of how P. euphratica miRNA respond to ABA with different temporal dynamics.	[70]
		MARKERS	, BREEDING AND BIOTECHN	OLOGY	.	
CLONAL DIVERSITY	Populus alba	Young leaves	Natural populations vegetatively propagated in different natural environments	MSAP	The limited genetic biodiversity of poplars is counterbalanced by epigenetic inter-population variability. Environmental conditions	[71]

			forming large		strongly influence inner	
			monoclonal stands		cytosine hemi-methylation	
			(Sardinia, Italy).		and clone ramets were	
					differentially methylated in	
					relation to their geographic	
					position. Plant biodiversity	
					studies should not be	
					restricted to genetic aspects,	
					especially in the case of	
					vegetatively propagated plant	
					species.	
					Although patterns of	
	Populus				methylation are very similar	
EVOLUTION	trichocarpa (and other plants and	Clone, leaves		BS-seq	in flowering plants, CHG methylation levels in	[72]
	animals)				transposons and repeats were much higher in poplar.	
					Parents methylation patterns	
					partially and dynamically	
			A ftor band		passed onto their F1 hybrids,	
			nollination clones		which showed a non-additive	
		Intraspecific	showing good		(higher) methylation level.	
		parental (from the	nerformance in		Hypermethylated genes in	
HETEROSIS	Populus	inbred seeds of	height and diameter	MoDIP-sog	better-parent F1 hybrids were	[73]
IILIEKOOIO	deltoides	excellent individual	at breast beight were	WEDI -seq	enriched in metabolism and	[/5]
		plants) and F1	selected and planted		development, which may be	
		hybrids lines, leaves	in a field study		highly relevant to	
			(China)		heterosis/hybrid vigor (i.e.	
			(China).		progeny are superior to their	
					parents (with distinct genetic	
					backgrounds) in many traits).	

IN VITRO TECHNIQUES	Populus	One genotype -	System that mimics	MeDIP-seq	DNA methylation varies in a	[77]
IN VITRO TECHNIQUES	Pinus pinaster	Two somatic embryogenesis lines - embryonal mass (EM)	Young EM cultures that produced mature SEs vs. Aged EM that stopped producing mature SEs vs. Aged EM treated with the hypomethylating drug 5-AzaC.	HPCE, MSAP	Although global DNA methylation levels were similar in all samples, MSAP analysis unvealed the demethylation events occuring in aged EM. The treatment of aged EM with 5- AzaC affected the type of methylation alterations in the target sequences depending on drug concentration and exposure duration.	[76]
IN VITRO TECHNIQUES	Picea asperata	Selected genotype, SEs	Partial Dissecation Treatment is applied to increase SEs germination capacity. Mature embryos with well-developed cotyledons transferred onto two layers of dry filter paper for 0, 7, 14, or 21 days.	antibody-enrichment, MS	Lysine acetylation is mainly involved in stress response and central metabolism in desiccated SEs, with the majority of these acetylated interacting proteins highly enriched in ribosome, proteasome, spliceosome, and carbon metabolism clusters.	[75]
IN VITRO TECHNIQUES	Picea abies	Selected genotype, needles and SEs (proliferation stage)		WGBS	Norway spruce genome is heavily methylated due to high transposon content. Somatic embryogenesis cultures used in the industry showed altered DNA methylation patterns.	[74]

	trichocarpa	internode stem	routine in vitro		highly gene- and
		segments from	methods for		chromosome-differential
		micropropagated	regeneration and		manner during in vitro
		explants,	transformation in		differentiation and
		dedifferentiated	Populus (aiming at		regeneration.
		calli, and internodes	the development of		Hypermethylation of gene
		from regenerated	methods that avoid		bodies may serve a protective
		plants	the phenotypic		role against activation of
			variation among		abundant transposable
			plants regenerated		elements.
			through in vitro		
			culture systems).		
MARKERS	Pinus pinea	6-month-old cuttings from 5 natural populations, needles	The natural populations represent the distribution of P. pinea among contrasting climate (Spain). Cuttings were grown in climatic chambers.	MSAP	Variable epigenetic markers discriminate individuals and two populations contrary to genetic variation (based on AFLP analysis). The methylation variability between individuals might explain the significant variation in functional traits
			In vitro-produced		Higher DNA methylation
	Acacia mangium	Explants from juvenile and mature plant material, microshoots	microshoots from	HPLC, MSAP	levels were found in I than in
MARKERS			iuvenile and mature		M microshoots, irrespective of
			explant separated by		source material age. However,
			leaf morphology (a		six age-specific C5mCGG
			phase change		methylated markers were
			indicator): juvenile-		found. Although HPLC
			like microshoots(J,		quantitative analysis could
			compound leaves		not distinguish age classes,

			only) and mature- like microshoots (M.		qualitative differences were identified by MSAP.	
			phyllodes			
			exclusively).			
			Clonal populations		DNA methylation	
			obtained through		polymorphism discriminates	
			somatic		between the two phenotypes	
			embryogenesis from		only when they were from the	
MARKERS		Adult somaclones (F+1), mature leaves	4 genotypically		same genetic origin. This	[80]
	Flagic		distinct mother		result hampers the direct use	
	Lineis		palms (Indonesia):	MSAP	of MSAP markers for the early	
	guineensis		normal vs. "mantled"		detection of variants, even	
			phenotypes		though valuable information	
			(transformation of		on putative target sequences	
			male floral organs		will be obtained from a	
			that may lead to fruit		further characterization of	
			abortion).		these polymorphic markers.	
			Cross of diploid		DNA methylation is	
	Populus (and other non-forest species)	Combinations of triploids with their corresponding diploid and/or tetraploid parents, young leaves	Poplar, and newly		nonlinearly related to the	
			synthesized triploid		ploidy level and triploid	[81]
			Poplar, which was		plants displayed a different	
			created by pollen		DNA methylation status (i.e.	
PLOIDY LEVELS			doubling.	MSAP	higher levels of DNA	
			Comparison of	10107 11	methylation were detected in	
			triploid materials		poplar). The characteristics of	
			relative to their		DNA methylation are	
			corresponding		significantly different during	
			parents (for all		the polyploidization of	
			species).		different plant species.	
PLOIDY LEVELS	Populus pseudo- simonii ×	F1 hybrid diploid population and	Artificial	MSAP	Both hybridization and	[82]
			hybridization with a	1010/ 11	polyploidization contributed	

	Populus nigra and Populus beijingensis	allotriploid populations with different heterozygosity, fully expanded leaves	thermic treatment (41°C for 4h). Seeds grown in greenhouse and surviving seedlings transplanted to the field (China).		to cytosine methylation variation (variation in diploid population significantly higher than in the parents; allotriploid populations significantly lower than in the parents). The vast majority of methylated status could be inherited from the parents.	
TRANSGENIC	Populus tremula x Populus alba	RNAi-PtDDM1 transgenic poplars, young fully expanded leaves	Construction of poplar DDM1 mutant using RNAi suppression and evaluation of phenotypes during perennial growth and seasonal dormancy. Arabidopsis DDM1 is necessary for the maintenance of DNA methylation and heterochromatin assembly.	HPLC	First report for a DNA methylation modified-tree. The phenotypic consequences of reduced DDM1 activity (mottled leaves) and DNA methylation appears to increase with cumulative plant propagation and growth.	[83]