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Abstract: Background and Objectives: To determine whether the progeny of pinewood nematode-resistant
Pinus thunbergii Parl. clones selected in the southwestern region of Japan could be successful in reforestation
in the northern region, we investigated the magnitude of the genotype–environment interaction effect
on the resistance against Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle in P. thunbergii. Materials
and Methods: We inoculated P. thunbergii seedlings of six full-sib families, with various resistance levels,
with B. xylophilus in nurseries at three experimental sites in the northern and southern regions of Japan.
All parental clones of the tested families originated from southwestern Japan, and selection of parental
clones for resistance was performed in the same region. Sound rates after nematode inoculation were
calculated, and survival analysis, correlation analysis and variance component analysis were performed.
Results and Conclusions: Families with high sound rate in the southern region also showed a high
sound rate in the northern region. In almost all cases, Spearman’s correlation coefficients for sound rates
were more than 0.698 among sites. The variance component of the interaction between site and family
was small compared to that of site and family separately. Thus, we conclude that the resistant clones
selected in the southern region would retain their genetic resistance in the northern regions.

Keywords: pine wilt disease; Bursaphelenchus xylophilus; genotype by environment interaction;
Japanese black pine; variance component

Forests 2020, 11, 955 ; doi:10.3390/f11090955 www.mdpi.com/journal/forests

http://www.mdpi.com/journal/forests
http://www.mdpi.com
https://orcid.org/0000-0003-1967-0189
http://www.mdpi.com/1999-4907/11/9/955 ?type=check_update&version=1
http://dx.doi.org/10.3390/f11090955 
http://www.mdpi.com/journal/forests


Forests 2020, 11, 955 2 of 11

1. Introduction

Japanese black pine Pinus thunbergii Parl. is one of the major forestry species in Japan. Pine seedlings
have been planted across a wide coastal area of Japan, from the northern part of Honshu island to the
southern part of Kyushu island, to protect land and houses against strong winds and sand movement
inland [1]. After the invasion of the pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer)
Nickle, from North America to Kyushu island in the early 20th century causing pine wilt disease (PWD)
in P. thunbergii forests, the disease has spread to the northern part of Japan [2–4]. Currently, the disease
has been reported in all the prefectures of Japan except Hokkaido, the northern most prefecture [5].
From a global perspective, PWD in East Asia (Japan, South Korea, China and Taiwan) has now spread
to southwestern Europe (Portugal and Spain) [4–9], and there is a risk that the disease will spread to
neighboring countries [10,11].

To combat PWD, a national resistance breeding program of Pinus densiflora Sieb. et Zucc. (Japanese red
pine) and P. thunbergii was started in southwestern Japan in 1978 as a part of an integrated pest management.
In the program, 92 P. densiflora and 16 P. thunbergii resistant clones were selected [12]. The selected clones
were propagated by grafting and used in PWD-resistant seed orchards. As PWD spread into the eastern
and northern parts of Japan, supplemental resistance breeding programs were started in the Tohoku and
Kanto regions [13,14]. Although many resistant clones were selected and resistant seed orchards were
established in the eastern and northern regions in the programs, these eastern and northern orchards
included resistant clones selected in the southern region of Japan to supplement shortages of resistant
clones in the surrounding regions. Japan has a large geographic extension from north to south, with a
highly variable climate. Until now, the genetic capability of resistant clones selected in southern Japan, or
their progeny, in the northern regions of Japan has not been examined.

Species, provenance and family variation in resistance or susceptibility to pinewood nematode
has been reported in artificial inoculation experiments using graftings—half- or full-sib families of pine
species—and studies have shown the relatively high heritability of resistance or susceptibility in P. thunbergii,
P. densiflora and Pinus pinaster Ait. (maritime pine) [15–20]. On the other hand, environmental factors
also affect PWD development in infected trees. High air temperature, dry soil conditions and low-light
intensity promote disease development, shorten the time until death and increase mortality [21–23].
However, there is limited knowledge of the effect of the interaction between genotype by environmental
factors (G × E) on resistance. A previous study, based on a six-year B. xylophilus inoculation experiment
using open-pollinated families of P. thunbergii, showed that the family-by-year effect for resistance level is
smaller than the family effect [16]. In P. pinaster, a G × E interaction was reported based on a greenhouse
inoculation test using seedlings from six provenances [18].

Resistance breeding against invasive pests generally begins at the site of the pest introduction.
When there is a risk of pest expansion to neighboring regions with different climates, and if the clones
or gene pool selected by resistance breeding display resistance in other regions with different climates,
those genetic resources and breeding materials can be used in pest control strategies in other regions.
In recent years, PWD has invaded southwestern Europe, and resistance breeding of P. pinaster has
begun in Portugal and Spain [19,20]. In Japan, the first PWD outbreak occurred in Nagasaki, Kyushu in
the southwestern region, and resistance breeding began in the southwestern region.

Here, to clarify if the progeny of southern resistant clones retain their genetic resistance to PWD
in the northern region of Japan, the seedlings of six P. thunbergii families with various resistance levels
were inoculated with an isolate of B. xylophilus at three sites with different climates. Then, the external
symptom was assessed and analyzed.

2. Materials and Methods

2.1. Experimental Sites

Nurseries in the Tohoku Regional Breeding Office (TBO), Forest Tree Breeding Center (FTBC),
and Kyushu Regional Breeding Office (KYBO) were used as the three sites for the experiment (Figure 1).
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TBO (39◦49′4.8” N, 141◦8′13.2” E) is located in Iwate Prefecture in the Tohoku region, in the northern
part of Honshu island. FTBC (36◦41′31.2”◦ N, 140◦41′24” E) is located in Ibaraki Prefecture in the
Kanto region, central Honshu island. KYBO (32◦52′51.6” N, 130◦44′9.6” E) is located in Kumamoto
Prefecture in the Kyushu region, Kyushu island. The distance between TBO and KYBO is about
1200 km. The climate around TBO is cool and the monthly average temperature in winter is below
0 ◦C (Figure 2) [24]. On the other hand, the climate around KYBO is warm and the monthly average
temperature in summer exceeds 25 ◦C. The climate around FTBC is intermediate between the two;
in summer, the temperature is close to that of TBO, and in winter it is close to that of KYBO. Precipitation
in June and July is high as it is the rainy season around KYBO.
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Figure 1. The experimental sites and the origin of materials used in this study. Filled circles indicate
the three experimental sites, Tohoku Regional Breeding Office (TBO), Forest Tree Breeding Center
(FTBC) and Kyushu Regional Breeding Office (KYBO). Open circles indicate the origins of 12 parental
clones crossed to produce full-sib families used in this study. Italicize letters indicate the names
of the four main islands of Japan. This map was created from the blank map published Geospatial
Information Authority of Japan. Clone name abbreviations: Amakusa20 (A20), Namikata37 (N37),
Yoshida2 (Y2), Tanabe54 (T54), Kimotuki24 (K24), Minamatasho105 (M105), Karatsu17 (K17), Karatsu16
(K16), Tosashimizu63 (T63), Oseto12 (O12), Kimotsuki29 (K29), and Amakusa1 (A1).
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Figure 2. Monthly mean air temperature and monthly precipitation of three experimental sites in 2014.
Data was obtained from the AMeDAS (Automated Meteorological Data Acquisition System) of Japan
Meteorological Agency. The values for TBO, FTBC, and KYBO sites were measured at Morioka, Hitachi,
and Kikuchi observatories, which are close to the experimental sites.

2.2. Pine Seedlings

Six P. thunbergii full-sib families produced by artificial crossing were used in the experiment (Table 1).
In order to include pine trees with a large variation in their resistance to PWD, we used six PWD-resistant
clones with high or intermediate resistance (Amakusa20 (A20), Namikata37 (N37), Yoshida2 (Y2),
Karatsu17 (K17), Karatsu16 (K16), and Tosashimizu63 (T63)), two PWN-resistant clones with relatively
low resistance (Tanabe54 (T54) and Oseto12 (O12)), and four plus-tree clones (Kimotuki24 (K24),
Kimotsuki29 (K29), Minamatasho105 (M105), and Amakusa1 (A1)). The resistant clones were selected
using B. xylophilus artificial inoculation tests and plus-tree clones were selected by phenotypically
superior evaluation for growth and stem form. All parental clones originated in southwestern Japan
(Figure 1) and were propagated by grafting and stored in KYBO. The inoculation test for resistant clone
selection was also performed in southwestern Japan. The resistance levels of eight parental resistant
clones, based on the nematode inoculation test using their open-pollinated families, have already been
reported [25,26]. The resistance rank of parental clones is described in Table 1. The other four plus-tree
clones were not selected for their resistance and the resistance levels of their open-pollinated or crossed
families were low, based on preliminary inoculation tests.

Table 1. Details of the Pinus thunbergii full-sib families used in this study.

Mother Father No. of Seedlings, Height (Mean ± SD)

Clone (Abbreviation) Rank* Clone (Abbreviation) Rank* TBO FTBC KYBO

Amakusa20 (A20) 3/13 Karatsu17 (K17) 1/13 39 31.9 ± 7.2 a 70 30.1 ± 4.0 b 92 26.6 ± 5.4 b
Namikata37 (N37) 3/16 Karatsu16 (K16) 5/13 42 30.2 ± 7.6 ab 69 32.7 ± 5.2 a 77 30.9 ± 5.1 a

Yoshida2 (Y2) 4/16 Tosashimizu63 (T63) 6/16 39 29.7 ± 6.5 ab 71 26.6 ± 3.9 d 52 21.1 ± 3.0 c
Tanabe54 (T54) 10/16 Oseto12 (O12) 14/16 25 22.5 ± 6.0 c 68 25.4 ± 4.6 e 76 15.2 ± 4.3 d

Kimotsuki24 (K24) - Kimotsuki29 (K29) - 22 25.8 ± 7.0 bc 70 28.5 ± 5.3 c 58 19.7 ± 4.0 c
Minamatasho105 (M105) - Amakusa1 (A1) - 33 32.7 ± 7.5 a 71 26.7 ± 5.2 d 72 20.6 ± 4.5 c

Total 200 29.4 ± 7.7 419 28.3 ± 5.3 427 22.7 ± 7.0

Rank* shows the rank of clone resistance based on the progeny test by Matsunaga et al, [26]. The denominator
and the numerator indicate the number of resistant clones evaluated at the same time and the clone rank among
them, respectively. -: no evaluation. Means followed by a common letter are not significantly different at 5% level
of significance.

One hundred seeds belonging to each of the six families were sown in the TBO, FTBC and KYBO
nurseries in the spring of 2013. The following spring, the seedlings of each family were transplanted to
another location in the nursery, with a random block design of family with two replicates at 20 cm × 20 cm
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spacing in FTBC and KYBO. In the TBO nursery, our preliminary test results showed that 1.5-year-old
seedlings were not large enough for use in the inoculation experiment. In the present study, seedlings were
not transplanted in the TBO nursery; instead, 2–3 seeds were sown at 20 cm × 20 cm spacing, and extra
seedlings were removed to ensure only one remained in each 20 cm × 20 cm grid. Prior to inoculation,
there were 200, 419, and 427 seedlings in the TBO, FTBC, and KYBO sites, respectively (Table 1). The height
of each seedling was measured during the week prior to inoculation.

2.3. Nematode Inoculation and Symptom Observation

For inoculation, an isolate of B. xylophilus (Ka4) obtained from dead P. densiflora in Ibaraki Prefecture
in 1999 [27] and sub-cultured in the laboratory at FTBC was used. After an incubation of approximately
10 d on Botrytis cinerea Pers., a fungus, on barley grains, the nematodes were separated from the media
using the Baermann funnel method. The nematode suspension was adjusted to 200,000 nematodes/mL
of water. Nematode incubation and suspension adjustment were conducted at each site.

Nematode inoculation was conducted on 1 July 2014 in all sites. A 5 cm length of seedling stem
was peeled with a sharp knife at approximately 5–10 cm above the ground, and the wound was
scratched with small sow before inoculation with 50 µL of suspension containing 10,000 nematodes
using a micropipette.

The inoculated seedlings were observed weekly and external symptoms were classified into three
categories (0: no symptoms, 1: browning of needles on one or more branches, 2: browning of all
needles). Seedlings with an external symptom level of 1 were considered as diseased, and the seedlings
with a level of 2 as dead. Subsequently, sound seedling rate and survival rate were calculated as follows:

Sound seedling rate = No. of seedlings in symptom class 0/No. of inoculated seedlings
Survival rate = No. of seedlings in symptom class 0 and 1/No. of inoculated seedlings

The sound seedling rate was the rate of seedlings without external symptoms, and focused on the
seedlings with higher resistant level. On the other hand, the survival rate was the rate of surviving
seedlings that included not only sound seedlings but also diseased and partially dead ones. From the
viewpoint of preventive counteracts, we used the sound seedling rate as a major indicator and the
survival rate as the supplemental result, as we considered that no symptoms were more important
than surviving. Observations were carried out for 10 weeks after inoculation (WAI); however, in TBO
the 4-week and 8-week survey was not conducted.

2.4. Statistical Analysis

R version 4.0.0 [28] was used for all statistical analyses. Seedling height was analyzed with a
linear mixed model using the lmer function of the lme4 package [29] to determine the size variation
of seedlings. In the model, mean height of each replicate of each of the six families from the three
sites was calculated and used as the response variable; while family, site and their interaction were
used as explanatory variables with fixed effects and replication within site was used as an explanatory
variable with random effects. As model selection based on the AIC value with the function dredge in
the MuMIn package [30] selected the model with an interaction between family and site (Table S1),
we separated the data of each site and conducted multiple comparisons among families using the glht
function in the multcomp package [31].

To compare the disease development process among sites and families, we conducted a two-step
survival analysis using Kaplan–Meier estimators. For comparison among sites, Kaplan–Meier estimators
were calculated for sound rate of seedlings and log-rank test with Bonferroni-adjusted p values was
applied for multiple comparisons among sites. Since the composition ratio of the six families did not
differ significantly by site (Chi-square test, X2-value: 15.56, d. f.: 10, p-value: 0.1130), no weighting
was applied to the number of seedlings for each family in each site. Then, to compare the disease
development process among families within sites, Kaplan–Meier estimators were calculated and the
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log-rank test with Bonferroni-adjusted p values was also applied. For the survival analysis, the functions
survfit and survdiff in the survival package [32] were used.

Pairwise Spearman’s correlation coefficients among sites were calculated to compare the order of
resistance level among the six families.

To compare the relative effects of the site, family and their interaction on the variance of sound
seedling rate, variance components of the factors were estimated using generalized linear mixed
models with the glmer function of the lme4 package, with family assumed as a binomial error structure
and logit link function [29]. Number of diseased seedlings (symptom class 1 and 2) and number of
sound seedlings (symptom class 0) in a family in each replicate in a site was used as the response
variable, and site, family, their interaction and replicate within each site were used as explanatory
variables with random effects. Mean seedling height was added to the model as an explanatory variable
with fixed effects. This analysis was applied to the data for 5, 6, 7, 9 and 10 WAI only, because no data
was collected weeks 4 and 8 in TBO and there were few diseased seedlings before 3 WAI in FTBC.

Survival analysis, calculation of Spearman’s correlation coefficient and variance component
analysis were also conducted on survival rate.

3. Results

3.1. Seedling Height

Overall, mean seedling height was 26.4 cm across the three sites. Mean height across the six
families at sites TBO, FTBC and KYBO were 29.4, 28.3, and 22.7 cm, respectively (Table 1). A model
including the interaction between site and family was selected as the best model for seedling height
(Table S1). After separating the data according to site, the model selected for each site included the
family component. Multiple comparisons showed that seedling height significantly varied among
families in all sites (Table 1). The height of T54 × O12 was always significantly lower than that of the
other families. M105 × A1 was the tallest family in TBO, but was the fourth tallest family in FTBC
and KYBO.

3.2. Sound Seedling Rate

The Kaplan–Meier estimators for sound seedling rates showed that the disease developmental
process varied among the three sites (Figure 3). Diseased seedlings were first observed at 2 WAI at TBO
and KYBO, and one week later at FTBC. The sound seedling rate sharply decreased until 6, 5 and 4 WAI
in TBO, FTBC and KYBO, respectively, and then decreased more gradually. Total sound seedling rate
at 10 WAI across the three sites was 0.27 ± 0.45 (mean ± SD) and 0.24 ± 0.43, 0.50 ± 0.50, and 0.07 ± 0.25
in TBO, FTBC, and KYBO, respectively. Pairwise log-rank tests showed that the survival curves of the
three sites significantly differed from each other (X2: 97.7, d.f.: 1, p: <0.001 for TBO vs. FTBC; X2: 60.9,
d.f.: 1, p: <0.001 for TBO vs. KYBO; X2: 399, d.f.: 1, p: <0.001 for FTBC vs. KYBO).
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The Kaplan–Meier estimators showed that the disease developmental process varied among families
in all sites (Figure 4). Diseased seedlings were observed at 2 WAI in three (T54 × O12, K24 × K29,
and M105 × A1) of the six families at TBO and in four (Y2 × T63, T54 ×O12, K24 × K29, and M105 × A1)
of the six families at KYBO (Table S2). At FTBC, disease development in inoculated seedlings appeared
at 3 WAI in two families (T54 × O12 and K24 × K29). Pairwise log-rank tests showed that families
derived from high- and intermediate-resistance parental clones had a significantly lower risk of disease
development than the families derived from low-resistance and plus-tree parental clones (Figure 4).
The curves of the disease development process were more clearly divergent among families in FTBC and
TBO than in KYBO.
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Spearman correlation coefficients for sound rate were higher than 0.698 at three or more WAI in
each pair of sites (Table 2). At 2 WAI, when disease development was in the initial phase, the coefficient
was relatively low: 0.400 between TBO and KYBO.

Table 2. Spearman’s correlation coefficient for sound seedling rate of Pinus thunbergii inoculated with
Bursaphelenchus xylophilus.

Week
Spearman’s Correlation Coefficient (p-Value)

TBO vs. FTBC TBO vs. KYBO FTBC vs. KYBO

2 0.400 (0.419)
3 0.789 (0.058) 0.754 (0.103) 0.845 (0.033)
4 0.759 (0.058)
5 0.943 (0.003) 0.759 (0.058) 0.698 (0.136)
6 0.928 (0.017) 0.770 (0.058) 0.698 (0.136)
7 0.812 (0.058) 0.893 (0.017) 0.698 (0.136)
8 0.698 (0.136)
9 0.754 (0.103) 0.955 (0.003) 0.698 (0.136)
10 0.812 (0.058) 0.893 (0.017) 0.698 (0.136)

Correlation coefficients were calculated for data after the occurrence of disease development in seedlings.

For the variance components from 5–10 WAI, the family component consistently occupied the
largest proportion (Figure 5, Table S3). The proportion of the variance component of the interaction
between site and family was consistently small compared to that of both site and family separately.
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Variance component proportions of replication within site were consistently very small (less than 1%
in all examined weeks).
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Figure 5. Proportion of variance components of site, family, their interaction, and replication within site
for sound seedling rate of Pinus thunbergii after inoculation with Bursaphelenchus xylophilus. Variance
component analysis was not conducted for 8 weeks after inoculation due to missing data in TBO.

Survival rate data was similar to that of the sound seedlings rate. All survival rate results are shown
in supplemental figures and tables (survival analysis among sites: Figure S1, survival analysis among
families: Figure S2 and Table S3, Correlation: Table S4, and variance component analysis: Figure S3 and
Table S5).

4. Discussion

In this study, we inoculated six P. thunbergii families with variable resistance to PWD with
a B. xylophilus isolate in nurseries at three different sites in the northern and southern regions of
the Japanese archipelago. Consequently, families with higher sound seedling rate in the KYBO site
exhibited higher sound seedling rate in the TBO and FTBC sites. Spearman correlation coefficients
for family sound seedling rate among sites were relatively high and positive. Moreover, variance
component analyses revealed only a small contribution of the interaction between site and family
to total variance in sound seedling rate. These results show that the P. thunbergii seedlings obtained
from the selected resistant clones with high resistance level in southern Japan may retain their high
resistance in northern Japan.

Previous studies have described the G× E interaction of resistance or susceptibility of pine seedlings
to B. xylophilus. A six-year inoculation experiment using the 16 half-sib families of resistant P. thunbergii
clones showed that the variance component of the interaction between year and family was less than
one half of the family variance component [16]. G × E interactions in the susceptibility to B. xylophilus
was reported in P. pinaster, based on greenhouse inoculation tests using seedlings derived from six
provenances [18]. Although the magnitude of the effect of the interaction was not clearly described in
the paper, seedlings from a particular provenance may exhibit some degree of interaction. The results of
the previous studies and the present study suggest that the effect of the G × E interaction of resistance to
B. xylophilus could be small in the half-sib or full-sib families of pine seedlings, although certain genetic
groups may be more sensitive to the ambient environment.

In this study, the sound seedling rate was highest in FTBC, followed by TBO and KYBO. TBO is
located northward of FTBC, with a cooler climate (specifically, climatological standard normal of the
average monthly temperature in July is 21.8 ◦C for TBO and 22.8 ◦C for FTBC). Since low temperature
suppresses the progress of PWD development [33,34], we expected that the sound seedling rate of
TBO would be the highest, but based on the inoculation test results of TBO this was not the case.
Close examination of the meteorological data in the experimental year, 2014, revealed that the average
temperature in July was 23.5 ◦C in both TBO and FTBC, and the average temperature during the week
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after inoculation was 22.8 ◦C in TBO and 21.6 ◦C in FTBC. The low sound seedling rate in TBO may
have been affected by the slightly higher temperature just after inoculation.

By March 2020, 54 first-generation and 40 second-generation PWD-resistant P. thunbergii clones had
been selected in southwestern Japan. If progeny of the resistant clones selected in the southern region were
to be planted in the northern region, the following factors should be considered: growth, snow-resistance,
reproductive traits of clones, administrative seed transfer zones [35] and genetic structure of P. thunbergii
throughout Japan [36]. However, the present study focused on the most important factor, which is the
resistance to pinewood nematode. Using the most- and least-resistant seedlings available from southern
P. thunbergii clones, we showed that the possibility of southern high-resistance clones could be used in the
eastern and northern regions of Japan. Introduction of the southern resistant clones into the production
population in eastern and northern regions could enable the promotion of resistance breeding programs
in those regions. Conversely, the possibility of utilizing northern resistant clones in the southern region
should also be considered.

5. Conclusions

Inoculation tests for six P. thunbergii families with different resistance levels were carried out using
an isolate of B. xylophilus at three sites with different climates. We indicated that the resistant rank of the
families was relatively stable regardless of different climates among three sites. The results obtained in
this study suggest that the resistant P. thunbergii clones selected in the southern region of Japan may
relatively perform their high genetic resistance well in the northern region of Japan.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/9/955/s1,
Figure S1: Kaplan–Meier estimator for survival rate of seedlings of six P. thunbergii full-sib families inoculated with
B. xylophilus in three experimental sites, Figure S2: Kaplan–Meier estimator for survival rate of six P. thunbergii
full-sib families inoculated with B. xylophilus in each of three experimental site, Figure S3:Propertion of variance
components of site, family, their interaction and replication within site for survival rate of P. thunbergii after
inoculation of B. xylophilus, Table S1a: Model selection table for mean height of P. thunbergii seedlings, Table S2:
Time trend in mean sound seedling rate and survival rate of seedlings of six P. thunbergii families inoculated with
B. xylophilus in three experimental sites, Table S3: Estimated variance components for sound seedling rate of
P. thunbergii after inoculation of B. xylophilus, Table S4: Spearman’s correlation coefficients for survival rate of
P. thunbergii seedlings inoculated with B. xylophilus, Table S5: Estimated variance components for survival rate of
P. thunbergii seedlings inoculated with B. xylophilus.
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