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Abstract: Based on a generated database of 413 sample plots, with definitions of stand biomass of
the genus Populus spp. in Eurasia, from France to Japan and southern China, statistically significant
changes in the structure of forest stand biomass were found, with shifts in winter temperatures and
average annual precipitation. When analyzing the reaction of the structure of the biomass of the
genus Populus to temperature and precipitation in their transcontinental gradients, a clearly expressed
positive relationship of all components of the biomass with the temperature in January is visible.
Their relationship with precipitation is less clear; in warm climate zones, when precipitation increases,
the biomass of all wood components decreases intensively, and in cold climate zones, this decrease is
less pronounced. The foliage biomass does not increase when precipitation decreases, as is typical
for wood components, but decreases. This can be explained by the specifics of the functioning of
the assimilation apparatus, namely its transpiration activity when warming, and the corresponding
increase in transpiration, which requires an increase in the influx of assimilates into the foliage, and
the desiccation of the climate that reduces this influx of assimilates. Comparison of the obtained
patterns with previously published results for other species from Eurasia showed partial or complete
discrepancies, the causes of which require special physiological studies. The results obtained can be
useful in the management of biosphere functions of forests, which is important in the implementation
of climate stabilization measures, as well as in the validation of the results of simulation experiments
to assess the carbon-deposition capacity of forests.

Keywords: genus Populus spp.; regression models; stand biomass; biomass structure; climate change;
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1. Introduction

Active human economic activity has led to significant global changes in the functioning of the
biosphere, and the observed climate warming has had a significant impact on the vegetation cover
of the planet [1,2]. If earlier, the problems of assessing climate impacts on vegetation had a regional
character [3], then in recent decades it has become clear that the problem has reached a global, general
planetary level, and largely determines the future fate of human civilization [4,5]. Mapping the
distribution of net primary production (NPP) over the surface of the planet, by extrapolating empirical
NPP data obtained from forest sample plots to large areas of biomes [6,7] or to latitude gradients [8,9]
does not allow for making any predictions of changes in the climate-NPP system. The same can be
said about the common planetary patterns of distribution of NPP harvest data by gradients of average
temperatures and precipitation [10].

Due to current climate changes, priority is given to changing the biomass and NPP of forest
ecosystems under the influence of average temperatures and precipitation. Similar studies are
performed at both a regional [11–13] and transcontinental [14,15] levels. Their implementation,
especially in the latter case, is one of the problems that constitute the subject of biogeography [16].
The forest, as we know, is a geographical phenomenon [17], and in view of the topic indicated in the
title of this work, it is important for us to identify the geographical aspects of the biomass of forest
ecosystems, i.e., to make a choice in favor of those geographical characteristics that determine the
distribution of forest biomass on the territory of a particular continent.

However, the biomass of a stand represented by a particular tree species is primarily determined
by its age and morphological (taxation) structure, i.e., a set of characteristics such as age, mean
height, mean diameter at breast height, the basal area, and the volume stock, which are interrelated.
The problem of multicollinearity arises in empirical modeling of biomass. One of the solutions to the
problem is to harmonize the system by constructing recursive (recurrent, related) equations, in which
the dependent variable of the previous equation is included as one of the independent variables of
the subsequent one [18]. This approach provides a multivariate conditionality of factors that provide
flexibility and universality of the regression system describing the dynamics of biomass of stands.

To account for the geographical effect in this recursive system, each equation of the system
must be supplemented with corresponding regressors. One possible option is to introduce dummy
variables [18] that encode the regional affiliation of the harvest data [11,18,19] as one of the methods
for model harmonization [20]. The disadvantage of such equations is that they only take into account
the geographical shifts of the desired variables by the value of the interception term. It is assumed
that the regression coefficients in such cases are unchanged by region, which is not true. The second
option is to include indices of natural zoning and continentality of climate in the equations of the
system [21], using the basis that changes in vegetation cover occur both in the latitudinal direction
due to changes in the PhAR [22], and in the meridional direction due to changes in the continentality
of climate [23]. Therefore, models of the phytomass of trees and plantings have been developed,
including their mass-forming indices as independent variables, as well as indices of natural zoning
and climate continentality [21]. However, such models do not provide an answer to the question of
in which direction the biomass structure of a particular tree species may change with the expected
change in air temperature or annual precipitation. The use of evapotranspiration as a combined index
in the assessment of tree production is futile, since it explains only 24% of its variability compared
to 42%, which provides the relation to mean annual precipitation, and compared to 31%, which
provides the relation to mean annual temperature [24]. It is assumed that orography, soil water balance,
PhAR, and climate continentality are indirectly reflected in the territorial features of temperatures
and precipitation.
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Studies of forest stand biomass at the transcontinental level, performed for five species from
Eurasia, showed that changes in their biomass due to temperatures and precipitation are species-specific,
i.e., they differ between species in the total biomass [25]. If we adhere to the concept of species-specific
responses of forest biomass to changes in the main climatic characteristics, then when we reach
the transcontinental level, we are faced with the obvious fact that no species grows throughout the
continent, precisely because of regional climate differences. Moving from refuges under the influence
of geological processes and climate changes, a particular species adapted to changing environmental
conditions, forming a series of vicariate species within the genus [26,27]. This gives grounds for
analyzing the response of tree species to changes in climate characteristics, to combine them into
one climate-dependent set within the entire genus, since differences in ecological and physiological
properties of different species of the genus, for example, Populus tremula vs. P. trichocarpa vs. P. pruinosa
are derived from regional climatic features.

Eurasia is the largest continental area on Earth, located primarily in the Northern and Eastern
Hemispheres, it is bordered by the Atlantic Ocean to the west, the Pacific Ocean to the east, the Arctic
Ocean to the north, and by Africa, the Mediterranean Sea, and the Indian Ocean to the south. Eurasia
covers around 55,000,000 square kilometers (21,000,000 sq mi), or around 36.2% of the Earth’s total land
area. The landmass contains well over 5 billion people, equating to approximately 70% of the human
population. The unique size and complexity of the natural conditions differentiate Eurasia from the rest
of continents. No continent has such an original history of paleogeographic development. Structural
differences are reflected in the features of the morphological structure. In the territory of Eurasia
there are the highest mountain systems, vast highlands, plateaus, and plains. Climatic and landscape
conditions are no less diverse. Here you can trace all the geographical zones that are characteristic of
the land of the globe from the icy deserts in the North to the humid equatorial forests in the South [28].

In our work, we made the first attempt to study transcontinental trends in the structure of biomass
of the genus Populus spp., formed under the influence of geographically distributed temperatures
and precipitation in the territory of Eurasia. Across the Northern Hemisphere, this genus plays a
disproportionately important role in promoting biodiversity and sequestering carbon. It is illustrative
of efforts to move beyond single-species conservation worldwide. The genus Populus is valued for many
reasons, but one highlights their potential as key contributors to regional and global biodiversity [29].
A tremendous need for paper, cardboard, and board materials open almost unlimited opportunities
for the economic use of this genus’ wood. By density and cellulose content, poplar wood does not
come up short compared to the coniferous species. Despite the slightly shorter wood fiber of poplar in
comparison to spruce, modern technologies make the first class production of paper, cardboard, and
wood board materials out of this “disgraced” species possible. Today, however, the genus Populus is
an example of a particularly evident disparity, between the potential organic matter production in
plantations, and its actual implementation in the boreal natural forests [30].

2. Objects of Research

To analyze geographical patterns of biomass distribution in Eurasian forests formed by stands of
the genus Populus spp., from the author’s database of eight thousand sample plots [31], the materials
of 413 determinations with the data of the biomass structure were used. These biomass data were
presented in different components (stems, branches, foliage, and roots). The distribution of sample
plots with biomass data of the genus Populus spp. on the map-scheme of Eurasia is shown in Figure 1,
and according to tree species and countries, in Table 1.
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Figure 1. Allocation of sample plots with biomass (t/ha) determinations of 413 Populus forest stands in
the territory of Eurasia.

Table 1. Distribution of plots with determinations of Populus biomass (t/ha) by species and countries.

Species Botanical Name Country Plot Quantity

Quaking aspen Populus tremula L. Russia, Ukraine, Kazakhstan,
Estonia, Belarus 188

David′s aspen P. davidiana Dode China, Japan 129

Californian poplar P. trichocarpa Torr. &
A.Gray ex Hook.

France, Austria, Belgium,
Netherlands 37

Poplar larrity P. laurifolia Ledeb. Russia 12

White poplar P. alba Ledeb. Russia, Kazakhstan 10

Poplar «Robusta» Populus × euroamericana Ukraine 10

Asiatic poplar P. euphratica Olivier China 9

Hybrid Populus hybrid Japan 8

Poplar berry-bearing P. deltoids W. Bartram ex
Humphry Marshall China 6

Black poplar P. nigra L. Russia 2

Bahala poplar Populus × bachelieri
Solemacher Bulgaria 1

Ploomy poplar P. pruinosa Schrenk Tajikistan 1

Total 413

3. Methods

As the plots for estimating biomass of forest stands were usually established in typical ′background′

habitats, which were representative in relation to this type of plant communities, one can make on their
basis a preliminary geographical analysis of biomass gradients of Populus forests. For an analytical
description of the geographic distribution patterns of the biomass productivity of forest cover, one must
choose the geographical characteristics of the territory of Eurasia that can be expressed by quantity
and measure.
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The actual values of the biomass of 413 stands of the genus Populus (see Figure 1), based on the
known coordinates of the sample plots established, we superimposed on the maps of winter (January)
temperatures and average annual precipitation distribution [32], and related them to the isolines of
the mentioned indices on the maps. In our case, the schematic map of the isolines of mean January
temperature, rather than that of the mean annual temperature, was used. With an inter-annual time
step, the predominant influence of summer temperature is quite normal [33]. However, against the
background of long-term climatic shifts for decades, the prevailing influence is acquired by winter
temperatures [34,35]. For example, Toromani and Bojaxhi [36] write: “Earlier studies has shown that
phytosynthesis is possible for Abies alba in winter, where high temperatures could play an important
role in improving carbohydrate storage and growth at following year. For species grown under a
Mediterranen climate high temperatures and low precipitation during growing season may cause
water stress, which is the main limiting factor for tree growth”.

We should keep in mind that winter temperatures in the Northern Hemisphere have increased
faster than summer ones during the 20th century [37–39]. In terms of regression analysis, a weak
temporal trend of summer temperatures compared to a steep trend of winter ones, means a smaller
regression slope and a worse ratio of residual variance to the total variance explained by this regression.
Obviously, taking the mean winter temperature as one of the independent variables, we get a more
reliable dependence having the higher predictive ability.

Then, the compiled matrix of harvest data (Table 2) were subjected to the common
regression analysis.

Table 2. A fragment of the original matrix of experimental data *.

A N V
Pi

Tm PRm
Ps Pb Pf Pa Pr Pt

40 0.790 208 89 5.5 2.40 98.0 21.6 119.6 −7 570
21 0.278 218 99.8 20.7 4.19 129.7 29.2 158.9 −3 570
12 12.54 62.5 34.8 4.45 1.91 41.2 15.0 56.2 −13 290
22 4.550 30 16.1 4.24 0.80 21.1 6.0 27.1 −13 290
49 0.650 284 113 22.5 3.07 138.6 57.0 195.6 −20 317
41 0.526 192 76.0 22.2 2.40 100.6 55.0 155.6 −18 250
78 0.518 200 88.83 28.37 4.99 127.7 38.79 166.5 −15 570
45 0.500 105 49.62 10.92 4.52 67.56 8.58 76.14 −26 570
78 0.666 185 103.1 45.44 8.75 163.9 37.8 201.7 −15 570
27 2.935 142 84.29 17.56 7.01 114.0 42.73 156.7 −9 820
68 1.244 223 102.4 22.44 7.43 138.5 51.47 190.0 −15 570
25 4.066 122 73.51 11.31 5.89 95.04 36.6 131.6 −15 570
40 1.062 224 99.81 32.82 7.69 146.6 45.47 192.1 −15 570
34 1.595 182 95.77 13.15 7.91 122.6 52.18 174.8 −10 444
50 1.510 163 75.11 22.44 6.21 108.4 34.26 142.7 −25 444
28 7.32 129 73.0 11.40 2.00 89.93 17.2 107.1 −15 570
37 2.913 153 86.65 18.56 6.27 116.7 41.79 158.5 −15 570
69 0.811 284 110.9 17.20 7.62 142.2 56.36 198.6 −26 444
58 1.188 124 61.47 16.79 3.66 85.63 27.24 112.9 −26 444
79 0.403 163 68.75 18.91 3.66 95.43 29.6 125.0 −26 444
38 4.255 121 73.56 11.79 6.19 95.95 38.21 134.2 −15 570
68 1.822 234 117.3 30.29 7.23 162.0 54.8 216.8 −26 444
29 2.000 61 34.42 16.31 2.77 55.88 16.57 72.45 −5 826
39 2.774 62 37.92 8.72 3.00 58.27 9.41 67.68 −5 826

* A = stand age, y; V = stem volume, m3/ha; N = tree density, 1000/ha; i = index of biomass component: total wood
storey (t), aboveground wood storey (a), underground wood storey, or roots (r), stem over the bark (s), foliage (f ),
and branches (b); PRm = mean annual precipitation, mm; Tm = mean January temperature, ◦C.
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The basic principles of modelling and the results obtained by means of regression analysis should
have an ecologic-geographical interpretation. The biological productivity of forests is dependent on
climatic factors, but only as a first approximation, since there are ontogenetic, cenotic, edaphic, and
other levels of its variability. Therefore, we included in the regression equations the independent
variables explaining the variability of the dependent variable, expressing not only with climatic
parameters but also with forest age, tree density, and stem volume.

As the mean January temperature in the northern part of Eurasia has negative values, the
corresponding independent variable was modified to the form (Tm + 50). Then, the technique of
multiple regression analysis (http://www.statgraphics.com/for more information), according to three
blocks of recursive equations, was used: two blocks of mass-forming indices, N and V, and a single
block of biomass Pi (arrows show the sequence of calculations)

lnN = a0 + a1(lnA) +a2[ln (Tm + 50)] + a3(lnPRm); (1)

lnV = a0 + a1(lnA) + a2(lnN) + a3 [ln (Tm + 50)] + a4(lnPRm); (2)

lnPi = a0 + a1(lnA) + a2(lnV) + a3(lnN) + a4[ln(Tm + 50)] + a5(lnPRm) (3)

4. Results and Discussion

The results of the calculation of Equations (1)–(3) are listed in the Table 3. Only the variables that
are significant at the level of probability of P95 and above are showed in this table. The equations
were tabulated in the sequence illustrated by the arrows. The results of tabulating the models in the
sequence of Equations (1)–(3) present the rather cumbersome table. We took from it the values of the
component composition of the biomass of the Populus forests of the age of 50 years and built 3D-graphs
of their dependence upon temperature and precipitation (Figure 2).

Table 3. Characteristics of biomass Equations (1) to (3).

Dependent
Variables

Coefficients and Independent Variables
adjR2 ** SE ***

a0 * a1(lnA) a2(lnV) a3(lnN) a5[ln(Tm + 50)] a6(lnPRm)

ln(N) 10.7307 −1.2994 - - −2.4045 0.4747 0.623 0.74
ln(V) 5.9573 0.3617 - −0.2589 0.5288 −0.6169 0.534 0.47
ln(Ps) −1.8923 0.2068 0.9123 0.0646 0.0764 0.0811 0.963 0.17
ln(Pb) −2.8796 0.2421 0.5520 −0.0537 0.3792 0.0678 0.675 0.44
ln(Pf) −4.0545 0.0070 0.4127 0.1332 −0.0589 0.5272 0.522 0.38
ln(Pr) −3.5174 0.0497 0.7113 0.0563 0.2306 0.3533 0.720 0.35
ln(Pa) −1.2511 0.1782 0.8183 0.0463 0.0984 0.0960 0.955 0.17
ln(Pt) −1.1022 0.0477 0.7969 0.0486 0.1467 0.1849 0.918 0.18

* The constant corrected for logarithmic retransformation by [40]; ** adjR2 = determination coefficient adjusted for
the number of variables; *** SE = standard error of the equations.

When analyzing the reaction of the biomass structure of the genus Populus to temperature and
precipitation in their transcontinental gradients, a clearly expressed unambiguous positive relationship
of all components of the biomass with the average temperature of January is seen. Their relationship
with precipitation is less clear; in warm climate zones (Tm = 0 ◦C), when precipitation increases the
biomass of all wood components decreases most intensively, and in cold climate zones (Tm = −40 ◦C)
this decrease is expressed to a much lesser extent.

http://www.statgraphics.com/for
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Figure 2. Dependence of Populus ecosystems of Eurasia upon the mean January temperature (Tm) and
mean annual precipitation (PRm). Abbreviations: Pt, Pa, Ps, Pr, Pf, Pb are, respectively, biomass of:
total wood storey, aboveground, stems (wood and bark), roots, foliage, and branches, t/ha.

It is interesting to compare the obtained patterns of changes in the total biomass of the genus
Populus with previously published results for other forest-forming species of Eurasia, obtained using a
similar methodology [25]. The increase in the total biomass of Populus during the transition from cold
to warm regions was confirmed earlier for Larix spp., Picea spp., Abies spp., and Betula spp. However,
the decrease in the total biomass as precipitation increases was confirmed only in larch, whereas in
spruce, fir, and birch, the dependence is the opposite of that established for Populus. The specific pattern
of the change in the total biomass was obtained for two-needled pines Pinus L.; its increase during the
transition from cold to warm regions was recorded only in regions with heavy precipitation, and with
the transition to water-deficit regions, the pattern changes to the opposite. If, in Populus and Larix,
the decrease in total biomass with the transition from water-deficient to moisture-rich regions was
observed in all thermal zones, then in two-needled pines (only in cold zones, and with the transition
from cold to warm climatic zones) this negative trend changes to the opposite.

We can see that the reaction of foliage biomass with increasing precipitation does not decrease,
as is typical for wood components, but increases (Figure 2). This is consistent with a similar situation
observed in Russian Siberia with respect to forest cover [41], where with a warming climate and a
simultaneous decrease in precipitation, the share of assimilation mass decreases, and the share of wood
components increases. This is explained by the specifics of foliage functioning, namely, its transpiration
activity when warming, and a corresponding increase in transpiration requires an increase in the influx
of assimilates into the foliage, while the desiccation of the climate reduces this influx of assimilates due
to a decrease in transpiration activity. Perhaps this phenomenon demonstrates the future scenario
of acclimatization of trees to the ongoing warming and changes in the water balance of territories.
However, in Canada’s forests, a contradictory result was obtained. If the January temperature and
humidity conditions of the growing season had a positive effect on the growth of Betula papyrifera
Marsh. and the growth of Picea mariana Mill., then Populus tremuloides Michx. might be the least
responsive species [42].

The patterns of biomass-amount change, under assumed changed climatic conditions (Figure 2),
are hypothetical. They reflect long-term adaptive responses of forest stands to regional climatic
conditions and do not take into account rapid trends of current environmental changes, which place
serious constraints on the ability of forests to adapt to new climatic conditions [43–49]. Climate changes
are manifested primarily in shifts in the phenology of a particular species, and are determined by the
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degree of species-specific phenotypic plasticity [50], which were not taken into account in our work,
and require special study.

The law of limiting factors [51] works well in stationary conditions. With a rapid change in limiting
factors (such as air temperature or precipitation), forest ecosystems are in a transitional (non-stationary)
state, in which some factors that were not significant may come to the fore, and the end result may be
determined by other limiting factors [52].

The main pool of biomass harvest data in Eurasia was obtained during the 1970s–1990s, and the
climate maps used, cover the period of the late 1990s–early 2000s. Some discrepancy between the two
time periods may cause some biases in the results obtained, but for such a small time difference in the
used data, the inclusion of compensatory mechanisms or phenological shifts in forest communities is
unlikely [47,48].

5. Conclusions

Based on a database of 413 sample plots, with definitions of forest biomass of the genus Populus
spp. in Eurasia, in the territory from France to the South of China and Japan, a statistically significant
increase in stem, aboveground, and underground biomass was found with an increase in winter
temperatures and a decrease in precipitation, especially in warm climate regions. In contrast to the
woody components of biomass, the mass of foliage, while increasing with warming, simultaneously
decreases with a decrease in precipitation, which is due to the specifics of the functioning of foliage,
namely, its transpiration activity.

Comparison of the results obtained for Populus showed that the regularities of Populus are repeated
only in Larix, and in other species, only partially. In our work, we can only state the species-specificity
of the reaction of various Eurasian species to changes in temperature and precipitation, but explaining
this specificity at the level of physiological processes is the task of the future.

The results obtained can be useful in the management of biosphere functions of forests, which is
important in the implementation of climate stabilization measures, as well as in the validation of the
results of simulation experiments to assess the carbon-deposition capacity of forests. They also provide
a preliminary idea of possible shifts in forest biological productivity indicators under the influence of
climate change.
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Radom, Poland, 2019.

31. Usoltsev, V.A. Forest Biomass and Primary Production Database for Eurasia: Digital Version, 3rd ed.; Ural State
Forest Engineering University: Yekaterinburg, Russia, 2020. [CrossRef]

32. World Weather Maps. 2007. Available online: https://www.mapsofworld.com/referrals/weather/ (accessed on
15 June 2007).

33. Zubairov, B.; Heußner, K.-U.; Schröder, H. Searching for the best correlation between climate and tree rings
in the Trans-Ili Alatau, Kazakhstan. Dendrobiology 2018, 79, 119–130. [CrossRef]

34. Morley, J.W.; Batt, R.D.; Pinsky, M.L. Marine assemblages respond rapidly to winter climate variability.
Glob. Chang. Biol. 2016, 23, 2590–2601. [CrossRef] [PubMed]

35. Bijak, S. Tree-ring chronology of silver fir and ist dependence on climate of the Kaszubskie Lakeland
(Northern Poland). Geochronometria 2010, 35, 91–94. [CrossRef]

36. Toromani, E.; Bojaxhi, F. Growth response of silver fir and Bosnian pine from Kosovo. South-East Eur. For.
2010, 1, 20–28. [CrossRef]

37. Emanuel, W.R.; Shugart, H.H.; Stevenson, M.P. Climatic change and the broad-scale distribution of terrestrial
ecosystem complexes. Clim. Chang. 1985, 7, 29–43. [CrossRef]

38. Laing, J.; Binyamin, J. Climate change effect on winter temperature and precipitation of Yellowknife,
Northwest Territories, Canada from 1943 to 2011. Am. J. Clim. Chang. 2013, 2, 275–283. [CrossRef]

39. Felton, A.; Nilsson, U.; Sonesson, J.; Felton, A.M.; Roberge, J.-M.; Ranius, T.; Ahlström, M.; Bergh, J.;
Björkman, C.; Boberg, J.; et al. Replacing monocultures with mixed-species stands: Ecosystem service
implications of two production forest alternatives in Sweden. Ambio 2016, 45, 124–139. [CrossRef]

40. Baskerville, G.L. Use of logarithmic regression in the estimation of plant biomass. Can. J. For. Res. 1972, 2,
9–53. [CrossRef]

41. Lapenis, A.; Shvidenko, A.; Shepaschenko, D.; Nilsson, S.; Aiyyer, A.R. Acclimation of Russian forests to
recent changes in climate. Glob. Chang. Biol. 2005, 11, 2090–2102. [CrossRef]

42. Huang, J.; Tardif, J.C.; Bergeron, Y.; Denneler, B.; Berninger, F.; Girardin, M.P. Radial growth response of four
dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest.
Glob. Chang. Biol. 2010, 16, 711–731. [CrossRef]

43. Givnish, T.J. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fenn.
2002, 36, 703–743. [CrossRef]

44. Schaphoff, S.; Reyer, C.P.; Schepaschenko, D.; Gerten, D.; Shvidenko, A. Tamm Review: Observed and
projected climate change impacts on Russia’s forests and its carbon balance. For. Ecol. Manag. 2016, 361,
432–444. [CrossRef]

45. Spathelf, P.; Stanturf, J.; Kleine, M.; Jandl, R.; Chiatante, D.; Bölte, A. Adaptive measures: integrating adaptive
forest management and forest landscape restoration. Ann. For. Sci. 2018, 75, 55. [CrossRef]

46. Vasseur, F.; Exposito-Alonso, M.; Ayala-Garay, O.J.; Wang, G.; Enquist, B.J.; Vile, D.; Violle, C.; Weigel, D.
Adaptive diversification of growth allometry in the plant Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA
2018, 115, 3416–3421. [CrossRef] [PubMed]

47. Anderegg, W.R.; Anderegg, L.D.L.; Kerr, K.L.; Trugman, A.T. Widespread drought-induced tree mortality at
dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Chang. Biol.
2019, 25, 3793–3802. [CrossRef] [PubMed]

48. DeLeo, V.L.; Menge, D.N.L.; Hanks, E.M.; Juenger, T.E.; Lasky, J.R. Effects of two centuries of global
environmental variation on phenology and physiology of Arabidopsis thaliana. Glob. Chang. Biol. 2019, 26,
523–538. [CrossRef]

49. Denney, D.A.; Anderson, J.T. Natural history collections document biological responses to climate change: A
commentary on DeLeo et al.(2019), Effects of two centuries of global environmental variation on phenology
and physiology of Arabidopsis thaliana. Glob. Chang. Biol. 2020, 26, 340–342. [CrossRef]

50. Bigot, S.; Buges, J.; Gilly, L.; Jacques, C.; Le Boulch, P.; Berger, M.; Delcros, P.; Domergue, J.-B.; Koehl, A.;
Ley-Ngardigal, B.; et al. Pivotal roles of environmental sensing and signaling mechanisms in plant responses
to climate change. Glob. Chang. Biol. 2018, 24, 5573–5589. [CrossRef]

http://dx.doi.org/10.1016/j.gecco.2019.e00828
http://dx.doi.org/10.13140/RG.2.2.29991.70568
https://www.mapsofworld.com/referrals/weather/
http://dx.doi.org/10.12657/denbio.079.011
http://dx.doi.org/10.1111/gcb.13578
http://www.ncbi.nlm.nih.gov/pubmed/27885755
http://dx.doi.org/10.2478/v10003-010-0001-9
http://dx.doi.org/10.15177/seefor.10-03
http://dx.doi.org/10.1007/BF00139439
http://dx.doi.org/10.4236/ajcc.2013.24027
http://dx.doi.org/10.1007/s13280-015-0749-2
http://dx.doi.org/10.1139/x72-009
http://dx.doi.org/10.1111/j.1365-2486.2005.001069.x
http://dx.doi.org/10.1111/j.1365-2486.2009.01990.x
http://dx.doi.org/10.14214/sf.535
http://dx.doi.org/10.1016/j.foreco.2015.11.043
http://dx.doi.org/10.1007/s13595-018-0736-4
http://dx.doi.org/10.1073/pnas.1709141115
http://www.ncbi.nlm.nih.gov/pubmed/29540570
http://dx.doi.org/10.1111/gcb.14771
http://www.ncbi.nlm.nih.gov/pubmed/31323157
http://dx.doi.org/10.1111/gcb.14880
http://dx.doi.org/10.1111/gcb.14922
http://dx.doi.org/10.1111/gcb.14433


Forests 2020, 11, 906 11 of 11

51. Shelford, V.E. Animal Communities in Temperate America: As Illustrated in the Chicago region: A Study in Animal
Ecology; University of Chicago Press: Chicago, IL, USA, 1913.

52. Odum, E.P. Fundamentals of Ecology; Saunders: Philadelphia, PA, USA, 1971.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Objects of Research 
	Methods 
	Results and Discussion 
	Conclusions 
	References

