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Abstract: The purpose of this work was to determine which structural variables present statistically
significant differences between degraded and conserved tropical dry forest through a statistical study
of forest survey data. The forest survey was carried out in a tropical dry forest in the watershed of the
River Ayuquila, Jalisco state, Mexico between May and June of 2019, when data were collected in 36
plots of 500 m2. The sample was designed to include tropical dry forests in two conditions: degraded
and conserved. In each plot, data collected included diameter at breast height, tree height, number of
trees, number of branches, canopy cover, basal area, and aboveground biomass. Using the Wilcoxon
signed-rank test, we show that there are significant differences in canopy cover, tree height, basal
area, and aboveground biomass between degraded and conserved tropical dry forest. Among these
structural variables, canopy cover and mean height separate conserved and degraded forests with
the highest accuracy (both at 80.7%). We also tested which variables best correlate with aboveground
biomass, with a view to determining how carbon loss in degraded forest can be quantified at a larger
scale using remote sensing. We found that canopy cover, tree height, and density of trees all show
good correlation with biomass and these variables could be used to estimate changes in biomass
stocks in degraded forests. The results of our analysis will help to increase the accuracy in estimating
aboveground biomass, contribute to the ongoing work on REDD+, and help to reduce the great
uncertainty in estimation of emissions from forest degradation.

Keywords: forest degradation; tropical dry forest; diameter at breast height; canopy cover; tree height;
basal area; number of trees

1. Introduction

Forest biomes provide important ecosystem services and habitat for many species [1] and sequester
carbon through photosynthesis [2]. Forest degradation affects forest structure, function, ecosystem
processes, and the capacity for carbon sequestration, generally also diminishing the provision of most
ecosystem goods and services [3–5]. Unlike deforestation, there is no internationally accepted definition
of forest degradation. Here, we adopt the definition from [6] that it is a human-induced disturbance in
a forested landscape that results in carbon emissions but not a change in land cover. Forest degradation
is usually a gradual process, which results in long-term damage while the forest remains in principle a
forest. Forest degradation is often associated with anthropogenic activities, such as selective felling
and cyclical use of forest, including shifting cultivation [7]. Cattle grazing causes forest degradation
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as a result of browsing on young tree shoots and trampling of soil. Fuelwood collection also causes
low-intensity yet noticeable changes in forest structure. In many cases, these two latter activities cause
small reductions of biomass below the forest canopy [6].

Tropical forests function as habitats for more than 45,000 tree species and store up to 66% of
terrestrial biomass globally [8,9]. Nevertheless, tropical forests are under great pressure of deforestation
and degradation, with more than 2000 km2 per year lost between 2000 and 2012 [10]. Although tropical
forest loss is said to contribute 8%–15% of annual global anthropogenic carbon emissions to the
atmosphere [11], neither the amount nor the locations of these contributions by forest degradation
are clear. This uncertainty is due to factors related to lack of agreement in the definition of forest
degradation and to the difficulties in monitoring forest degradation over extended areas [3,12].
There are more than 50 definitions for forest and forest degradation [13], and lack of clarity on
ecological, anthropogenic, and conceptual aspects of forest degradation makes it difficult to select one
that is universally applicable [14]. However, even if definitional issues are resolved, the mapping,
monitoring, and quantification of forest degradation by remote sensing raise considerable challenges.
Compared to deforestation, measuring, and monitoring of forest degradation requires much higher
spatial resolution imagery to identify the more subtle changes typical of degradation activities [15].
Degraded forest forms a complex landscape often with mixed land cover, vegetation of different types
and ages, dead trees, and bare soil patches, and because of the fast regrowth, the signature of the
degradation often disappears within 1–2 years [3]; a typical case of this is the degradation caused by
selective logging [16–18]. Moreover, while emissions from deforestation are usually calculated using an
area estimate from remote sensing multiplied by an emission factor representing the average amount
of carbon per hectare in each forest type, in the case of degradation, there is a need not only to estimate
degraded areas but also to quantify the amount of carbon lost in any given forest in a particular year,
which can vary enormously.

One method that has often been used to quantify forest degradation using remote sensing is by
defining degradation as the gross change from primary forest to secondary forest, applying emission
factors for “typical” secondary forest. This method is, however, flawed, because the classification of
primary and secondary forest using remote sensing involves high uncertainties [19] and the error in
the classified images will propagate into the results of change, making the quantification of forest
degradation even more uncertain [20]. In addition, as mentioned already, the amounts of carbon
lost in the conversion from primary forest to secondary forest are not in any way fixed or uniform.
In order to obtain more accurate estimates of rates of degradation in the context of international policies,
such as Reduced Emissions from Deforestation and forest Degradation (REDD+), a mixed method,
involving both remote sensing and detailed ground-level forest surveys, will be necessary [21].

After disturbance, forests change their structural and compositional characteristics. A first step in
developing mixed methods is therefore to establish to what extent degraded forest can be distinguished
from conserved forest using ground level data. The purpose of this work was to determine which
structural variables present statistically significant differences between degraded and conserved tropical
dry forests. When this is clear, the capacity of remotely sensed data to pick up these variables can be
tested. This paper is a first step towards developing a methodology linking ground characteristics
with remote sensing, since it will tell us which characteristics are the most relevant at ground level to
distinguish between conserved and degraded forest and which can be used to estimate the changing
biomass levels within degraded forest, allowing estimation of emissions due to degradation.

Carbon emissions can most easily and accurately be calculated directly from changes in
aboveground biomass (AGB) from year to year, on the assumption that approximately 50% of
dry biomass consists of carbon [22]. AGB is defined as the mass of above ground living organic material
in a given area [22] and it is a variable that is derived from estimates of dimensions of trees, such as
basal area. Quantification of basal area, however, requires physical measurement of tree diameters
(i.e., diameter at breast height) in the field, and changes in the basal area over time would require
repeated surveys, which would be prohibitively expensive to carry out in most situations because it is



Forests 2020, 11, 1020 3 of 13

highly labor intensive. Hence, the question arises of whether other variables, data on which could
be acquired with less effort, could be used as proxies. Canopy cover, for example, has been assessed
using medium- to high-resolution remote sensing platforms, such as Landsat [23,24], Sentinel-1 [25],
and Sentinel-2 [26]. High spatial resolution canopy height models could be derived using images,
such as GeoEye and Worldview-3 combined with a digital elevation model [27], and density of trees
could potentially be obtained from photos taken from drones [28,29]. If such variables correlate strongly
with AGB, then they could substitute for physical measurements of tree diameters in the calculation
of emissions.

2. Materials and Methods

2.1. Study Focus and Area: Degradation in Forests of the Watershed of the Ayuquila River

The study area is located in the western Pacific area of Mexico, in the watershed of the Ayuquila
River (Figure 1). Its topography ranges from 260 to 2500 m above mean seal level; the average
annual precipitation is 800–1200 mm and occurs mostly between June and October; the average
monthly temperature ranges from 18 to 22 ◦C [30]. Tropical dry forest (TDF) is distributed in the
lower topographic areas. It is composed of deciduous and semi-deciduous woodlands with low
biomass density, canopy height, and cover, and has low AGB compared to other areas of TDFs in the
Neotropics [31]. TDFs in Mexico are widespread and they suffer higher rates of forest loss compared to
the humid tropical forests due to higher population densities [32]. TDF in Ayuquila watershed is heavily
used for shifting cultivation, fuelwood extraction, cattle grazing, extraction of poles for constructing
fences, and for mushrooms and medicinal plants [33]. As in the rest of Mexico, most of the forests
in the Ayuquila watershed are under the authority of ejidos, which are communally managed rural
agrarian settlements [33]. The Mexican government created ejido in the 1930s as a type of community
landholding for small-scale subsistence-based agriculture [34,35]. Across Mexico, about 52% of all
land and 55% of all forestlands are in the hands of ejidos [36].Forests 2020, 11, x FOR PEER REVIEW 4 of 14 

 

 
Figure 1. Study area and sampling plot locations. The background image is a digital elevation model 
(DEM) obtained by Shuttle Radar Topography Mission (SRTM) presented in shaded relief. Areas in 
green correspond to tropical dry forest in the study area. The purple line indicates the boundary of 
the watershed of the Ayuquila River. The red triangles indicate sampled plots of degraded forest and 
the yellow dots conserved forest. 

2.2. Sampling Design 

For our analysis, we started with a recent land cover map (2018) to identify all patches in the study 
area that were covered by tropical dry forest at the time of our study. We then used Google Earth Pro, 
comparing images from 2016–2018 to identify patches of tropical dry forest where there had been visible 
changes in the texture between these dates. We randomly selected 30 points in areas where change had 
evidently occurred (i.e., where forest had clearly been degraded) and 30 in areas that had not changed 
(representing conserved forest). We then considered the accessibility of the sampling points following 
the criteria that the sampling points should not be further than 3000 m from principal roads and should 
have slopes of less than 30 degrees (for practical reasons). We also checked these 60 sample locations 
with the Junta Intermunicipal del Río Ayuquila (JIRA), a local environmental non-governmental 
organization (NGO), regarding security. As a result of these two filters, we excluded 5 of the plots 
identified in conserved forests and 12 of the plots in degraded forests, leaving 43 potential sampling 
sites, of which 25 were in conserved forest and 18 in degraded. In order to balance the sampling design, 
we eliminated at random 7 plots from the conserved forest group. 

2.3. Forest Survey Data Collection 

The field survey was carried out between May and June 2019, which is at the end of the dry season 
and the beginning of the rainy season. The field data were collected in 36 plots of 500 m2 each. As 
explained above, of the total 36 plots, 18 were in conserved and 18 in degraded forest.  

In each plot, data were collected on diameter at breast height (DBH), tree height, number of 
branches, canopy cover, and number of trees per plot, from which basal area, AGB, and density of trees 
per hectare were calculated. All trees with DBH greater than 2.5 cm were measured in a radius of 3 m 
from the center of the plot, and all individuals with DBH greater than 5 cm were measured up to a 
radius of 12.6 m (Figure 1). Canopy cover was measured as the percentage of a spherical densometer 
grid covered by forest canopy. In addition, the presence of anthropogenic activities, such as cattle and 

Figure 1. Study area and sampling plot locations. The background image is a digital elevation model
(DEM) obtained by Shuttle Radar Topography Mission (SRTM) presented in shaded relief. Areas in
green correspond to tropical dry forest in the study area. The purple line indicates the boundary of the
watershed of the Ayuquila River. The red triangles indicate sampled plots of degraded forest and the
yellow dots conserved forest.
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There are both permanent and shifting cultivation agriculture systems in the Ayuquila area.
Permanent agriculture, which is under rain-fed and irrigated farming systems, is distributed over the
lower elevations and flat areas, which have been completely cleared of TDF in the past 20–30 years [37],
while areas of shifting cultivation are distributed within existing TDF in a mosaic landscape,
which changes from year to year, as cultivated areas are left fallow and secondary forest regrows.
Shifting cultivation is the main driver of forest degradation in the TDF in this area, although cattle
grazing, fuelwood extraction, and extraction of poles for fences are contributory causes [38].

2.2. Sampling Design

For our analysis, we started with a recent land cover map (2018) to identify all patches in the
study area that were covered by tropical dry forest at the time of our study. We then used Google
Earth Pro, comparing images from 2016–2018 to identify patches of tropical dry forest where there
had been visible changes in the texture between these dates. We randomly selected 30 points in areas
where change had evidently occurred (i.e., where forest had clearly been degraded) and 30 in areas
that had not changed (representing conserved forest). We then considered the accessibility of the
sampling points following the criteria that the sampling points should not be further than 3000 m
from principal roads and should have slopes of less than 30 degrees (for practical reasons). We also
checked these 60 sample locations with the Junta Intermunicipal del Río Ayuquila (JIRA), a local
environmental non-governmental organization (NGO), regarding security. As a result of these two
filters, we excluded 5 of the plots identified in conserved forests and 12 of the plots in degraded forests,
leaving 43 potential sampling sites, of which 25 were in conserved forest and 18 in degraded. In order
to balance the sampling design, we eliminated at random 7 plots from the conserved forest group.

2.3. Forest Survey Data Collection

The field survey was carried out between May and June 2019, which is at the end of the dry
season and the beginning of the rainy season. The field data were collected in 36 plots of 500 m2 each.
As explained above, of the total 36 plots, 18 were in conserved and 18 in degraded forest.

In each plot, data were collected on diameter at breast height (DBH), tree height, number of
branches, canopy cover, and number of trees per plot, from which basal area, AGB, and density of
trees per hectare were calculated. All trees with DBH greater than 2.5 cm were measured in a radius of
3 m from the center of the plot, and all individuals with DBH greater than 5 cm were measured up to a
radius of 12.6 m (Figure 1). Canopy cover was measured as the percentage of a spherical densometer
grid covered by forest canopy. In addition, the presence of anthropogenic activities, such as cattle and
cattle feces, logged tree trunks, leaves, and seedlings, was noted, as this supported identification of
plots as being “degraded”.

2.4. AGB and Basal Area

AGB data was calculated using the allometric Equation (1) developed by Martínez-Yrizar et al. [39]:

log10 AGB = A + log10 BA. (1)

This equation is adjusted to tropical dry forests, where AGB is in kg/m2, A is the regression
constant—here, we adopt the value—0.5352—and BA is the basal area in cm2.

Basal area was calculated from the following formula (Equation (2)) using the diameter at breast
height (DBH):

BA = π
(DBH

2

)2
(2)
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2.5. Statistical Methods

The study assumes that variables that are found from ground level data to be statistically different
between degraded and conserved forest can potentially be modelled using spectral information.
The values of the structural variables in forests of conserved and degraded status were first analyzed
by computing statistics, such as the maximum, minimum, mean, and standard deviation. Since the
distributions of the forest structure variables were found to violate the assumption of normality [40],
we applied the Wilcoxon signed-rank test, the non-parametric version of a paired samples t-test,
to check which variables were significantly different between degraded and conserved forest. The null
hypothesis was that the mean value of the structural variables would be the same in degraded and
conserved forests.

Afterwards, we tested which structural variables discriminate well between the two types of forest.
We fitted six binomial logistic regressions in which each model included a single structural variable as
the independent variable and the forest condition (conserved vs. degraded) as the dependent variable.
Using these models, the threshold value was determined to separate degraded and conserved forest
with a 50% probability for each structural variable. We predicted forest types according to these logistic
regressions and computed the overall accuracy for each model as the proportion of correctly classified
plots over the total number of plots. The complete set of plots was used to fit the model as well as to
evaluate the accuracy.

Finally, we explored the correlation between the structural variables, first with forest types
combined and then separately. Special emphasis was placed on identifying attribute variables that
have a significant correlation with AGB. If these variables can be quantified with remote sensing
sensors, they could be used to assess AGB and estimate emissions from forest degradation.

All the statistical data analysis including Wilcoxon signed-rank test, logistic regression,
classification, and Kendall’s correlation, was carried out in R [41]. The data and the scripts can
be accessed from https://github.com/JonathanVSV/Conserved-vs-Degraded-Forest.

3. Results

3.1. How Well Can the Structural Variables Differentiate These Two States of Forest?

We first evaluated whether the values of forest structural variables differ between the two types of
forest (i.e., conserved and degraded). The structural parameters measured are summarized in Table 1.

Table 1. Summary of forest structural parameters in conserved and degraded forest plots.

Variable
Conserved Forest (n = 18) Degraded Forest (n = 18)

Max Min Mean SD Max Min Mean SD

Canopy cover (%) 100 83.88 96.2 3.94 100 16 70.72 24.59

Basal area (m2/ha) 21.47 4.95 11.97 4.35 19.87 2.69 7.39 4.24

Mean Height (m) 7.73 3.71 5.99 1.04 7.27 2.59 4.64 1.14

Aboveground biomass
(AGB) (Mg/ha) 62.46 14.4 34.82 12.66 57.8 7.82 21.48 12.31

Density of branches
(>2.5 cm) (№/ha) 2020 480 1346.67 431.09 2560 540 1502.22 563.72

Density of trees (№/ha) 1240 220 745.56 248.36 1420 220 726.67 396.99

Looking at the data in Table 1, it appears that the variable that is most commonly used in remote
sensing to distinguish degraded from conserved forest—canopy cover—is not necessarily a good
indicator, since although the mean value is undoubtedly lower in degraded forests, there is considerable
overlap at the top end, and the same is true for tree height. We note that because of the way TDF
regrows (particularly after shifting cultivation), forests classified as degraded tend to have more

https://github.com/JonathanVSV/Conserved-vs-Degraded-Forest
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individual trees with more branches than conserved forests, despite the fact that they have much lower
basal area and AGB. In other words, most of the degraded forests are in fact recovering, and have
larger numbers of thinner more branching trees than conserved forest, presumably because light
conditions following clearance support the production of large numbers of saplings. Since none of the
forest structural variables followed a normal distribution, we applied the non-parametric Wilcoxon
signed-rank test to determine if the differences in their mean values could be considered significant.
We found statistically significant differences between the mean values of four of the six variables:
canopy cover, basal area, height, and biomass. As for density of trees and branches, they are not
significantly different between degraded and conserved forests (Table 2).

Table 2. Results of Wilcoxon signed-rank test for forest variables (p-value < 0.05).

Wilcoxon Signed-Rank Test Difference between Conserved and
Degraded ForestsVariables W Value p-Value

Canopy cover (%) 292.5 3.85 × 10−5 Significant

Basal area (m2/ha) 262 1.12 × 10−3

Mean Height (m) 272.5 5.01 × 10−4

AGB (Mg/ha) 262 1.12 × 10−3

Density of branches (>2.5 cm) 139 0.476 Not significant

Density of trees 190 0.384

Figure 2 identifies the structural variables that significantly differ between the two forest conditions.
As can be seen, conserved forests show statistically higher values for canopy cover, tree height, and basal
area. Since AGB is directly calculated from basal area, this variable obviously also differs between
conserved and degraded forest. Importantly, we also note that although there can be overlap between
the maximum canopy cover (100%) of conserved and degraded forest (Table 1), in practice only a
limited number of plots (2 in 18 plots of conserved forests, and 5 in 18 plots of degraded forests)
present this overlap; the mean values are statistically different and the standard deviations sufficiently
small, in theory, for these two classes to be distinguished. As expected, the logistic regression models
showed a significant coefficient (β) for canopy cover (z = −2.41, p = 0.02), basal area (z = −2.60,
p = 0.01), mean height (z = −2.75, p = 0.01), and AGB (z = −2.60, p = 0.01) as explanatory variables to
classify the plots into degraded and conserved forests, while the models that used density of branches
(z = 0.93, p = 0.35) and density of trees did not (z = −0.18, p = 0.86). Using these models, we found the
threshold values to separate the degraded and conserved forests for the four variables as the following:
canopy cover: 90.9%; basal area: 9.45 m2/ha; height: 5.30 m; and AGB: 27.5 Mg/ha.

The overall accuracies obtained using these logistic regression models were canopy cover 80.56%,
basal area 72.22%, mean height 80.56, and AGB 72.22%. Basal area and AGB are not independent
variables, and thus, it is not surprising that they show the same accuracy when used to classify the
plots into degraded and conserved forest. It became evident that the two statuses of forests showed an
overlap in each of the quantified structural variables (Figure 2). Canopy cover and mean height appear
to be the most promising structural variables for classifying forests into degraded and conserved
conditions, partially because of the very low variance on these variables in conserved forests.
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3.2. Correlation between Variables of Forest Attributes

Inter-correlations at plot level were calculated for all the forest structural variables except basal
area, since basal area and biomass have a 100% correlation. The primary purpose of this analysis was
to see to what extent the variables that can be measured using remote sensing methods—particularly
canopy cover, density of trees, and tree height—might be used to predict variables, which, if measured
over time, would reflect changes in AGB, and which could then be used to estimate emissions due to
degradation. The Kendall tau correlation was applied, and the results are shown in Figure 3.

When all plots are taken together (Figure 3a), we see that AGB is correlated with canopy cover,
tree height, and density of trees, at a high level of statistical significance (τ = 0.39, τ = 0.39, and τ = 0.48,
respectively, at p < 0.001). AGB is also correlated with density of branches, although with a lower
significance coefficient (τ = 0.30, p < 0.01). Canopy cover is correlated with density of trees and tree
height, although there is no correlation between canopy cover and density of branches. Density of
trees and density of branches are also highly correlated (τ = 0.58, p < 0.001). For the case of conserved
forest (Figure 3b), AGB is only correlated with density of trees and density of branches (both at τ = 0.34,
p < 0.05). However, in degraded forest (Figure 3c) there is a very good correlation between AGB and
density of trees (τ = 0.7, p < 0.001). There is also good correlation between AGB and density of branches
(τ = 0.54, p < 0.05), canopy cover (τ = 0.4, p < 0.05), and tree height (τ = 0.44, p < 0.01). In addition,
there is good correlation between density of trees and canopy cover (τ = 0.47, p < 0.01) and between
density of trees and tree height (τ = 0.39, p < 0.05). Density of branches and tree height (τ = 0.34,
p < 0.05), density of branches and canopy cover (τ = 0.38, p < 0.05), and density of trees and density of
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branches (τ = 0.69, p < 0.001) are all significantly correlated in degraded forest. However, canopy cover
and tree height is not correlated.
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4. Discussion

In the context of programs such as REDD+, it is loss and gain of biomass that is the primary
variable of concern, since it is from this that the flux of carbon can be calculated. The analysis shows
that several forest attributes that are regularly recorded in forest surveys could be used to distinguish
degraded and conserved forests at ground level. These variables include mean canopy cover and mean
tree height, basal areas, and AGB. The analysis also shows that the density of trees and density of
branches do not significantly differ between these two states of forest. We observed that the variance
of all variables is much higher in the degraded plots than in the conserved plots, indicating greater
variability in the degraded forest. This is entirely to be expected, since these forests are in a state of
constant change following human disturbances. This finding strongly underlines the importance of
not using a standard default value for carbon stocks in degraded forest and the need for much more
careful assessment of changes in the level of carbon stocks in degraded forest over time.

Applying the threshold obtained by the logistic model to classify the plots into degraded and
conserved states, canopy cover and mean height are the variables that enable the highest accuracy
(-both at 80.56%). This makes canopy cover and mean height the most suitable indicators of forest
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status. Although mean canopy cover in theory discriminates reasonably well between conserved
and degraded forest, this variable has a wide standard deviation in degraded forest, with one plot of
degraded forest having 100% canopy cover, which means that it would be misclassified if only this
criterion were used, although the mean value of canopy cover of all plots of degraded forest was much
lower, and the standard deviations do not overlap (Figure 2). In the case of mean height, the two
types of forest can also be discriminated, with a small fraction of plots wrongly classified using the
threshold value. However, it is expected that if two or more variables were to be combined, the error
in the discrimination of conserved and degraded forest would be reduced, enabling a much more
definitive separation between conserved and degraded forest. Nevertheless, these results also suggest
that, based only on structural variables from field measurements, these two types of forest can only be
distinguished up to a certain degree.

In terms of the correlations between structural variables and AGB, we find that when both types of
forest are analyzed together, density of trees has the highest correlation with AGB (τ = 0.48, p < 0.001),
followed by canopy cover and canopy height (both at τ = 0.31, p < 0.01). In plots of only conserved
forest, AGB is only correlated with density of trees and density of branches. In plots of only degraded
forest, both density of trees (τ = 0.70, p < 0.001) and canopy cover (τ = 0.40, p < 0.05) appear to be
correlated with AGB. A possible limitation of our study, however, was that we made a distinction
between “conserved” and “degraded” forests. A more nuanced classification of forest into several
levels of degradation (i.e., highly degraded, moderately degraded, and lightly degraded) might have
produced better results in terms of variables to predict AGB.

Both canopy cover and canopy (tree) height are correlated with AGB both for forest in general
(both forest types analyzed together), and for degraded forest only, while for conserved forest, these two
attribute variables do not show significant correlation with AGB. Canopy cover is the most easily and
commonly measured variable when using optical remote sensing of medium to high spatial resolution
satellite imagery [42,43], also when using Light Detection and Ranging (LiDAR) data [26,44], although
this last can also be used to estimate canopy height [45–50]. Density of trees is also a reasonably good
predictor of AGB in both conserved and degraded forest (with more, though thinner, trees in degraded
forest), but density of trees cannot be detected with low or medium spatial resolution optical imagery.
Such data could, however, be obtained via aerial photographs or very high spatial resolution imagery
or LiDAR borne on drones [51–53]. Although most of the published work has been for temperate
forest in northern Europe, Canada, or USA, few experiments have been reported for tropical forest,
probably due to the complicity of the composition and seasonality. Possibly an index that combines
tree height and density of trees measured from a drone or airborne LiDAR could be developed as a
predictor of AGB in degraded TDF. It would certainly be worth exploring the potential of such an
index for assessing changing carbon stock in degraded forest where significant changes are expected.

LiDAR estimates of AGB have been shown to be highly correlated with field-measured AGB
data. For example, Hernandez-Stefanoni et al. [32] show a high association between AGB and
LiDAR data with an R2 = 0.87 using a linear regression analysis. An advantage of LiDAR data
is that they do not get saturated in areas of high biomass; however, the high cost of acquisition
could be a limitation [6]. It is worth noting that the Global Ecosystem Dimension Investigacion
(GEDI) LiDAR mission (https://gedi.umd.edu/mission/mission-overview/), launched in December
2018, makes accurate measurements of canopy height, vertical canopy structure, and surface elevation
and shows promise in improving measurements of AGB and forest carbon [54]. Synthetic aperture
radar (SAR) data have also shown potential in biomass estimation. In particular, more accurate results
have been found with longer wavelengths, such as L-band (23 cm wavelength) SAR [55]. L-band SAR
has been used to estimate biomass in forest areas with low biomass [56,57]. In addition, the BIOMASS
sensor from the European Satellite Agency (ESA), to be launched in 2022, will collect data at the P-band
(70 cm wavelength) wavelength. It has potential to see through leafy treetops to build up maps of
tree height and volume, and therefore it is expected to provide precise information on global forest
biomass and carbon content and fill the gap of forest biomass density monitoring [58]. Since the data
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from L-band and P-band SAR become saturated in forest with a medium to high biomass level at
approximately 60–100 and 100–150 Mg ha−1, respectively, they are not suitable for mapping forest
biomass in all conditions [55,59], although they should function well at the densities we found in
degraded forests in Ayuquila River watershed.. The application of texture data derived from L-band
SAR has been reported to be able to reduce the saturation at high biomass values, since texture data
capture variation in horizontal forest structure attributes, such as tree height and crown diameter [32].
The best result could probably be obtained with a combination of optical, LiDAR, and SAR data [60].

5. Conclusions

This paper presented findings of a statistical study of conserved and degraded forests based on a
recent forest survey in TDF. The forest attributes that are significantly different between conserved
and degraded forests include canopy cover, basal area, tree height, and AGB. Although canopy cover
presents large variance in degraded forests, there is large difference in mean AGB between degraded
and conserved forest. Among the four variables, canopy cover and canopy (tree) height separate
degraded and conserved forests with the least error, which makes these two variables the most suitable
to discriminate these two forest conditions. In terms of variables that could be used to estimate
biomass stocks in degraded forests, density of trees, canopy cover, and canopy (tree) height all show a
good correlation with AGB. It is clear that for accurate estimation of emissions from degraded forest,
very high spatial resolution satellite images, including drone-based imaging LiDAR and radar data,
are essential. An important next step would be to calibrate canopy cover, canopy height, or density of
trees against degradation using a sliding scale of intensity of degradation as observed at ground level.
This would likely enable a more reliable estimation of area of degradation and quantification of AGB
using remote sensing.
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