™ forests MBPY

Article

Applying Multi-Temporal Landsat Satellite Data and
Markov-Cellular Automata to Predict Forest Cover
Change and Forest Degradation of Sundarban
Reserve Forest, Bangladesh

Mohammad Emran Hasan 12, Biswajit Nath 3, A.H.M. Raihan Sarker *{9, Zhihua Wang %>*
Li Zhang 1'%, Xiaomei Yang %509, Mohammad Nur Nobi 79, Eivin Reskaft 807, David J. Chivers °
and Ma Suza 10

1 Key Laboratory of Digital Earth Sciences, Aerospace Information Research Institute, Chinese Academy of

Sciences, No. 9 Dengzhuang South Road, Beijing 100094, China; emran@radi.ac.cn (M.E.H.);
zhangli@aircas.ac.cn (L.Z.)

College of Resource and Environmental Studies, University of Chinese Academy of Sciences (UCAS), No.
19A Yuquan Road, Beijing 100049, China; yangxm@lIreis.ac.cn

Department of Geography and Environmental Studies, University of Chittagong,

Chittagong 4331, Bangladesh; nath.gis79@cu.ac.bd

Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong 4331, Bangladesh;
dr.raihan.sarker@cu.ac.bd

State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences
and Natural Resources Research, CAS, Beijing 100101, China

Key Laboratory of Earth Observation of Hainan Province, Sanya 572029, China

Department of Economics, University of Chittagong, Chittagong 4331, Bangladesh; nurnobi@cu.ac.bd
Department of Biology, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway;
roskaft@bio.ntnu.no

9 Selwyn College, University of Cambridge, Grange Road, Cambridge CB3 9DQ, UK; djc7@cam.ac.uk
Department of Civil, Instituto Superior Técnico, Universidade de Lisboa, Alameda Campus, Av. Rovisco
Pais 1, 1049-001 Lisboa, Portugal; masuja.ifescu@gmail.com

*  Correspondence: zhwang@lIreis.ac.cn; Tel.: +86-10-6488-8955

check for
Received: 21 July 2020; Accepted: 16 September 2020; Published: 21 September 2020 updates

Abstract: Overdependence on and exploitation of forest resources have significantly transformed
the natural reserve forest of Sundarban, which shares the largest mangrove territory in the world, into
a great degradation status. By observing these, a most pressing concern is how much degradation
occurred in the past, and what will be the scenarios in the future if they continue? To confirm
the degradation status in the past decades and reveal the future trend, we took Sundarban Reserve
Forest (SRF) as an example, and used satellite Earth observation historical Landsat imagery between
1989 and 2019 as existing data and primary data. Moreover, a geographic information system model
was considered to estimate land cover (LC) change and spatial health quality of the SRF from 1989
to 2029 based on the large and small tree categories. The maximum likelihood classifier (MLC)
technique was employed to classify the historical images with five different LC types, which were
further considered for future projection (2029) including trends based on 2019 simulation results
from 1989 and 2019 LC maps using the Markov-cellular automata model. The overall accuracy
achieved was 82.30%~90.49% with a kappa value of 0.75~0.87. The historical result showed forest
degradation in the past (1989-2019) of 4773.02 ha yr~!, considered as great forest degradation (GFD)
and showed a declining status when moving with the projection (2019-2029) of 1508.53 ha yr~! and
overall there was a decline of 3956.90 ha yr~! in the 1989-2029 time period. Moreover, the study
also observed that dense forest was gradually degraded (good to bad) but, conversely, light forest
was enhanced, which will continue in the future even to 2029 if no effective management is carried
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out. Therefore, by observing the GFD, through spatial forest health quality and forest degradation
mapping and assessment, the study suggests a few policies that require the immediate attention of
forest policy-makers to implement them immediately and ensure sustainable development in the SRF.

Keywords: land cover; forest cover change; spatial forest health quality; forest degradation;
multi-temporal Landsat satellite image; Markov-cellular automata model; Sundarban Reserve
Forest; Bangladesh

1. Introduction

Mangrove forests (MFs), are predominantly observed along the inter-tidal coastlines across
the world where land meets with the sea [1]. Forty-one percent of the world’s mangroves exist in South
and Southeast Asia and the remaining 59% are shared by other regions (East Asia, Pacific Islands,
Middle East, North and Central America and the Caribbean, South America, Eastern and Southern
Africa, and West and Central Africa) worldwide [2]. Globally, MF plays an important role in countries’
national economies through natural productivity and the variety of its products and services [3].
Moreover, mangroves protect coastal areas from severe cyclonic storms, save valuable human lives and
properties, as well as preserve habitats of endangered species [4,5]. However, the Sundarban Reserve
Forest (SRF), including MF, is located between Bangladesh and India and is the largest continuous MF
patch (approximately 10,300 km? or 1,030,000 ha) and, in Bangladesh, a major portion (about 60%) of it,
6017.22 km? or 601,722 ha, is found, and the rest is in India [6].

The SRF is considered as one of the world’s most endangered tropical ecosystems [7], which has
been threatened over the past 30 years by several activities, such as industrialization, extensive crab
and shrimp farming, agricultural production, natural disasters such as cyclones and tidal surges [8],
climate change [9], unsustainable human activities, etc. [10,11]. These changes have taken place on
the Earth’s surface by the significant land surface conversions [12], considered as an important factor
for environmental degradation in any landscape [13]. For example, due to cyclones and natural
disasters, forests experience additional stress to their biodiversity [14]. In connection with this, sea-level
projection data suggest that a rise in sea level from 32-88 cm will lead to the total disappearance of
mangroves by 2100 [15-17].

However, to date, there are insufficient studies conducted in SREF, especially in the Bangladesh
Sundarban part, to monitor its trend changes related to several drivers including its future changes
and degradation. Therefore, monitoring, analysis, modeling and transformation of Land Use and
Land Cover (LULC) changes are significantly important for conservation, planning and ecosystem
management activities [18-20], so distribution and dynamics studies must first be completed [21]
under the past and present data lens, which will play a key role in the decision-making process [22].
To investigate the future forest changes and degradation, specific questions need to be focused on how
much degradation occurred in the past, and what will be the scenario in the future if it continues with
some of the drivers related changes based on the pressure-state-response—future (PSRF) conceptual
framework? Therefore, the main objectives in the study were to: (i) analyze the spatio-temporal
conditions of land cover (LC) in last 30 years from 1989-2019, (ii) predict LC maps and forest cover
(FC) changes of SRF for 2029 based on past trends and (iii) analyze and predict spatial forest health
quality (SFHQ) and spatial forest degradation (SFD) assessment from 1989 to 2029 to meet the specific
target of the UN’s 2030 Sustainable Development Goals (SDGs). To achieve the above three objectives,
the present study used geospatial modeling of the Markov chain and cellular automata (Markov-CA)
approach in a land change modeler (LCM) [23].
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2. Literature Review

Remote sensing (RS) techniques and geographical information system (GIS) modeling approaches
are widely used to monitor LULC changes and in studies on prediction modeling [13,24-31], landscape
risk (LR) [32,33] including mangrove cover mapping and distribution, change analysis [34-46],
simulation [47,48], long-term changes in mangrove species composition and distribution [49] and
conservation strategies [50]. MF cover quantification, considering multispectral passive sensors
such as Landsat [21,51-54], Sentinel-2 [55], IKONOS [56], Worldview-2 [57], Worldview-3 [58] with
moderate to high resolution and active Sentinel-1 sensor synthetic aperture radar (SAR) [59], have
been widely used by numerous researchers across the globe. Globally, various attempts have been
made to identify MF change using Landsat time series data, especially worldwide MF status and
distribution by Giri et al. [36]; Long and Giri [60] in the Philippines; and in the Zambezi Delta by
Shapiro et al. [51]. However, Wang et al. [61] worked on performance evaluation of Sentinel-2, Landsat
8 and Pléiades-1 in mapping mangrove extent and species in the first National Nature Reserve for
mangroves in Dongzhaigang, China. A review paper undertaken by Kuenzer et al. [62] on remote
sensing of mangrove ecosystems highlights a comprehensive overview and sound summary of all
the previous works, addressing the numerous methods and techniques used for mangrove ecosystem
mapping through RS techniques. Mangrove threat and loss information is very crucial for MF mapping,
change detection, biomass estimation and sustainable mangrove management [35,63-65].

Sundarban MF ecosystem studies have been conducted in both India and Bangladesh [66,67] with
a few studies focusing on the Bangladeshi SRF [68-70]. However, in recent times, the Bangladeshi
SRF has been investigated by Islam et al. [71] and Islam and Bhuiyan [72]. According to a recent
study [71], MF land cover change monitoring from 1976-2015 over the entire coastline of Bangladesh
was performed using a maximum likelihood classification (MLC) algorithm with an overall accuracy of
80% achieved by different Landsat sensors and the results suggest that the areal extent of MF increased
by 3.1% in 1976-2015, with a 1.79% increase in 2000-2015. In another case [73], the SRF of Bangladesh
was investigated in the light of causes of degradation and sustainable management options and
the study reported that the biodiversity and ecosystems of SRF are threatened due to several natural
and human-induced pressures, including overexploitation of forest resources, changes in coastal land
use, oil spillages, disease outbreaks, natural disasters and so on. Moreover, the authors proposed an
integrated approach by refining the existing management and combining updated information. To
understand the potential modifications and alterations that will likely happen in near future, LULC
prediction studies are very important in this regard and can support and help land use planners,
resource managers and conservation practitioners in making decisions [27,74,75].

The LCM module of TerrSet IDRISI software is considered for change visualization and model
prediction [76], it is easy to use and has relatively low-level data requirements [77]. In a LCM, results
can be identified in three sections, such as (a) quantitative assessment of multiple LULC categories; (b)
net change of each LULC class; and (c) contributors to the net change in individual LULC categories.
Furthermore, two historical LULC datasets are required to predict the future LULC in the LCM module,
which evaluated the temporal and spatial changes in a specific area [78] through model calibration and
validation accuracy assessment processes [79].

Numerous studies have examined LULC simulation by the Markov-CA model. The Markov-CA
model is a widely accepted method considered for LULCC modeling compared to many LULC
modeling tools and techniques [20,80]. The model is considered ¢ — 1 to ¢ to project probabilities of
LULCC for the future date t + 1 [81-83]. The probabilities are generated based on the past changes
and then a future change prediction is performed [81]. The Markov-CA model has the ability to
simulate changes in different LULC types, and clearly identify the transition from one category of
LULC change to another [24,81]. Based on this idea, Parsa et al. [74] used the Markov-CA model to
predict future LULC of an Arabian biosphere reserve in Iran to tackle future land use challenges in that
area and they indicated that the model is useful in land use policy design and early warning systems.
Moreover, this model was also used in LULC dynamics of the Phewa Lake watershed in Nepal by



Forests 2020, 11, 1016 4 of 35

considering several drivers [20]. However, Mondal et al. [83] concluded in their study that a combined
Markov-CA model is better to generate spatio-temporal patterns of LULC change. The Markov-CA
initial conditions, parametrization of the model, calculations of the transition probabilities and
determining of the neighborhood rules were defined by the integration of remote sensing and GIS
datasets [81,82,84-88]. Therefore, this Markov-CA model is found to be ideal for our present study
as the Markov model quantifies the changes and a CA model evaluates geospatial changes. This is
the reason for selecting this integrated model to predict future forest cover changes and degradation of
SRF in Bangladesh for 2029.

3. Materials and Methods

3.1. Study Area

The Sundarbans mangrove forest (SMF) is an unique natural habitat for about 300 species of flora,
425 species of terrestrial fauna and 291 species of fishes [89], and has been recognized as an important
natural resource base, due to its geographic location, climatic conditions and species diversity. This
forest is considered as the largest mangrove territory in the world, which is shared by Bangladesh and
India. In between two countries, more than 60% of the Sundarban ecosystem is in Bangladesh [90].
In 1987, the United Nations Educational, Scientific and Cultural Organization (UNESCO) declared
the area as a World Heritage Site officially named as “The Sundarbans” [91] and on 21 May 1992, it
was officially named Ramsar Wetland as “Sundarban Reserve Forest” (SRF) [92] and on 30 January
2019, it was also referred to as “Sundarban Wetland” [93]. In this study, we have used SRF as it is
well known locally and internationally. The study area lies approximately between 89°2’00” E to
89°53’00” E longitude and between 21°37°00” N to 22°30’00” N latitude (Figure 1). The entire SRF
consists of 601,700.22 ha and shares a major portion with the mangrove forest, including important
rivers and numerous tidal creeks. The SRF was categorized into 58 compartments by the Bangladesh
Forest Division (BFD) in 1975, and for the protection and monitoring of its valuable resources, it was
selected for the present study.
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Figure 1. Location of the study area, Sundarban Reserve Forest (SRF), Bangladesh. Top left panel
represents key map: red bounding box shows an overview of SRF; bottom left panel indicates zoomed-in
view with digital elevation model (DEM); right panel indicates DEM of the study (elevation in meters)
with overlay of forest compartment boundaries represented with the red polygon and compartment
numbers in black and bold.
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The topographically, SRF is generally flat in nature. The elevation varies locally from west to east,
where the western part has a height variation of 0-6 m, in middle section it varies by 5-10 m and in
the eastern part it varies by 4-19 m above mean sea level (AMSL). The climate in SRF is generally
soothing and pleasant. The temperature ranges from 20-34 °C and the level of rainfall is extremely
high, and the weather is almost moist, with hot, humid air (80% humidity) blowing constantly from
the Bay of Bengal (BoB) [94]. The forest has economic value; wood is valued as timber (although
protected) and the major tree species of the Sundarbans are sundari (Heritiera fomes), goran (Ceriops
decendra), gewa (Excoecaria agallocha), keora (Sonneratia apetala), passur (Xylocarpus granatum), kankra
(Bruguiera gymnorhiza) and baen (Avicennia officinalis) [93,95-98]. Tree height variations are observed
across the entire SRF, in the south central and northwest regions by 0-5 m, in the southwestern part by
5-10 m and in the north and southeast they vary by 10-15 m [99,100].

3.2. Methods

3.2.1. Understanding SRF Changes through PSRF Conceptual Framework

To understand the prediction of forest cover changes and degradation of SRF in Bangladesh,
a PSRF conceptual framework was constructed in this study, which was adapted from Liao et al. [48]
with modification, exploring multiple drivers of changes, related pressures and the consequences on
several states in individual forest compartments of SRF (Figure 2). In this framework, pressures that
act upon on SRF changes are due to natural and anthropogenic activities such as illegal logging, top
dying disease, oil spillage, pollutants from upstream industries and natural phenomena (e.g., erosion,
natural disasters, etc.).
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Figure 2. Conceptual framework of pressure-state-response—future for SRF (modified based on local
SRF factors in [48]).

The pressures increase due to the above activities” impacts on the state of SRF through multifarious
actions such as temporary and quality degradation, forest clearance or thinning, etc. However,
the responses are signified in forest protection policies, forest monitoring and inventory and spatial
decision support systems (SDSSs) with earth observation techniques including self-regeneration and
self-damage recovery of mangrove forests. By observing these phenomena, future FC changes and
SFD status of SRF can be measured through multi-temporal Earth observation Landsat satellite data.
Spatial forest health rank (FHR), constant good patch (GCP) and forest degradation intensity (FDI)
measurements were undertaken by considering three equations (see Section 3.2.6) for the first time
in a study of SRF (proposed in this study). In this regard, multi-temporal Landsat earth observation
data can help us to explore the SRF in qualitative and quantitative ways to better identify the proxies
of multiple pressures, and its changing state. Moreover, implementing forest policies, continuous
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monitoring and forest inventory and SDSSs, as well as self-regeneration and damage recovery, helps
responses to succeed and provides a sustainable future to achieve specific targets of UN 2030 SDGs.

3.2.2. Datasets and Field Survey Data Validation

RS and GIS techniques were used for data acquisition, preparation, data analysis, mapping
and reporting. The coupling of RS and GIS along with field survey data is the basis of the study to
understand and analyze the present, past and future of the Sundarbans ecosystem. This study uses
multi-temporal Landsat imageries at a 30 m spatial resolution for five years (1989, 1999, 2009, 2014
and 2019), to monitor long-term (1989-2019) changes followed by future predictions (2029) in SRE.
To advance this, we selected 10 Landsat satellite images in post-monsoon and winter seasons (from
November and January) with less than 0.5% cloud cover, including six Landsat 5 Thematic Mapper (TM)
and Landsat 7 Enhanced Thematic Mapper (ETM) images and four Landsat 8 Operation Land Imager
(OLI) images of path/row 137/45 and 138/45 (see Table S1 for details), acquired from the NASA-USGS
EarthExplorer web portal (https://earthexplorer.usgs.gov/) [101]. It is worth mentioning that, to cover
broad swathes of the SRF, two Landsat satellite scenes for each sensor in each year were geometrically
corrected, mosaicked and projected to the World Geodetic System (WGS) 1984 into the Universal
Transverse Mercator (UTM) Zone 45 N and 46 N coordinate system.

Moreover, the other data, such as the SRF administrative boundary and forest inventory data of
1996, were gathered from the Bangladesh Forest Department (BFD) and US Forest Service, respectively.
To observe the changes and modeling scenarios, different application software such as ENVI 5.3 (satellite
image pre-processing, image enhancement), ERDAS Imagine 2014 (interpretation and classification),
TerrSet IDRISI 18.21 (land and FC simulation, projection modeling and transition matrix), ArcGIS 10.7
(GIS data for SFHQ and SFD assessment through FDI mapping and analysis) and Microsoft Excel 2019
(numerical analysis for tables and charts) were used to analyze the various types of data throughout
the study.

In addition, field surveys were conducted in the entire SRF in March-April 2015 and February 2018
with forest field officials, maintaining certain limits to access inside the forest to avoid dangerous wild
animals such as Bengal tigers, snakes, deer, etc. To conduct the survey, we used available Google Earth
(GE) images with a forest compartment layer overlay, along with the Garmin eTrex global positioning
system (GPS), including field photos, to collect field validation points of the MF and the surrounding
environment. A total of 305 ground validation points were taken across the SRF to use further in image
classification accuracy assessments, where 170 points represented MF the categories of Land Use (LU)
types as light forest/small trees (HE) and dense forest/large trees (TR) and 135 points represented other
LU types as water bodies (RI), bare land (BA) and sandy area (SA) (Figure 3).

3.2.3. Image Processing, Classification Techniques and LC Mapping Method

In order to fulfill the coverage of the entire SRF of Bangladesh, two satellite scenes for each
of the selected years and a total of ten satellite scenes were considered in this study to interpret
and analyze the images. The image processing steps involved pre-processing steps first, where
Landsat 5 TM, 7 ETM and 8 OLI images were processed by standard procedures such as image
calibration to at-sensor radiance, then radiometric correction was performed using an atmospheric
correction model to get surface reflectance images. These correction steps were applied to the images
using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) tools based on
a MODTRAN radiative transfer module of ENVI 5.3 software. To perform spatial matching between
images, image-to-image geometric correction was considered prior to the image interpretation and 5%
linear image enhancement algorithms and histogram equalization were applied for better visualization
of various features in the Landsat multispectral data.
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Figure 3. Location of field survey and validation points (color code represents five Land Use (LU) types
of SRF overlay on Landsat images from 2019 (band combination used: R, G, B: 1, 2, 3 for background
display only) along with corresponding field photographs: (a) light forest (HE); (b) dense forest (TR);
(c) water bodies (RI); (d) bare land (BA); (e) sandy area (SA).

In this study, we used a hybrid approach, comprising unsupervised and supervised image
classification techniques [102] to obtain necessary LC classes in the SRE. Therefore, in the beginning, we
collected signatures with an iterative self-organizing data analysis (ISODATA) classification algorithm
technique. The ISODATA clustering method is employed to reduce primary human efforts to distinguish
between LC classes for the less known and less accessible areas, like SRF, using the spectral separability
of the machine itself. The advantage is that the analyst has a prior idea about the probable LC classes
of the study area and has the opportunity to confirm any confusing LC classes through field validation.
In the hybrid classification process, the ISODATA techniques, along with human-derived training data,
yield better accuracy through integrating machine and human skill. The selected clusters were then
assigned to specific classes based on field verification before using them as classification training data
in ERDAS Imagine 2014. The signatures were evaluated using the histogram technique/transform
divergence (TD) to ensure that each signature was normally distributed [103]. In order to achieve
a higher accuracy of LC class derivation, we eliminated the signatures that were not normally distributed
and had poor TD separability. TD values ranged between 0 and 2000 and a TD above 1500 was
considered to be separable. Values greater than 1700 indicated good separability and those above 1900
indicated excellent separability [104]. In our study, a TD value of >1900 was found, which indicated an
excellent separable category.

After evaluation, we used the retained signatures as inputs and ran a maximum likelihood
classification (MLC) in ERDAS Imagine 2014 software to classify spectral signatures into five discrete
LC categories, namely: light forest (i.e., seedlings, saplings, herbs and shrubs, small trees, partly
degraded forest that has diameter at breast height (dbh) < 15 cm) designated as HE, dense forest (i.e.,
trees with canopy coverage, continuous patches of trees that have dbh > 15 cm, especially large trees)
referred to as TR, water bodies (i.e., ocean, small and large rivers, creeks, swamps) designated as RI,
bare land (exposed soil, mudflat, degraded forest) designated as BA and sandy areas (sand or sandy
soil) considered as SA. The MLC algorithm has been the most common, popular and widely used
classification algorithm for a long time, as the process is very easy and less computational engagement
is required [105]. However, as of now, the newly developed artificial neural network (ANN), support
vector machine (SVM) and deep learning (DL) algorithms have not been thoroughly compared for MF
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classification. Therefore, we relied on the MLC technique for our final image classification, and it also
provides statistically satisfactory results for a large area compared to the nearest neighbor algorithm.

To support the MLC technique by considering the temporal image dates, field discussion data
were collected after discussion with the forest beat officers from major forest compartments of SRF
regarding the existence of particular features of LC. Therefore, the ground validation GPS data points
and GE high-resolution satellite images were used for signature collection and accuracy checks of
the five different LC classes, while the 30 m resolution Landsat scenes were used for classification
because of their long temporal availability, which is absent in other sensors such as Sentinel 2A, Sentinel
1 synthetic aperture radar (SAR), hyperspectral and so on. Moreover, to improve the historic data
classification, we used visual interpretation of the images by applying false color, infrared, true color
and other custom combinations on images to distinguish spectral features. In this regard, the classified
2019 image was used as a reference image for the digital visual interpretation technique (DVIT) of
LC classes for images of preceding years. The results were trusted to be accurate because of field
validation conducted in SRE. The use of the DVIT in this context is not uncommon and its benefits are
reported by other studies [106,107].

In the next step, we categorized LC maps within the GIS programs into HE, TR, RI, BA and SA
and maps were prepared with a scale of 1: 500,000. The identified LC pattern was cross-verified
within the present context to identify how many losses or gains occurred in the SRF areas. We used
the historic data (1989-2019) to project changes in LC, looking 10 years into the future (i.e., 2019-2029).
The classified temporal imagery data were used to prepare a geospatial database. The database
identified the current state of the LC as well as compared the changes in LC from 1989-2019. In
the next step, the 2019 simulation was prepared based on twice classified data (1989 and 2019) in
the LCM module of TerrSet version 18.21 software and then the 2029 prediction was made which was
considered as a 10-year projection under the business as usual (BAU) scenario of the model. This
projection is envisaged to be the working plan of Bangladesh, usually considered for 10 years [108], as
well as to facilitate Government of Bangladesh (GoB) in fulfilling the SDGs target which is due by 2030.
Moreover, LC change transformations based on different time frames in 1989-2029 were performed in
the same software.

3.2.4. Dynamic Degrees (DD) and Transition Matrices Computation Method

At this stage, the DD model was used to represent the spatio-temporal characteristics of LC
changes and gain and loss (%) were estimated for earlier and future time period change data. To attain
this, DD estimation can be calculated using the approach adopted from Liu et al. [109], and from other
researchers [10,33,110,111], as shown in Equation (1):

Ab—Aa
D= % x 100% (1)

where D represents the DD model, which refer to rate of change; A, is the area in the initial year; Ay is
the area in the terminal year; and T is the temporal scale. In this study, the time comparisons are 10, 10,
5, 5 (for past), 30 (overall past years), 10 (for future prediction) and 40 years (overall past—future).
Moreover, land cover transition (LCT) maps were generated based on historical and predicted
data of different time periods (i.e., 1989-1999, 1999-2009, 20092014, 2014-2019, 1989-2019, 2019-2029
and overall 1989-2029), as well as matrix information computed in the LCM module of TerrSet 18.21
software. These LCT data are generally used to identify the transformation of each LC class through
a qualitative and quantitative manner [32,33]. At this stage, each LC map was used to observe
the change in the next most recent one, to produce a transition matrix for each time period. Based on
five LC classes, LCT maps of different time periods were prepared following a from—to approach. In
the next step, all time frame raster images were converted into vector form using ArcGIS 10.7 software,
which allowed us to identify the areas where changes occurred in the past, as well as what will occur
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or persist in the future. Finally, all of the results obtained using GIS software were exported to text file
and later used for statistical analysis.

3.2.5. Prediction of LC Change Using Markov-CA Model and Simulation Validation

The Markov-CA model is a popular model compared to other modeling approaches, and is
generally used for temporal and spatial change estimation [112,113], as well as planning support
tools [113]. The Markov-CA model signifies the model as a combination of a Markov chain and cellular
automata to predict the LULC trends and characteristics over time [58]. In particular, in geographical
research, the Markov chain model was developed by Andrei A. Rakov in 1970, and was first used by
Burnham for land use modeling [75,114]. This model provided a simple methodology which dissected
a dynamic system and examined LULC change from one time to another [13,29,30,33,34,115-120] in
order to predict future change [24,25] based on Equation (2):

S(t t+1)=Pij xS (t) ()

where 5(t) represents the status at time £, S(t + 1) is the status at time ¢ + 1 and Pij is the transition
probability matrix (TPM) in a state which is calculated based on Equations (3) and (4) [81,88,116]:

Py P Py
P = Py Pp N 3)
Pyi Pp Ppn
(0<Pij<1) (4)

P is the transition probability; Pij represents the probability of converting from current state i to another
state j in next year; P, is the state probability of any time. A low transition value will have a probability
near (0) and a high transition have a probability near (1) [81].

Furthermore, cellular automata (CA) considered with a Markov chain in a model boost LULC
modeling, which is a robust approach in spatio-temporal dynamic modeling [88,120]. The CA
model is a dynamic spatial process model that is used for LULC changes. Each particular cell has
self-characteristics and can represent a parcel of land with a dynamic character [121] which is dependent
on the spatial and temporal characteristics of its neighboring cells.

In order to predict the LC changes, we used the integrated Markov-CA model [33] to simulate
LC changes by generating a set of matrices and spatial information. In this regard, the land cover
change modeler (LCM) program of TerrSet version 18.21 software was used to predict the LC of 2029,
which is widely recognized and used by the scientific community to monitor and model earth system
processes [33]. Before that, a simulated image of 2019 was generated based on the initial year (1989)
and final year (2019) images and then the transition probability matrix (TPM) and transition area
matrix (TAM) were prepared from the Markov model. The transition suitability image (TSI) was also
generated at this stage, and then all three (TPM, TAM and TSI) were integrated in the Markov-CA
model. Finally, a 5 X 5 contiguity filter was applied with five iterations to model the LC for the year
2029 to visualize the significant cellular changes, and then the TPM of future LC classes in specific time
period (such as 2019-2029) was obtained using the Markov model.

In addition, the model needed to be validated further with the LC image of 2019 (derived from
the Landsat 30 m image) by using chi-squared (x?) test statistics and the kappa index of agreement
with goodness of fit. Therefore, simulated image of 2019 was compared with the 2019 actual image
(Landsat 8 OLI) and the result was hypothetically tested, as the area statistics of both images were
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the same. This is valid when the test statistics are x? distributed under the null hypothesis, specifically
Pearson’s x2 test and variants thereof, and the test is done with the following formula:

=) (0O-E)*/E (5)

where x? denotes chi-squared, O is the observed image (in our case, simulated LC image 2019) and E is
the expected image (in our study it is the actual LC image 2019).

However, this does not necessarily validate the agreement on the spatial distribution of the LC
classes of the study site. To solve this problem, we performed a more sophisticated kappa index of
agreement between the two images. Moreover, the kappa coefficient value was measured [10,32,121-
123] using the following set of conditions: <0 = less than chance agreement, 0.01-0.40 = poor agreement,
0.41-0.60 = moderate agreement, 0.61-0.80 = substantial agreement and 0.81-1.00 = almost perfect
agreement. In the kappa index, three indicators were used for the Markov-CA model validation, kappa
for no ability (kno), kappa for location (Kjocation) and kappa for quantity (Kquantity), which is strongly
recommended [124]. The accuracy of the LC classification is very crucial to assess and understand
the statistical significance of the classification. According to Eastman [125], the simulation is well
justified with an acceptable accuracy rate of 0.80 (which is within the conditions 0.61-0.80 = substantial
agreement) and is considered for plausible future predictions, where a value of the indicator equal to 1
is well defined and it is unsatisfactory when it is equal to 0 [36,126].

3.2.6. Assessment Method of SFHQ and SFD

In order to assess qualitative and quantitative SFHQ and SFD in forest degradation intensity (FDI)
scenarios, three equations were considered (proposed in this study) to observe the past and future
condition of SRF. Before FD change assessment, SFHQ and Constant Good Patch (CGP) assessments
are also necessary to clearly understand the FD status. In these aspects, the SFHQ value ranges from 0
to 10, where the higher the value, the higher the forest quality and vice versa, which is also similar for
CGP. However, the individual SFD map is prepared based on the FDI whose rank is defined as —10 to
+10, where, '~ value represents forest improvement or regenerations and ‘+’ value represents forest
degradation. This rank is assigned based on the improvement and degradation percentage such as
—1 to 6 in the present study, where —5-—14% degradation is —1, rank 0 is —4-5%, rank 1 is 6-15% FD,
16-24% is rank 2, 25-34% is rank 3, 35-44% is rank 4, 45-54% is rank 5 and 55-64% FD is rank 6. In this
case, the lower the FDI value, the healthier the forest is. To prepare SFHQ, CGP and FDI maps, past
and future scenario statistics were calculated based on the following three equations with Microsoft
Excel 2019 and ArcGIS 10.7 software environments, respectively.

100 x TR
CA-RI

100 x HE

)+100+WHE><( )+1oo ©)

where SFHQ = spatial forest health quality, WTR = weighting value for TR (10 in this study), TR = TR
area in particular compartment in an assessment year, CA = compartment area, RI = water Area in
particular compartment in an assessment year, WHE = weighting value for HE (five in this study).

_ FQyl +FQy2 + FQyn
- o

CGP @)

where CGP = constant good patch, FQyn = forest quality for particular year (In this study, six years).

{(TRG - TRL) + (HEG — HEL)} x 100 X WV

FDI =
(CA —RI) x 100

®)

where FDI = forest degradation intensity; TRG = gain of TR (transitioned total from HE, RI, BA and
SA); TRL = loss of TR (transitioned total from HE, RI, BA and SA); HEG = gain of HE (transitioned total
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from RI, BA and SA); HEL = loss of HE (transitioned total from RI, BA and SA); WV = weighted value
for DI rank; CA = compartment area; and RI = water area in a compartment. Moreover, the detailed
integrated methodological flowchart of the research process considers three main steps, which is shown
in Figure 4.

i | Step1
Multitemporal q Landsat 5 TM Landsat 7 ETM Landsat 5 TM Landsat 8 OLI Landsat 8 OLI | ! P
RS image 1989 1999 2009 2014 2019 1
i = 5
i Image Processing

Image classification by Hybrid approach
i Forest Compartment (ISODATA unsupervised and MLC
[ GIS data sources }w Boundary shapefile — Image subset = techniques) usinngRDAS Imagine 2014
software !
Field GPS data g TS e!ec.tlox;o‘f LC change assessment, transformation Accuracy assessment of LC
and Google earth : raining data mapping and database creation using  ¢==l using ArcGIS 10.7
(GE) data sources LCM module of TerrSet 18.21 software software
! l =
TwoLCi Step 2
Future LC map and transition - Selection of (1‘;(8’9 :;‘;?]%;; - Model validation and simulated
matrix table creation of 2029 Prediction year ,:“ qf map generation of 2019 based on
based on Markov-CA Model (2029) consicered for 1989 and 2019 actual images using
Future LC mapping TerrSet 18.21 software
s . Step 3
Integration of PSRF Conceptual Transition yearsbased | | rr0, CGP mapping and SFD Clohemalic
framework to understand the map in. andPD amic measurement by FDI Mapping - dacs!sh 1c'§tl(').n
prediction of FC changes and cﬁfng%s estim’:t‘ion based on Weighted factor, ala\nal}:ls?;‘l:sainl;e
FD to attain UN 2030 SDGs from1989-2029 Rank and Equations 6,7 and 8 AreGIS 107

Figure 4. A methodological flowchart model used in this study. Note: RS, remote sensing; TM, thematic
mapper; ETM, enhanced thematic mapper; OLI, operation land imager; GIS, geographical information
system; GPS, global positioning system; ISODATA, iterative self-organizing data analysis techniques;
MLC, maximum likelihood classifier; LC, land cover; Markov-CA, Markov cellular automata; LCM,
land change modeler; PSRF, pressure-state-response—future; FC, forest cover; FD, forest degradation;
UN, United Nations; SDGs, sustainable development goals; SFHQ, spatial forest health quality; CGP,
constant good patch; SFD, spatial forest degradation; FDI, forest degradation intensity.

4. Results

4.1. Accuracy Assessment of LC Classification Images and Validation of Future LC Projection

Table 1 summarizes the producer accuracy (PA), user accuracy (UA), overall accuracy (OA) and
finally Cohen’s kappa coefficient [127] of the various LC classes of SRF for LC maps for the time periods
of 1989, 1999, 2009, 2014, 2019 (actual) and 2019 (simulated). The results revealed among all the images
that the highest OA and kappa statistics were found for the 2019 supervised classification at 90.49%
and 0.87, respectively.
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Table 1. The producer, user and overall accuracies of 5 TM (1989), 7 ETM (1999), 5 TM (2009), 8 OLI (2014, 2019 act., 2019 sim.) images using MLC techniques.

Landsat . . Val HE TR RI BA SA Accuracies
Sensors Points
PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) OA(%) Kappa

™ 1989 305 72.86 77.27 86.00 85.15 97.14 97.14 93.33 84.00 9000 10000  86.89 0.82
ETM 1999 305 70.00 69.01 81.00 81.00 98.57 98.57 91.11 91.11 9500 10000  84.92 0.79
™ 2009 305 82.86 7733 86.00 89.58 95.17 98.53 88.89 8333 85.00 94.44 87.87 0.83
OLI 2014 305 80.00 82.35 91.00 89.22 9857 97.18 88.89 85.11 8500 10000 8951 0.85
OLI éoclt% 305 85.71 81.08 87.00 9158 97.14 98.55 93.33 8750 9500 10000  90.49 0.87
OLI é?;?) 305 77.14 62.79 77.00 83.70 92.86 97.01 84.44 88.37 8500 10000  82.30 0.75

Note: TM: Thematic Mapper; ETM: Enhanced Thematic Mapper; OLI: Operation Land Imager; Val. Points: Validation points; PA: Producer’s accuracy; UA: User’s accuracy; OA: Overall
accuracy; HE: Light forest; TR: Dense forest; RI: River; BA: Barren area; SA: Sandy area; MLC: Maximum likelihood classification.
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However, a detailed classification matrix is given in Supplementary Table S2a—f, where the rows
denote the categories derived from the classified image, and columns represent the categories
identified from the reference values [121,128,129]. The diagonal of the matrix shows the agreement
of the “from—to” categories identified from the reference values. On the other hand, the off-diagonal
represents the disagreement of the “from-to” categories which indicates the errors (omission and
commission errors) that remain between the classified and reference data [130]. In connection with
this, the actual LC of 2019 was compared with the simulated 2019 LC based on the Markov-CA model.
This model is further validated by the chi-squared (x?) test result generated based on Formula (5) of
Section 3.2.5. The generated data and the graphical illustration are given in Table S3 and Figure S1,
respectively. The tabulated chi-squared (x?) value was found to be greater (x% 0975 ¥ = 0.484) than
the calculated one (0.335), so, we failed to reject the null hypothesis. Although the above result does not
necessarily validate the agreement on the spatial distribution of LC classes of the study area, a similar
kind of validation problem was also observed by Nath et al. [33]. By observing this issue, a more
sophisticated standard kappa index of agreement between two images with goodness of fit, which
is corrected for accuracy by chance [131], is performed in the LCM module of TerrSet 18.21 software
and further partitions the agreement/disagreement components (see Table S4) into 0.0444 (error due to
quantity/disagree quantity) and 0.1585 (error due to allocation/disagree grid cell). However, the main
disagreement was due to an allocation error rather than quantity errors between simulated and actual
2019 LC images. At this stage of validation, the Markov-CA model was a good fit to run the future
prediction of the LC.

Moreover, the overall accuracy of the projection model could be further obtained from the Kno
index, which is the standard kappa index of agreement. The Klocation index validates the ability
of the simulation to predict the location. Based on the all indices of agreement results (Table 54 for
details), the average value was found to be 0.76, which means that the LC categories of the actual
and simulated images were more than 75% similar, which indicates substantial agreement. Therefore,
finally, the model is ideally fit for future predictions of SRF.

4.2. Historical and Future LC Change Analysis of SRF

In the classified LC images, deep green patches indicate TR, while light green patches indicate
the regeneration of plants as HE, whereas BA and SA were identified in almost all adjoining areas
of tidal creeks, highlighted with orange and white, as observed in the western, southern and eastern
parts of the SRF. Tidal river, creeks and ocean parts of the Bay of Bengal (BoB) were considered as RI.

The LC areal changes of SRF from 1989-2029 are presented in Figure 5a—g, and statistics are
presented in Table 2.

Figure 5. Cont.
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2019 Modeled.

BAGERHAT

Figure 5. Changes in LC status of the SRF (1989 to 2029). (a) LC in 1989; (b) LC in 1999; (c) LC in 2009;
(d) LC in 2014; (e) LC in 2019 (actual); (f) LC in 2019 (simulated); (g) LC in 2029 (future).

The results indicate that changes in LC patterns of SRF started in 1989, which had 394,756.20 ha of
forests, with the majority being TR (60.61% of all the land) (Table 2 and Figure 5a), while in 1999, there
was HE on the western and southwestern margins of the SRF. The proportion of BA increased slightly
in 1999 (Table 2). FD started to become visible along the southern coast of the SRF, due to river and
seawater influences (one of the drivers), although regeneration of mangrove species took place in some
parts of the SA through successional processes (Table 2 and Figure 5b).

In 2009, the proportion of TR showed a downtrend (42.08%), while the proportions of HE
(19.63%), RI (32.60%), BA (5.54%) and SA (0.15%) were enhanced significantly (Table 2 and Figure 5c).
On the other hand, in 2014, the LC status suggests improvements in the HE (24.14%) areas due to
self-regeneration (natural causes) of the SRF in the forest compartments (Table 2 and Figure 5d). The FC
in SRF was severely affected due to two successive natural disasters, super cyclones Sidr in 2007
and Aila in 2009, with an overall decline in TR, which remained as 38.27% (Table 2 and Figure 5d).
However, the TR in the 2019 actual image is 36.81%, (Table 2 and Figure 5e) a sharp decrease compared
to the 2014 status (38.27%). However, HE is almost the same as in the 2019 actual image (24.79%) and
in 2014 (24.41%) (Table 2 and Figure 5e,d). The LC of the TR area is almost similar up to 36.68% in 2019
(simulated) (Figure 5f) compared to the 2019 actual state (36.81%) (Table 2 and Figure 5d), whereas
it will be 34.31% (Table 2), showing less TR by the year 2029 (Figure 5g) with deterioration of up to
2.5%. Moreover, a greater proportion of HE (26.33%), RI (32.17%) and BA (7.12%) will be present in
2029 (Table 2 and Figure 5g) and the southwestern part of the forest will incur significant losses in
this regard. The results also suggest that HE will be in an uptrend by up to 1.54% by the year 2029
(calculated based on Table 2).
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Table 2. Types of LC within the SRF from 1989 to 2019 presented in hectares and percentages, based on multi-temporal satellite data.
LC 1989 1999 2009 2014 2019 (Actual) 2019 (Simulated) 2029
Categories Area o Area o Area o Area o Area o Area o Area o
(ha) ° (ha) ° (ha) ° (ha) ° (ha) ° (ha) ° (ha) °
HE 30,069.27 5 48,884.76 8.12 118,139.49  19.63 145,268.1 24.14 149,181 24.79 150,909.48  25.08 158,424.66  26.33
TR 364,686.93  60.61 347,400.81 57.74 253,201.14  42.08 230,281.83  38.27 221,496.3 36.81 220,685.67  36.68 206,410.95 34.31
RI 196,132.77  32.6 191,995.29  31.91 196,140.24  32.6 192,134.88  31.93 194,556.51  32.33 192,172.77  31.94 193,591.71  32.17
BA 10,168.47 1.69 13,183.65 2.19 33,310.08 5.54 33,584.76 5.58 35,866.35 5.96 37,560.33 6.24 42,835.5 7.12
SA 642.78 0.11 235.71 0.04 909.27 0.15 430.65 0.07 599.22 0.1 371.97 0.06 437.4 0.07
Total 601,700.22 100 601,700.22 100 601,700.22 100 601,700.22 100 601,700.22 100 601,700.22 100 601,700.22 100

Source: USGS EarthExplorer for Landsat 5 TM, 7 ETM and 8 OLI Satellite images from 1989-2019 and, based on 1989 and 2019 images, 2019 simulated and prediction images for 2029 were
generated; data extraction and compilation was done by the JDR 3rd Research Mangrove Team using ERDAS 2014 and ArcGIS 10.7 software.
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In addition, there will be a slight downtrend in the areas of RI by 2029, suggesting that erosional
activities (one of the causes of SRF changes) will continue in the future. Moreover, BA areas were
slightly enhanced in both 2019 actual and simulated images (Table 2 and Figure 5e,f) because of
natural regeneration activities (common in the mangrove tidal flat areas across the world). However,
the prediction of the year 2029 indicates that higher portions of BA are projected in the western, eastern,
southeastern and northern parts of the SRF (Figure 5g).

However, the different time period comparison results reveal that important changes occurred
in the SRF (Table 3). In 1989-1999, the most negative change was observed for SA (-63.33%) with
—40.71 ha yr~! and TR (—4.74%) with a rate of change of —1728.61 ha yr~!, while a positive change was
observed for HE (62.57%), with a rate of change of 1881.55 ha yr~!, compared to BA (29.65%), which
changed by 301.52 ha yr~! (Table 3). Moreover, RI changed (~2.11%) by —413.75 ha yr~! (Table 3) due
to land erosion (one of the causes) which was relatively higher in the Khulna range, compared to other
places across the SRFE. This results also support the study conducted by Emch et al. [132] on mangrove
FC change detection in the Bangladeshi Sundarbans from 1989-2000 using an RS approach.

Table 3. LC change assessment of the SRF based on different time frame data (1989 to 2029).

Land Cover Change (1989-1999)

LC Classes
Magnitude Area (ha) % Change Annual Rate of Change (ha yr™!)
HE 18,815.49 62.57 1881.55
TR -17,286.12 —4.74 -1728.61
RI —4137.48 -2.11 —413.75
BA 3015.18 29.65 301.52
SA —-407.07 —63.33 —40.71
LC Classes Land Cover Change (1999-2009)
Magnitude Area (ha) % Change Annual Rate of Change (ha yr™!)
HE 69,254.73 141.67 6925.47
TR —94,199.67 -27.11 —9419.97
RI 4144.95 2.16 414.49
BA 20,126.43 152.66 2012.64
SA 673.56 285.76 67.36
LC Classes Land Cover Change (2009-2014)
Magnitude Area (ha) % Change Annual Rate of Change (ha yr™!)
HE 27,128.61 22.96 5425.72
TR —22,919.31 -9.05 —4583.86
RI —4005.36 -2.04 -801.07
BA 274.68 0.82 54.94
SA —478.62 —52.64 —95.72
LC Classes Land Cover Change (2014-2019)
Magnitude Area (ha) % Change Annual Rate of Change (ha yr™!)
HE 3913.74 2.69 782.75
TR —8785.53 -3.81 -1757.11
RI 2421.63 1.26 484.33
BA 2281.59 6.79 456.32
SA 168.57 39.14 33.71
L h, 1989-201
LC Classes and Cover Change (1989-2019)
Magnitude Area (ha) % Change Annual Rate of Change (ha yr~!)
HE 119,112.57 396.13 3970.42
TR —143,190.63 —-39.26 —4773.02

RI -1576.26 -0.80 -52.54
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Table 3. Cont.

BA 25,697.88 252.72 856.60
SA —43.56 —6.78 -1.45
LC Classes Land Cover Change (2019-2029)
Magnitude Area (ha) % Change Annual Rate of Change (ha yr~1)
HE 9242.82 6.19 924.28
TR -15,085.35 —6.81 —-1508.53
RI —-964.80 —-0.49 —96.48
BA 6969.15 19.43 696.91
SA -161.82 -27.00 -16.18
L h 1989-202
LC Classes and Cover Change (1989-2029)
Magnitude Area (ha) % Change Annual Rate of Change (ha yr~!)
HE 128,355.39 426.86 3208.88
TR —158,275.98 —43.40 —-3956.90
RI —2541.06 -1.29 -63.53
BA 32,667.03 321.26 816.67
SA —-205.38 -31.95 -5.13

Note: (I) Land Cover (LC) Changes assessment based on interim years from 1989 to 1999, 1999 to 2009, 2009 to 2014,
2014 to 2019 and 2019-2029 and overall 1989 to 2019 and 1989-2029; (II) (+) sign denotes an uptrend and (-) sign
denotes a downtrend of the magnitude of change of LC categories in different time frames.

In 1999-2009, a negative change was observed only for TR (-27.11% with annual rate of change
of —9419.97 ha yr~!) because of the two severe super cyclones that struck in 2007 and 2009 (a major
natural cause of mangrove forest changes), which was a bit higher compared to 1989-1999 (Table 3).
However, a few significant enhancements were observed for HE and other categories due to an
increase in erosion (another major cause) in 1999-2009 compared to 1989 —1999 (Table 3). In 2009-2014,
the magnitude of negative change was higher for SA (-52.64% with a change of —95.72 ha yr~!) and
TR (-9.05% with a change of —4583.86 ha yr~!) compared to changes in RI (-2.04% with a change
of —=801.07 ha yr~!), which were lower compared to the other two time periods (i.e., 1989-1999 and
1999-2009). Moreover, the study also observed that the regeneration rate of mangrove species increased
across the SRF during the time period of 2009-2014, and severe FD took place in the TR areas, due to
the overdependence of local people on forest resources for their livelihood, including illegal logging
(one of the major causes of SRF changes). However, the FD continued till the 2014-2019 period with
a negative change of —8785.53 ha (-3.81%) and an annual rate of change of —1757.11 ha yr‘l (Table 3).
Moreover, the proportion of BA in the SRF in 2014-2019 was boosted by 6.79% compared to 0.82% in
2009-2014 (see Table 3), perhaps due to resource extraction across all forest compartments, which was
noticeable in the southeastern part of the SRE.

The area covered in RI also underwent changes in the overall (1989-2019) time period, indicating
erosion and accretion of land in the SRF. Looking at the overall change over 30 years, the SRF has been
degraded significantly in a negative manner (—4773.02 ha yr~!) with regard to TR (considered as a GFD)
and, on the contrary, HE and BA were significantly boosted in a positive way by 3970.42 ha yr~! and
856.60 ha yr~!, respectively (Table 3). However, the scenario of 2019-2029 (10 years into the future) has
anegative trend for TR (=1508.53 ha yr~!), including Rl and SA, and, conversely, the HE changes will be
in positive a trend of 924.28 ha yr~!, which is comparatively slower (changed by 3970.42 ha yr~!) with
respect to the 30 years before (1989-2019) (Table 3). Finally, in the 40-year (1989-2029) time period, TR
is going to be changed by —158,275.98 ha (~43.20%) with an annual rate of change of —3956.90 ha yr~!,
a greater indication of GFD in SRFE. Further, the descriptive statistics results suggest a major share of
HE (DD with 12.80% uptrend) in 1989-2019 (30 year-time period), while it had a 14.17% and 6.26%
uptrend in 1999-2009 and 1989-1999, respectively (Table 4), alternatively representing the FD status
in SRE. Moreover, the DD change in SA was observed to be negative (-10.56%) in 2009-2014 which
indicates that the transformation occurred in various forest compartments.
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Table 4. Dynamic degrees (DD) (%) estimation between different times (1989-2029) based on LC total
area coverage (ha) (adopted from Table 3).

DD (%) between Different Times

Clz:sc;es 1989-1999  1999-2009  2009-2014  2014-2019  1989-2019  2019-2029  1989-2029
HE 6.26 14.17 4.59 0.54 12.80 0.62 10.67
TR -0.47 -2.71 -1.81 0.76 -1.35 -0.68 -1.09
RI -0.21 0.22 -0.41 0.25 -0.04 -0.05 -0.03
BA 297 15.27 0.16 1.36 11.89 1.94 8.03
SA —-6.33 28.58 -10.53 7.83 -1.00 -2.70 -0.80

Note: The LC class definitions are available in Section 3.2.2. Source: Image statistical results calculated by authors
considering Equation (1), as shown in Section 3.2.4.

The DD change % was positive in all LC classes in SRF in 2014-2019 (Table 4), probably due to
forest self-regeneration activities. The SRF showed a higher dynamic degree (DD) in BA (1.94%) from
the predicted time period (2019-2029), compared to other LC classes, suggesting more river erosion and
severe cyclone-induced damage (a major pressure and identified known causes in the SRF). As a result,
forest loss will be incurred in the future which will impact SRF to a greater spatial extent. However,
the case was different for LC in 2009-2014, and a faster rate of negative impact was observed upon
the TR. This scenario was observed while we performed forest surveys in the major compartments of
SRE (see Figure 3a—e for field evidence photo). Moreover, in 2019-2029, the HE and TR area will change
in a positive and negative DD with changes of 0.62% and —0.68%, respectively (Table 4), whereas overall
from 1989-2029 (40 years), HE and TR will have positive and negative DD trends (0.62%, —1.09%),
similar to 2019-2029, but with different DDs (10.67%, —1.09%), respectively. These data suggest that
TR will continuously be degraded till 2029, if any protections for forest loss, illegal encroaching, river
erosion control, etc., are not executed at the earliest opportunity.

In the next, the gains and losses (%) and per year rate of change (%) of different LC classes in
SRF during different time periods (1989-2029) are presented in Figure 6a,b, respectively. The overall
HE gain will be 1.59% (0.16% yr~!) (Figure 6a,b) indicating an uptrend scenario through natural
regeneration or plantation activities, while there will also be a negative (-0.25% yr~') downtrend
tendency of TR during 2019-2029 (10 years into the future). This scenario alternatively suggests that
more dependency on TR forest cover products through illegal logging, encroachment, tree felling, etc.,
will be the prime causes to aggravate the condition till 2029, resulting in GFD in the SRF. However, in
the 40-year period (1989-2029), the rate of change per year was positively higher (21.33%) compared to
other LC types (see Table S5 and Figure 6b).

Gain/Loss (%) of LC Classes in SRF based on different time periods Per year rate of change (%) of LC classes based on different time periods
30 15
-~ 1
¢ 20 g
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Figure 6. Gain and loss (%) and per year rate of change (%) distribution of different LC classes in SRF:
(a) Gain and loss (%) of LC classes during different time periods in 1989-2029, (b) per year rate of
change (%) of LC classes based on similar time periods.
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4.3. LC Transition Mapping, Transition Areas and Probability Matrix Analysis (1989-2029)

The LCT mapping for 1989-1999, 1999-2009, 2009-2014, 2014-2019, 2019-2029,1989-2019 and
1989-2029 were prepared and are presented in Figure 7a—g and the cross tabulation matrices are
summarized and shown in Table S9 (for details).
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Figure 7. SRF transition maps in different time periods in 1989-2029. (a) Transition map 1989-1999;
(b) transition map 1999-2009; (c) transition map 2009-2014; (d) transition map 2014-2019; (e) future
transition map 2019-2029; (f) overall transition map (1989-2019); and (g) overall transition map towards
the future (1989-2029).

Further, TAM and TPM are two important components considered for projection simulation.
From the matrix (Tables S5 and S6), it was observed that almost 512,913.0 pixels were expected to be
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transformed into HE from the TR class during the period of 1989 to 1999. Similarly, 911,462.0, 894,392.0,
896,812.0 and 592,288.0 pixels were expected to be transformed in the same way in four different time
periods, 1999-2009, 2009-2014, 2014-2019 and 1989-2019, respectively (see Table S5 for details).

The Future Land Cover (FULC) data of 2019-2029 indicate that the TR class would change to
HE and BA, with a probability of (0.2387, 23.87%) and (0.0598, 5.98%), respectively (Table S6), which
indicates the future deterioration of FC in the SRF areas. The highest level of LC transformation is
observed in HE, with a TP of (0.3303) 33.03% of being transformed into other classes.

Moreover, the LC transformation matrices and spatial change maps of TR to HE in 1989-2029
are shown in Figure S2a—g. The five earlier different time assessment transformation data and maps
of 1989-1999, 1999-2009, 20092014, 2014-2019 and 1989-2019 suggest that the SRF regions have
continuously changed in the past, especially TR to HE conversions (see Figure S2a—g as reference
images), which will be maintained into the future till the predicted time (2019-2029), if no action is
taken immediately.

4.4. SFHQ and SFD Assessment (1989-2029)

Changes in SFHQ and SFD of SRF at the spatio-temporal scale from 1989 to 2029 and its
corresponding quantitative analyses were prepared based on the considered Equations (6)—(8) (discussed
in Section 3.2.6), are shown in Figures 8a—g and 9, respectively. Furthermore, SFHQ and SFD were
considered for and are shown in Figures 10a—c and 11, respectively.

Ith Ass{ssment (1989)

Spatial Forest Health Assfs
Forest Tlealth Rank

Figure 8. Cont.
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Figure 8. Spatial forest health quality assessment from 1989-2029. (a) SFHQ status of 1989, (b) SFHQ
status of 1999, (c¢) SFHQ status of 2009, (d) SFHQ status of 2014, (e) SFHQ status of 2019, (f) future
SFHQ status of 2029, (g) overall CGP forest in SRF (1989-2029). Note: FC numbers is labeled with black
bold numbers.
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Figure 9. Spatial forest health quality assessment in SRF in 1989-2029 based on the forest compartments.

Note: the number of forest compartments is displayed as a data label for the corresponding year
maintaining quality (%) of forest cover in the SRF.
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Figure 10. Spatial forest degradation (SFD) assessment for three different time periods by forest
degradation intensity (FDI) mapping. (a) Forest degradation status in 1989-2019, (b) forest degradation
status in the future (2019-2029), (c) overall forest degradation from past to future in 1989-2029.
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Figure 11. Forest degradation assessment based on three different time periods.

Figure 8a—e represent the earlier SFHQ of SRF, whereas Figure 8f,g represent future forest quality
and CGF status. The SFHQ values by the number of forest compartment are represented by Figure 9.
In 1989, a total of 30 and 26 forest compartments were in good quality, representing 95-100% and
85-94% of TR and HE, compared to the 2019 status, which had five forest compartments with 85-94%
quality forest coverage, with no forest compartments classified as top quality forest coverage.

Moreover, 65-74% and 75-84% quality forest was identified in 25 and 21 forest compartments,
respectively, which was absent during 1989, because of the presence of good quality forest in that time.
These statistics indicate that the SFHQ of SRF was deteriorating significantly between 1989 and 2019
(Figure 8a,e). However, in the interim time period from 1999 to 2014 (Figure 8b—d), quality forest
was limited because of degradation, illegal encroachment and other pressures that acted upon SRF. In
the future time period (2029) (Figure 8f), the quality of forest will deteriorate further, where only 25
forest compartments will remain in medium to good condition (75-84%), and 16 forest compartments
will be 65-74% quality forest, and the remaining forest compartments will be in poor to moderate
condition. However, the SRF will maintain a few CGPs of forest (Figure 8g) with rank 8, 9 and 10,
meaning 75-100% quality forest (Figure 9), based on the calculated data derived from Equation (7)
of Section 3.2.6. The CGP map represents the overall scenario of SRF in the 1989-2029 time period
(Figure 8g).

Finally, the SFD maps (in three time domains) were prepared based on Equation (8) of Section 3.2.6,
as shown in Figure 10a—c. There are three FDI maps representing the past, future and overall scenarios
of the FD status of SRF. The 30-year time period data (1989-2019) (Figure 10a) suggest that SRF
underwent a critical stress condition, and it was difficult to maintain its pure, healthy, sustainable
forest status due to multiple pressures that are pronounced in SRF (see conceptual framework of
Section 3.2.1). In this study, the future time period (2019-2029) (10 years in this study) was considered
specifically in which to achieve UN forest SDGs, which are due by 2030. In the future (2019-2029), SFD
will be in a severe condition as the majority of forest compartments (38 out of 58) represent ~1 to +1 in
FDI, and 15 forest compartments are rank 2—4 (Figures 10b and 11). Meanwhile, the overall 40-year
interval from 1989-2029 suggests GFD in SRF, where nine and thirteen forest compartments (marked
as red and light red where FDI is 6 and 5) are moving towards GFD with 55-64% and 45-54% FD that
might occur in SRE. Moreover, 32 forest compartments out of 58 will face 16-44% FD during this time
and the remaining compartments will be safe from further FD.

Based on the above three maps (Figure 10a—c), FD statistics of SRF were generated, as shown
in Figure 11. The real degradation values are shown with labels for easy understanding of the FD
status of SRF in different time windows, such as what already happened during 1989-2019, as well
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as how much FD will likely occur in 2019-2029, and how SRF will head towards the future, which
is represented through the statistics data of FD in an integrated manner. The results suggest that in
2019-2029, TR degradation will be 15,085.35 ha (90.38%) with annual degradation of 1508.53 ha yr~!,
whereas TR degradation was significantly higher in 1989-2019 (143,190.63 ha and 98.29%) with annual
FD of 4773.02 ha yr‘l. However, the overall (1989-2029) TR will experience FD in the future, indicating
an alarming state and a big constraint to attaining sustainable forest management in SRF. On the other
hand, HE degradation was lower (1.71%) in 1989-2019, which will be 9.62% in 2019-2029, and overall
HE degradation will be 0.99%. Furthermore, the total FD in TR was quite high in the past in 1989-2019,
while it will be comparatively less in 2019-2029 and the overall FD (1989-2029) will be higher in SRF
(Figure 11). The results suggest that TR loss is a big concern for forest communities in Bangladesh,
including the rest of the world, because it is a World Heritage Site declared by UNESCO in 1987.

5. Discussion

This study presents earlier and future LC changes in SRF considering Landsat 30 m resolution
data and provides an answer to our research questions and systematically describes the issues based
on our objectives. The first objective describes the spatio-temporal conditions of LC in last 30 years in
1989-2019, which represents the natural and anthropogenic pressures (Figure 2 of Section 3.2.1) that
have caused changes in SRF in the past.

However, the second objective examines the prediction of LC maps and forest cover changes of
SREF for 2029 based on the past trends which indicate how it will be in the future and these are mapped
in this study. The third objective analyzes and predicts SFHQ and SFD from 1989 to 2029 which helps
to meet the specific target of the UN 2030 SDGs. To achieve the above three objectives, the present
study utilizes geospatial modeling of the Markov chain and cellular automata (Markov-CA) approach
in a land change modeler (LCM) [75]. Moreover, the four tiers of the PSRF conceptual framework were
introduced in this study. The available literature and the Landsat satellite-based predicted model data
and corresponding change information, including pressures, show the major drivers that act upon MF
changes in SRF of Bangladesh. The SRF was paid less attention by forest officials in the past, therefore,
its forest compartments were extremely imbalanced.

SREF is shrinking due to coastal erosion, though it is not clear how much erosion is linked to global
warming and sea level rise [133]. The erosion and accretion balance in the SRF has been estimated
to be 145.3 km? or 14,530 ha for the period from 1960 to 1984 [134]. Erosion along the riverbanks
(one of the major pressures) causes the disappearance of mature and valuable stands (confirmed with
the forest officials during the survey), resulting in the loss of FC (see Figure 3a,b). On newly formed
accretions, it takes time to develop forest patches, particularly those of commercial value, which appear
at the later stages of succession [135]. This unstable situation cannot be prevented even by large-scale
engineering works. In the western parts of the forest, silt deposition is low, as observed during the field
survey. The forest floor is compacted there and does not support various tree growths. On the other
hand, very heavy depositions of silt in the eastern parts threaten the existence and continuity of
mangrove vegetation, because of raised forest floors and irregular flows of tidal waters [136]. Mangrove
regeneration is difficult on raised floors [16]. Many stable forest lands supporting rich, healthy and
valuable mature stands are disappearing due to erosion of the riverbanks in the SRE. This is a natural
process in the SRF ecosystem that cannot be reversed and has no solution. Degradation of forest
resources due to this process should not be underestimated.

This study area (SRF) has acted as a safeguard for Bangladesh to protect it from cyclones and tidal
surges at certain levels, though several severe category cyclonic storms, such as Cyclone Sidr in 2007
and Aila in 2009, had much effect and caused damage to the SRF. Quantification of exact forest cover
changes, aesthetic SFHQ and SFD in future perspectives received little attention in the past and, to
the best of our knowledge, no such work is available in the SRF based on the methods followed in
this study. By observing the gap of future assessments, we have focused for the first time to see how
the forest will be in the future till 2029, if no effective management is carried out based on the observed
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time frame of 1989-2019. This must be done by focusing the PSRF conceptual framework to attain
specific forest conservation goals under the UN SDGs which are due by 2030. We tried to compare
the results produced in this study with the available mangrove studies conducted so far and observed
that the Indian Sundarbans [137], the entire coastline of Bangladesh [72] and SRF, Bangladesh only,
including causes of degradation and sustainable management options [73], were the target areas of
the mangrove studies. Temporal mismatches and spatial coverage issues, as well as their choice of
preferences, made it difficult to make quantitative comparisons.

Moreover, numerous researchers across the world have focused on mangrove mapping and
distribution and its changes using remote sensing (RS) techniques [18,49,100,111,137-141], where
long-term changes in mangrove in the Sundarbans (India and Bangladesh) were studied by [49] based
on 38 years of Landsat satellite data in the 1977-2015 time period. Das and Mandal [138] pointed that
Sundarban mangrove forests were nearly double the area of what exists at present. A Mangrove study
along the coastal belt of Bangladesh was carried out [100] using Landsat satellite data and the results
suggest that 58,140 ha of mangrove forests grew in 1976-2015. Among these studies, many emphasized
human-induced pressures, i.e., land use pattern changes, effluent discharges from industry, decreases
in freshwater flow and oil spillages from sea ports, that have severe negative effects on the biodiversity
of the Sundarbans. There are several other issues involved in MF changes, such as several diseases,
natural disasters, a rise in sea level, insufficient regeneration [137], top dying disease [139], sediment
deposition due to coastal flooding [140] and forest fires of 1.0 km? or 100 ha at Napitkhali under
the Chandpai range [18], and these are the main causes of deterioration of the sundari trees of SRE.
However, Ghosh et al. [50] worked on mangrove forest change in 1776-2014 in the Indian Sundarbans
by considering toposheets and multi-sensor RS data, like Corona KH, Landsat 5 TM, 7 ETM and 8 OLI,
and observed that the MF area was 6588 km?2 or 658,800 ha in 1776, while it was 1852 km? or 185,200 ha
in 2014, a greater indication of FD, which is consistent with the findings of our study. Besides these,
a significant study by Liao et al. [48] observed mangrove area changes with an overall net decrease
of 9.3% in selected protected areas of Hainan Island of China from over 30 years of Landsat data
(1987-2017).

In our study, an OA in the range of 82.30~90.49% with a kappa value of 0.75~0.87 was observed
for the LC classification in 1989-2019 (simulation) (see Table 1 in Section 4.1). The LC changes (past
to future time period) in SRF based on five different classes were used to measure the magnitude of
changes, including the percentage of shares and annual rate of change (ha yr~!) (see Table 3), along with
dynamic degrees (%), gain/loss (%) and corresponding yr~! rate of changes (see Table 4 and Figure 6a,b,
respectively) based on Tables S5 and S6. To support the study, a detailed confusion matrix table was
prepared based on past (1989-2019) (see Table S7) and future trends (see Table S8). LC transition
mapping with TAM and TPM calculations was performed based on the abovementioned time periods
followed by the “from-to” approach adopted by Nath et al. [32,33]. Additionally, forest transformations
of SRF in different time periods, 1989-1999, 1999-2009, 20092014, 2014-2019, 2019-2029 and overall
1989-2019 and 1989-2029, were executed in this study (see Table S9).

Moreover, the overall assessments suggest that forest cover is being highly degrading in our study
areas. In the last 30 years (1989-2019), the SRF gradually lost its aesthetic and economic value due to
a downtrend of forest coverage. The change in SRF was enormous and a maximum conversion was
observed in the category of change from TR to HE, with a significant loss of 4773.02 ha yr~! of TR, and
an uptrend HE by 3970.42 ha yr~!. However, the overall results of the 40-year time period (1989-2029)
showed that forest cover, such as TR, will continue to be degraded and depleted (3956.90 ha yr‘l). On
the contrary, HE will be enhanced significantly by 3208.88 ha yr~! and this result will continue till 2029,
if no effective actions are taken immediately. The finding of our study suggests that TR disappeared in
the past due to illegal forest clearing, riverbank erosion, forest fires, resource extraction, etc., which is
consistent to a certain extent with the reported work conducted by Ghosh et. al. [49].

The transformation matrix results for 1989-2029 (see Table S9) clearly showed the changing status
and degraded condition of SRF that transformed TR to HE and a deterioration of up to 26.31% TR in
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the SRF will occur by the end of 2029 (Figure 5g). On the contrary, in a similar time period, HE will
increase by approximately 21.33%.

In addition, the study also discussed the DD (%) trend, gain/loss (%) and per year rate of changes
based on historical and projected data. The DD (%) trend data (Table 4) also identified the changing
nature of TR into HE to some extent, where the exact loss quantification and SFHQ and SFD assessments
were difficult to measure without extensive field data values of each compartment. Based on our LC
maps, we calculated SFHQ, CGP and SFD, considering the three equations (details are available in
Section 3.2.6) with the conditional assessment of special ranks for both types. The future data represent
significant negative downtrends and positive uptrends of TR and HE, with changes of —0.25% yr~!,
and 0.16% yr~, respectively, that might occur in the SRF in 2019-2029 (see Table 4). The SFHQ maps of
different time spans and their statistical presentation are shown in Figures 8a—f and 9, respectively,
where forest quality issues of TR and HE were considered based on the number of compartments
in that particular category. This idea was considered and applied to a total of 58 compartments for
calculation following the Equation (6). Then, a CGP map of SRF was derived based on Equation (7)
which represents how much forest will be available in the future in the good quality category. In
the final stage, SFD maps were successfully generated in three time domains (i.e., 1989-2019, 20192029
and 1989-2029) following Equation (8). The output statistics data are used in a statistical presentation
of FD of TR and HE categories, as well as total FD. The results indicate that, from 2019-2029 (10 years
into the future), 90% of TR will be facing extensive FD, compared to 9.62% of HE during that time.

Furthermore, the present study also identified that the mangrove ecosystem was constantly
changing and GFD occurred in both temporal and spatial scales by the natural and anthropogenic
forces which are completely controlled by the PSRF conceptual framework. These forces, related to
forest cover changes, are reported by Liao et al. [48] and Ghosh et al. [49] in their mangrove change
studies. However, our projections are based solely on the pattern of changes in the past and, as
well as the decisive factors provided in the PSRF conceptual framework, such as pressures related to
degradation, it is worth mentioning that events, such as cyclones, storm surges, temperature rises due to
global warming, severe river bank erosion, etc., are likely to increase both in frequency and intensity in
future periods, which needs to be considered. In addition, several other studies regarding mangrove FD
and land use changes across the coastal areas of the world, such as Guangdong Province of China [141],
the Caribbean Sea of Colombia [142] and the southeast coast of China [143], have been reported. By
observing the global scenario of mangroves with their present loss rate, the Intergovernmental Panel on
Climate Change (IPCC) [144] predicted that 30~40% of coastal wetlands could be lost in the coming 100
years. Their prediction results also support our projected results to a certain extent, which identified
that the quantity and quality of the SRF will be further degraded if the current trends continue and no
effective management is carried out. As a result of this, the entire SRF and its vicinity will be facing
unprecedented challenges in the near future.

To observe this future scenario and protect the SRF from further GFD, we recommend a few
suggestions along with our proposed PSRF conceptual framework, which is linked to policy and might
be an effective choice for forest policy-makers to immediately include, revise and implement with
the existing forest policy. Several important suggested policies are:

i Critically stressed areas should be identified on a top priority basis through RS and field
observation techniques, which can help to attain reforestation in the significantly reduced areas.

ii. An afforestation program along the riverbanks of SRF could protect from major cyclonic and
other events, therefore GFD could be minimized to a certain extent.

iii. Providing alternative sources of fuels for the forest-dependent people who regularly or once in
a week encroach in SRF legally or illegally.

iv. Cutting remaining TR inside the SRF regions should be strictly banned on an emergency basis,
whichwill be helpful to curb the losses of valuable forest resources including biodiversity and
habitat loss within our projected time (2029).
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V. Earthen polders inside or outside of SRF should be re-constructed, protected and secured with
high quality engineering construction.

vi. Massive coastal afforestation with highly resistive capacity of specific forests should be done at
the earliest opportunity to protect SRF from further cyclonic events and high tide storm surges.

vii.  To regain the earlier status, which may or may not be possible, vacant areas should be replaced
with an ideal species composition inside the forest where TR existed before.

viii.  Establishing a local monitoring team according to forest compartment will be helpful to closely
observe the forest encroachment.

ix. Existing forest policy (1999) of the Government of Bangladesh (GoB) should be revised at
the earliest opportunity, as the present study observed GFD in different time domains in the past
as well as in future scenarios.

X. To protect forest from further detrimental effects of climate change (one of the key drivers
of degradation) and to minimize the risk factors (both environmental and social), short- and
long-term assessments and a strategic plan including high-resolution satellite data considered
on an yearly basis would help considerably.

Xi. Studies on climate change due to global warming-related sea level rise, increasing vulnerability
of the forest ecosystem (e.g., open forest and increased warming of forest) with ecological
modeling in future time domains, including forest fragmentation, must be conducted at
the earliest opportunity.

xii. In addition to the above, an unmanned aerial vehicle (UAV) commonly known as drone- and
light detection and ranging (LIDAR)-based surveys and their application are suggested for
micro-level assessment of SRF in the near future.

xiii.  Finally, to prevent GFD, the Bangladesh Forest Service Commission, local forest beat officials,
and the Ministry of Environment, Forest and Climate Change (MoEF) of the GoB must take an
efficient bottom-up approach immediately to save the pristine SRE.

The findings of our study suggest that the use of RS and GIS and geointegrated techniques with
multi-sensor high-resolution data are helpful in this regard. The study applied the most common,
widely used and accepted image classification algorithm (i.e., maximum likelihood), which provided
an acceptable accuracy for the mangrove forest classification. However, the contemporary image
classification techniques of machine learning and deep learning can be sought in future. The Markov-CA
modeling exercise provided predicted scenarios according to the BAU scenario, which was also within
acceptable range in terms of accuracy. Moreover, the most intriguing and unique aspect of the paper
is the introduction of the methods of estimating SFHQ, CGP and SFD through FDI by developed
three equations to quantitatively measure the SFHQ and FDI. The equations have been applied to
the SRF, but the authors, however, recommend these at a universal level, including the PSRF conceptual
framework, which can help in understanding the state of mangrove forests in different regions of
the world. As we introduced the PSRF framework, it clearly shows the linkage between multiple
drivers that are responsible for forest quality and degradation. The authors also recommend the forest
officials of SRF in Bangladesh to revise their 1994 forest policy at the earliest opportunity. Forest
exploitation triggers GFD to a great extent in SRE. At the final outset, policy-makers need to look at
ways to conserve the SRF of Bangladesh in a sustainable manner.

6. Limitations and Future Scope of the Study

The study attempted to cover a wide range of topics which are very crucial in conservation
decisions. The study, however, is not beyond limitations. MFs are one of the less accessible areas,
therefore the validation process has a significant dependency on high-resolution satellite imagery.
Moreover, classifying MFs based on 30 m resolution multispectral imagery makes very difficult to
distinguish between TR and HE, as there are always overlapping issues. From the existing research, as
well as the study conducted by Sarker et al. 2016 [145], it is known that degradation is happening in
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the Sundarbans. Therefore, a more important index consideration, such as landscape change index
(LCI) proposed by Krajewski et al. [146], our provided index (used in this study) of SFHQ with ranks
and CGP and SFD based on FDI ranking (user friendly and can be modified), along with drone-based
forest surveys with other satellite sensors [147] with high-resolution satellite images, such as Sentinel 2
MSI, EO-1 Hyperion [148] and UAV [149], might be effective in near-future research.

More importantly, SRF is considered a dynamic forest ecosystem, therefore, lots of driver effects
can be considered with climate change-induced modeling scenarios to improve the future of the forest.
However, within the limited scope of time, budget and accessibility, the LC is considered as the main
variable in a BAU practice. As RS-based Earth observation is considered as the main data derivation
technique, not all the drivers can be directly fitted and exercised in the model, which is a weakness of
this paper. Moreover, a dynamic user-centric flexible parameter model is proposed in the future scope
to overcome these limitations.

7. Conclusions

From the overall assessment of this SRF study initiated by the John D. Rockefeller project by
the USAID and Winrock International and its mangrove assessment team in Bangladesh, it has been
clearly noticed that forest cover is greatly changing and extremely degraded, especially TR, in the study
areas. In the last 30 years (1989-2019), the forest greatly lost its aesthetic quality including its values due
to a downtrend in forest coverage. Additionally, it is confirmed by the predicted results of this study
that forest cover will continuously be degraded and depleted. Moreover, how drastically the land
cover of SRF for selected trees such as TR and HE, considered as mangrove forest, have been degraded
over the years is clearly stated and presented in this study.

The forested area was degraded in 1989-2009 by about 18.53% for TR of the total share of land
area. The reason for this GFD in 2009 was due to the devastating Cyclone Sidr, which severely
affected the forest in 2007. Meanwhile, TR was degraded 3.81% and 1.46% in 2009-2014 and 20142019,
respectively, and over the 30-year (1989-2019) time scale, based on the SFHQ equation, TR was degraded
by 98.29% with an annual rate of change of 3.28%. However, if this trend continues without any
intervening measures (by lack of monitoring and policy implementation), the LC for trees, especially
TR in the SRF, will be degraded by 90.38% in the next 10 years (from 2019 to 2029), and over the 40-year
scale (1989-2029), the degradation of TR is extremely high, as much as 99.01%, resulting in the almost
complete disappearance of TR, a sign of GFD and great concern for the world forest communities. This
forest is degrading and, without any hesitation, we must act now.

Moreover, we have considered the freely available long-term historical Landsat satellite images
from the USGS archive and found the potential to observe and determine the changing status of
the SRF in the past as well as for future modeling of forest cover change. Based on the past two LC
classified results, the simulation and future prediction were successfully performed with the geospatial
modeling software, which was found to be ideally suited for the prediction of forest cover change
and FD research. In this respect, data coupling with other RS and GIS software was more robust and
ideal for prediction research because of the spatiality and multifaceted design module integrated in
the TerrSet software which is simple to use. However, the methods considered in this study can be
effectively used for future analysis too in the same regions or similar mangrove wetland areas across
the globe.

In conclusion, for better policy recommendations, managers and policy-makers need to envision
the future management of forest resources on the basis of the analyses of the great degradation status
of the past, the existing situation and the future projections of the SRF, including our recommended
guidelines linked to policy. The coupling of remote sensing (RS) and GIS techniques and the Markov-CA
model will be a good example in this regard, along with the availability of the multi-date satellite
images from the past and present. Therefore, the study highly recommends the relevant government
agencies at the highest policy-making level to design and implement short- and long-term strategies
for sustainable management and use of the SRF’s valuable resources.
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