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Abstract: Many process-based models for carbon flux predictions have faced a wide range of
uncertainty issues. The complex interactions between the atmosphere and the forest ecosystems can
lead to uncertainties in the model result. On the other hand, artificial intelligence (AI) techniques,
which are novel methods to resolve complex and nonlinear problems, have shown a possibility
for forest ecological applications. This study is the first step to present an objective comparison
between multiple AI models for the daily forest gross primary productivity (GPP) prediction using
satellite remote sensing data. We built the AI models such as support vector machine (SVM),
random forest (RF), artificial neural network (ANN), and deep neural network (DNN) using in-situ
observations from an eddy covariance (EC) flux tower and satellite remote sensing data such as
albedo, aerosol, temperature, and vegetation index. We focused on the Gwangneung site from the
Korea Regional Flux Network (KoFlux) in South Korea, 2006–2015. As a result, the DNN model
outperformed the other three models through an intensive hyperparameter optimization, with the
correlation coefficient (CC) of 0.93 and the mean absolute error (MAE) of 0.68 g m−2 d−1 in a 10-fold
blind test. We showed that the DNN model also performed well under conditions of cold waves,
heavy rain, and an autumnal heatwave. As future work, a comprehensive comparison with the
result of process-based models will be necessary using a more extensive EC database from various
forest ecosystems.

Keywords: artificial intelligence; forest ecosystem; gross primary productivity; eddy covariance;
remote sensing; satellite image

1. Introduction

Forests, which cover 30% of the Earth’s land area [1], play an essential role in global carbon
flux because of their ability to store much more significant amounts of carbon than other terrestrial
ecosystems [2]. Terrestrial gross primary productivity (GPP) in the forest ecosystem is the total
carbon generated by the photosynthesis of vegetation. GPP refers to the total uptake of carbon
dioxide (CO2) during photosynthesis, which is the primary driver of subsequent ecosystem processes,
including vegetation growth and yields [3–5]. GPP depends on the change in environmental factors,
such as light, temperature, air humidity, air turbulence, and CO2 concentration. It is also affected by
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ecosystem physiology, such as nitrogen and proteins supporting leaf carboxylation capacity, the plant
structure for exposing photosynthetically active materials to light, and the stomatal restrictions
on CO2 diffusion [6,7]. For measurement and prediction of forest GPP, eddy covariance (EC) flux
tower observations, satellite observations, and process-based models are often used. The EC method
enables the calculation of forest GPP using the net ecosystem exchange (NEE) derived from direct
measurements of the vertical turbulence transport of the atmosphere according to meteorological
conditions [8]. More than 500 EC flux observation sites are operated worldwide and provide reasonably
accurate estimates of carbon exchange. However, the point-based observations are not sufficient to
cover spatially continuous areas [9,10].

Satellite observations and process-based models are used to overcome the limitation of spatial
continuity of the EC measurements [11]. However, satellite GPP products may not fully ensure
the reliability of data, thus they require a more advanced calibration process suitable for local-scale
applications [12]. Process-based models for forest GPP were designed to take account of physiological
and environmental factors of forest ecosystems at various scales [13–15]. However, it is difficult
for the process-based models to handle complex and nonlinear aspects of biological, physiological,
and chemical mechanisms of plant organisms under different climatic and topographic conditions.
Furthermore, a number of input parameters related to physiology and phenology of vegetation should
be precisely calibrated for the process-based models [16,17], which is a very challenging task for
local-scale applications.

Forest GPP is a complex and nonlinear problem because its relationships with photosynthetic
rates are spatially and temporally heterogeneous. Nowadays, artificial intelligence (AI) approaches
are adopted because AI can efficiently handle the problems of nonlinearity and complexity related to
forest ecosystems [18]. AI includes machine learning models, such as support vector machine (SVM)
and random forest (RF), and neural network models, such as artificial neural network (ANN) and deep
neural network (DNN). Previous forest studies using AI methods include the classification of tree
species [19–22] and the estimation of carbon or heat fluxes [23–25]. They have sufficiently shown the
potential of AI for forest applications. However, a comprehensive comparison between multiple AI
models for forest applications has rarely been reported. The FluxCom (Jena, Germany) provides an
AI-based operative GPP product with a spatial resolution of 10 km and a temporal resolution of 8 days.
The spatial resolution is, however, not sufficient to investigate the GPP of locally inhomogeneous forest
ecosystems for the countries with complex terrains such as South Korea.

This study examines the application of AI methods to improve the reliability of the daily GPP
predictions for the forest in South Korea using in-situ observations from an EC flux tower and the
satellite remote sensing data such as solar radiation, temperature, humidity, and vegetation index.
The purposes of this study are (1) to objectively compare the performance of multiple AI models
such as SVM, RF, ANN, and DNN for the daily forest GPP in South Korea and (2) to examine
the accuracy characteristics according to AI models in relation to different seasons and unexpected
weather conditions. We focused on the Gwangneung site from the Korea Regional Flux Network
(KoFlux) in South Korea, 2006–2015. Furthermore, this study suggests the possibility of overcoming
the spatial limitation of point-based observations and applying the AI model over South Korea.

2. Materials and Methods

2.1. Study Site

The Gwangneung National Arboretum is a warm-temperate deciduous forest stand of which
area is approximately 2.2 km2 (37◦45′25′′ N, 127◦09′12′′ E, 340 m above sea level). It is a KoFlux
supersite (Figure 1) [26] and belongs to the worldwide FLUXNET network. The radius of the flux tower
footprint is about 1 km. For a 30 year period between 1981 and 2010, the mean annual temperature
was 11.2 ◦C, and the mean annual precipitation was 1.502 mm. The precipitation was concentrated
during the period between late June and late July due to the influence of the monsoon climate [27]. The
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site is located on a slope of 10–20◦, facing southwest. Gwangneung has been protected to minimize
human disturbance over the last 500 years [28]. The forest stand is at the climax and is dominated by
80 to 200 years old Jolcham oak (Quercus serrata) and Loose-flower hornbeam (Carpinus laxiflora) of an
average height of about 18 m [29]. The maximum leaf area index (LAI) is approximately 6 m2 m−2

in June.
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Figure 1. Gwangneung KoFlux supersite: the location in South Korea (a), a zoomed-in map with
its watershed (b), and a photo of the flux tower (c).

2.2. Data

2.2.1. Overview

Figure 2 shows a summary of the data used in this study. Input variables for the four AI models
(SVM, RF, ANN, and DNN) include downward shortwave radiation (Rs↓), air temperature (Tair),
vapor pressure deficit (VPD), and enhanced vegetation index (EVI) obtained from the Moderate-resolution
Imaging Spectroradiometer (MODIS) products. GPP is the output value that should be adjusted using the
in-situ observations from the EC flux tower.

Forests 2020, 11, x FOR PEER REVIEW 3 of 17 

 

(Carpinus laxiflora) of an average height of about 18 m [29]. The maximum leaf area index (LAI) is 
approximately 6 m2 m−2 in June. 

 
Figure 1. Gwangneung KoFlux supersite: the location in South Korea (a), a zoomed-in map with its 
watershed (b), and a photo of the flux tower (c). 

2.2. Data 

2.2.1. Overview 

Figure 2 shows a summary of the data used in this study. Input variables for the four AI models 
(SVM, RF, ANN, and DNN) include downward shortwave radiation (Rs↓), air temperature (Tair), 
vapor pressure deficit (VPD), and enhanced vegetation index (EVI) obtained from the Moderate-
resolution Imaging Spectroradiometer (MODIS) products. GPP is the output value that should be 
adjusted using the in-situ observations from the EC flux tower. 

 
Figure 2. Summary of the data used in this study. Input variables were the satellite data such as 
downward shortwave radiation (Rs↓), air temperature (Tair), vapor pressure deficit (VPD), and 
enhanced vegetation index (EVI). Gross primary productivity (GPP), the output value, was adjusted 
using the in-situ observations from the eddy covariance (EC) flux tower. 

Figure 2. Summary of the data used in this study. Input variables were the satellite data such as
downward shortwave radiation (Rs↓), air temperature (Tair), vapor pressure deficit (VPD), and enhanced
vegetation index (EVI). Gross primary productivity (GPP), the output value, was adjusted using the
in-situ observations from the eddy covariance (EC) flux tower.
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2.2.2. Eddy Covariance Flux Data

For the ground-truth data at the Gwangneung forest, we accumulated the measurements from an
open-path EC and the meteorological system at 40 m above ground. In the EC system, vertical wind
speed (ω) was observed by a three-dimensional sonic anemometer (CSAT3, Campbell Scientific,
Logan, UT, USA), and the CO2 concentration (ρc) was measured by an open-path infrared gas analyzer
(LI-7500, LI-COR Environmental, Lincoln, NE, USA). These data were collected by a data logger
(CR3000, Campbell Scientific, Logan, UT, USA) at the frequency of 10 Hz. Then, the half-hourly
vertical CO2 flux, which is equal to NEE, was calculated from the covariance between the fluctuations
in ω and ρc. To derive the NEE from the 10 Hz raw data, we carried out the preprocessing such
as air density correction and spike detection. Further, quality control, gap-filling, and nighttime
CO2 flux correction were also conducted according to the standard data-processing protocol of
KoFlux [28,29]. The forest GPP was calculated by adding the ecosystem respiration (Reco) to
the NEE. Given that the Reco is mainly governed by the thermal regime, the Reco was estimated
using the relationship between the temperature and the CO2 efflux rate derived from nighttime
EC measurements. Such efforts should have improved the quality of the GPP data. In addition,
meteorological measurements, such as solar radiation, photosynthetically active radiation, net radiation,
air temperature, humidity, and precipitation, were sampled every second, averaged over 30 min,
and logged in another data logger (CR3000, Campbell Scientific, Logan, UT, USA). They were used as
the ancillary variables for the nighttime correction and gap-filling of NEE, and the estimation of Reco

and GPP.

2.2.3. Input Data Processing

MODIS is a satellite sensor that has been developed to monitor Earth’s atmosphere, land, and ocean
environment with the launch of Terra and Aqua satellites in 1999 and 2002, respectively [30]. The input
data for the AI models (Rs↓, Tair, VPD, and EVI) were derived from multiple MODIS products (Table 1).
Most of the data have a spatial resolution of 1 to 5 km, which is suitable for the area size (2.2 km2)
of the forest stand at the Gwangneung site.

Table 1. Moderate-resolution Imaging Spectroradiometer (MODIS) products used in the calculation
of input data for the estimation of daily gross primary productivity (GPP) in the forest of South Korea.

MODIS Product Data Extracted Spatial Resolution Temporal
Compositing

Related Input Variable
for This Study

MCD43B3 Black- and white-sky albedo for
shortwave radiation 1 km 16 days (1) Rs↓

(3)

MYD04_L2 Aerosol optical depth 10 km 1 day Rs↓

MYD05_L2 Total column precipitable water 5 km 1 day Rs↓

MYD07_L2 Air and dew-point temperatures,
total ozone, and surface pressure 5 km 1 day Rs↓, Tair

(4), and VPD (5)

MOD13A2 (Terra)
MYD13A2 (Aqua) Enhanced vegetation index 1 km 8 days (2) EVI (6)

(1) 16 day composite was assigned to each of the 16 days; (2) 8 day composite was interpolated to daily values;
(3) downward shortwave radiation; (4) air temperature; (5) vapor pressure deficit; (6) enhanced vegetation index.

Rs↓, a key component for the land surface energy budget, is primarily used as a meteorological
input variable for the retrieval of GPP [31]. To calculate Rs↓, we used a 16 day composite of the
black- and the white-sky albedos for shortwave radiation extracted from the MCD43B3 product.
For the parameterization of Rs↓, we employed the Bird Model [32] that considers both diffuse and
direct radiation. The Rs↓ is then expressed as:

Rs ↓=
(
Idir + Idi f

)
/
(
1− ag·as

)
(1)
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where Idir is the direct radiation; Idi f is the diffuse radiation; ag is the ground albedo; as is the
atmospheric albedo. The 16 day albedo was assigned to each of the 16 days because the forest albedo does
not significantly vary during a 16 day period [30,33]. From the daily black- and white-sky albedos, the actual
albedo was calculated using the MODIS lookup table for a fraction of the diffuse radiation regarding
a given solar zenith angle and a 550 nm aerosol optical depth (AOD) [33]. For the parameterization
of AOD, we rearranged the daily AOD images using a statistical gap-filling method [34,35]. Total column
precipitable water (TPW), total ozone, and surface pressure were also parameterized according to the Bird
Model [33]. The daily Rs↓ calculated by this process showed high accuracy with the correlation coefficient
(CC) over 0.9 against the Automated Surface Observing System (ASOS) in South Korea [35].

The air and dew-point temperatures from the lowest atmospheric layer (surface layer) were
used in the calculation of VPD by subtracting the actual vapor pressure (ea) from the saturated vapor
pressure (es) [36]. The es is a function of air temperature, and the ea can be derived from the es and the
relative humidity calculated by air and dew-point temperatures.

The EVI can mitigate the saturation problem of the normalized difference vegetation index (NDVI),
thus the EVI is commonly used in forest studies because it is more suitable for the representation of
vegetation greenness in densely vegetated areas [37–39]. The MOD13A2 (Terra) and the MYD13A2
(Aqua) products provide 16 day composites for NDVI and EVI. Because the 16 day periods of the Terra
and the Aqua products were crossing each other, we could obtain 8 day composites by combining the
Terra and the Aqua products. The 8 day EVI was then converted to daily value using a cubic spline
interpolation method because the forest greenness usually shows gradual changes such as the cosine
curve during a year.

2.3. Artificial Intelligence Models

2.3.1. Support Vector Machine

SVM is a technique for optimal classification, and the support vector regression (SVR) is a regression
model for the optimally classified data groups derived from the SVM. For optimal classification,
a maximum margin hyperplane (MMH) can be set up by maximizing the margin between data groups
using nonlinear kernel functions such as polynomial and Gaussian functions [40]. We used the e1071
library in R and the gaussian radial basis function for the nonlinear MMH. The cost parameter was set
to 1 for outlier management, and the gamma parameter was set to 1/n (n is the data dimension) for the
definition of a normal distribution.

2.3.2. Random Forest

RF is an ensemble method that utilizes a number of decision trees derived from random samples.
If necessary, a bootstrap process is performed for resampling by taking account of the sample distribution.
A bagging (bootstrap aggregating) process creates a final solution by averaging the results from the
bootstrapped trees [41]. In our experiment, the number of trees was set to 500, and the number of
variables used for splitting tree branches was set to n/2 (n is the number of input variables), using the
randomForest library in R.

2.3.3. Artificial Neural Network

ANN emulates a biological neural system. It consists of an input layer for explanatory variables,
multiple hidden layers for nonlinear computations, and an output layer to produce a result [42,43].
The sets of weight and bias in the neural network are optimized by minimizing a cost function
between true labels and estimated values. We carried out the hyperparameter optimization using
the nnet library in R, such as 2 for the number of hidden units; 100 for the maximum iteration;
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm for the adaptive learning rate [43].
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2.3.4. Deep Neural Network

The classic ANN might stop at a locally optimized state, and the generic machine learning might
cause an overfitting problem. DNN is a technique developed to mitigate these problems by an intensive
optimization in the deep and thick hidden layers in a neural network. The rectified linear units
(ReLU) activation function can avoid the vanishing gradient phenomenon during the minimization of
a loss function. The regularization can make the weighting scheme of a neural network less biased to
a specific neuron, and the dropout methods can cope with unexpected cases in a newly given dataset
through a handicapped training with the random elimination of part of the neurons [44]. We adopted
the AdaDelta optimizer, which can adjust the learning rate of a neural network adaptively using
a dynamic update mechanism and thus can train a DNN model more efficiently and precisely [45].
The configuration process of our DNN model is summarized in Figure 3 [46]. We used the h2o library
in R for the hyperparameter optimization, such as 500–500–500 for the hidden unit; 300 for the epoch;
ReLU for the activation function; AdaDelta for the optimizer; 20% for the dropout ratio.
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2.4. Validations

The daily GPP estimates by the four AI models were validated using the leave-one-year-out
(a.k.a. jackknife) method. The calibration was carried out from a 10 year dataset except for one year,
and the validation was conducted for the excluded one year. Such cross-validation processes were
repeated ten times for each year from 2006 to 2015. Validation statistics such as mean bias error (MBE),
mean absolute error (MAE), root mean square error (RMSE), and CC were used.

To compare the performance of the AI predictions with that of the currently operative GPP products,
we collected the MODIS and the FluxCom GPP during 2006–2015. MODIS Terra and Aqua products
(MOD17A2HGF and MYD17A2HGF) comprise a gap-filled dataset that has less uncertainty than
the previous version (MOD17A2 and MYD17A2). The gap-filling process was conducted at the end
of each year using a reliable dataset for the fraction of photosynthetically active radiation (FPAR)
and LAI [47]. Because these products have a spatial resolution of 500 m and a temporal resolution
of 8 days, our daily GPP estimates were aggregated into an 8 day composite for the comparison
of performance. For another comparison, we obtained the AI-based FluxCom GPP products with
a spatial resolution of 10 km and a temporal resolution of 8 days. However, all the pixels on the
Gwangneung site had missing values for the entire period, thus the performance comparison with the
FluxCom GPP could not be carried out.
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3. Results

3.1. GPP Estimation by AI Models

Tables 2 and 3 show the statistics of the daily GPP at the Gwangneung site between 2006 and 2015,
including the predictions from SVM, RF, ANN, and DNN as well as the observations from the EC.
The mean values of the predicted GPP by the AI models (3.26–3.35 g m−2 d−1) were very similar to
those of the EC measurements (3.30 g m−2 d−1). However, the AI models did not well represent very
low or very high GPP values, thus the daily GPP under approximately 0.5 g m−2 d−1 or over about
8.5 g m−2 d−1 was rarely simulated by the AI models. Among the four AI models, the DNN showed
the closest predictions in terms of the minimum, maximum, and mean values.

Figures 4–7 show the seasonal changes of the predicted daily GPP at the Gwangneung site for the
period between 2006 and 2015. The four AI models closely traced the growing season (increasing phase)
and the senescence (decreasing phase) of the forest every year. The curve in spring showed an
exponential increment, and that of autumn had a relatively longer decreasing period in both AI and
EC GPPs. The DNN model followed the GPP peak in May and June better than SVM, RF, and ANN
models (Figures 4a, 5a, 6a and 7a).

Table 4 shows the validation statistics of the daily GPP in terms of MBE, MAE, RMSE, and CC.
The averages of CC had small differences among the four AI models (between 0.90 and 0.93), but the
DNN model demonstrated significantly better accuracy in terms of MAE and RMSE. The MAE was
approximately 13% ((0.77−0.68)/0.68) to 25% ((0.85−0.68)/0.68) better, and the RMSE was about 11%
((1.07−0.96)/0.96) to 21% ((1.16−0.96)/0.96) better than the other three models. In the year 2011,
South Korea experienced multiple extreme weather events. The four AI models showed the
lowest accuracy, with the CC between 0.81 and 0.86 for SVM, RF, and ANN and the CC of 0.90 for the
DNN model. A cold wave lasted for almost 40 days from December 2010 to January 2011. Heavy rain
for nine consecutive days in June resulted in a large-scale landslide in Seoul. An extraordinarily late
heatwave occurred for several days in autumn. Such extreme weather events led to a lower GPP
(2.40 g m−2 d−1) than the usual years (3.30 g m−2 d−1), thus the GPP predictions using Rs↓, Tair, VPD,
and EVI did not perform very well due to the unexpected weather conditions. However, the DNN
model showed similar predictability to the usual years despite the extreme weather: the MAE of
0.77 g m−2 d−1, the RMSE of 1.05 g m−2 d−1, and the CC of 0.90. Figures 4c, 5c, 6c and 7c show the time
series of 2015 when the predictions of the four models were best among all the years. On the other
hand, the predictions in 2011 by SVM, RF, and ANN models did not coincide very well with the EC
observations (Figures 4b, 5b and 6b), whereas the DNN predictions in 2011 in Figure 7b had relatively
good agreements with the EC values. Additionally, the DNN model could simulate very high GPP
values over about 8 g m−2 d−1, while the other three models showed an upward stiffness that could
not produce such high values.

Table 2. Statistics of daily gross primary productivity (GPP) at the Gwangneung site for the period
between 2006 and 2015, measured by eddy covariance (EC) and predicted by support vector machine
(SVM), random forest (RF), artificial neural network (ANN), and deep neural network (DNN).

Method Min (1) (g m−2 d−1) Max (2) (g m−2 d−1) Mean (g m−2 d−1)

EC 0.28 9.20 3.30
SVM 0.58 7.76 3.26
RF 0.74 7.83 3.35

ANN 0.85 7.49 3.35
DNN 0.55 8.49 3.29

(1) Minimum value except for lower 2% data; (2) maximum value except for upper 2% data.
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Table 3. Statistics of daily gross primary productivity (GPP) at the Gwangneung site for each year
between 2006 and 2015, measured by eddy covariance (EC) and predicted by support vector machine
(SVM), random forest (RF), artificial neural network (ANN), and deep neural network (DNN).

Year Method Min (1) (g m−2 d−1) Max (2) (g m−2 d−1) Mean (g m−2 d−1)

2006 EC 0.42 9.68 3.10
SVM 0.64 7.69 3.27
RF 0.73 7.70 3.34

ANN 0.90 7.60 3.37
DNN 0.74 8.15 3.27

2007 EC 0.44 8.47 3.19
SVM 0.62 7.97 3.15
RF 0.76 7.82 3.28

ANN 0.91 7.22 3.25
DNN 0.55 7.44 2.82

2008 EC 0.32 9.76 3.65
SVM 0.65 7.55 3.33
RF 0.76 7.71 3.40

ANN 0.74 7.65 3.39
DNN 1.04 8.85 3.77

2009 EC 0.28 9.66 3.53
SVM 0.59 7.69 3.25
RF 0.77 7.81 3.36

ANN 0.87 7.60 3.28
DNN 0.34 8.95 3.45

2010 EC 0.41 8.55 2.98
SVM 0.56 7.74 3.11
RF 0.71 7.73 3.16

ANN 0.86 7.60 3.16
DNN 0.59 8.30 2.95

2011 EC 0.36 9.26 3.14
SVM 0.47 7.85 2.94
RF 0.70 7.62 3.10

ANN 0.85 7.22 3.20
DNN 1.38 8.57 3.27

2012 EC 0.26 8.51 3.35
SVM 0.60 7.70 3.24
RF 0.77 7.83 3.39

ANN 0.86 7.70 3.39
DNN 0.32 8.50 3.32

2013 EC −0.03 8.84 3.05
SVM 0.58 7.72 3.30
RF 0.73 7.73 3.29

ANN 0.83 7.20 3.37
DNN 0.32 8.49 3.07

2014 EC 0.33 9.35 3.56
SVM 0.57 7.70 3.43
RF 0.77 7.89 3.53

ANN 0.90 7.19 3.49
DNN 0.65 8.04 3.51

2015 EC 0.25 8.48 3.49
SVM 0.61 7.84 3.56
RF 0.73 8.10 3.66

ANN 0.92 7.22 3.62
DNN 0.72 7.72 3.45

(1) Minimum value except for lower 2% data; (2) maximum value except for upper 2% data.
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Table 4. Validation statistics of daily gross primary productivity (GPP) at the Gwangneung site for
the period between 2006 and 2015, predicted by support vector machine (SVM), random forest (RF),
artificial neural network (ANN), and deep neural network (DNN).

Model Year MBE (1)

(g m−2 d−1)
MAE (2)

(g m−2 d−1)
RMSE (3)

(g m−2 d−1)
CC
(4) Model Year MBE

(g m−2 d−1)
MAE

(g m−2 d−1)
RMSE

(g m−2 d−1) CC

SVM 2006 0.17 0.87 1.24 0.88 RF 2006 0.25 0.80 1.14 0.90
2007 −0.04 0.75 1.01 0.91 2007 0.09 0.71 0.96 0.92
2008 −0.31 0.88 1.25 0.91 2008 −0.25 0.81 1.17 0.92
2009 −0.28 0.78 1.12 0.92 2009 −0.17 0.73 1.04 0.93
2010 0.13 0.79 1.06 0.90 2010 0.18 0.77 1.08 0.90
2011 −0.20 1.07 1.45 0.81 2011 −0.04 0.97 1.26 0.86
2012 −0.11 0.81 1.12 0.91 2012 0.04 0.69 0.97 0.93
2013 0.26 0.77 1.06 0.92 2013 0.24 0.69 0.96 0.94
2014 −0.13 0.89 1.24 0.91 2014 −0.03 0.85 1.21 0.91
2015 0.08 0.68 0.95 0.93 2015 0.17 0.68 0.95 0.94
Avg. −0.04 0.83 1.15 0.90 Avg. 0.05 0.77 1.07 0.92

ANN 2006 0.27 0.87 1.24 0.88 DNN 2006 0.18 0.70 1.02 0.92
2007 0.06 0.79 1.08 0.90 2007 −0.37 0.75 1.03 0.92
2008 −0.26 0.91 1.23 0.91 2008 0.12 0.71 0.97 0.94
2009 −0.24 0.77 1.09 0.93 2009 −0.07 0.67 0.95 0.94
2010 0.18 0.84 1.16 0.88 2010 −0.03 0.67 0.94 0.92
2011 0.05 1.06 1.39 0.83 2011 0.13 0.77 1.05 0.90
2012 0.03 0.81 1.11 0.91 2012 −0.03 0.68 0.92 0.94
2013 0.32 0.82 1.15 0.91 2013 0.02 0.58 0.87 0.94
2014 −0.07 0.88 1.23 0.91 2014 −0.05 0.66 0.97 0.94
2015 0.14 0.70 0.96 0.93 2015 −0.04 0.63 0.90 0.94
Avg. 0.05 0.85 1.16 0.90 Avg. −0.01 0.68 0.96 0.93

(1) mean bias error; (2) mean absolute error; (3) root mean square error; (4) correlation coefficient.

3.2. Seasonal Characteristics of Validation Statistics

We examined the accuracy of daily GPP predictions according to seasons: spring (March, April,
and May), summer (June, July, and August), autumn (September, October, and November), and winter
(December, January, and February). Figure 8 shows the CC between the observed and the predicted
GPP by the four AI models. The CC of spring and autumn was quite high (around 0.9), while that
of summer was relatively low (approximately 0.7 to 0.8). The accuracy of winter was worse than
other seasons: the CC for SVM, RF, and ANN was around 0 to 0.3, while the CC for DNN was
about 0.45 (Figure 8). The CC values in the cold months from November to March were also low.
Nevertheless, the DNN model showed an overall concentrated scatterplot along the 1:1 line compared
to the other three models that had a tendency of underestimation in spring and summer and a tendency
of overestimation in autumn (Figures 9 and 10).
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3.3. Comparisons with Operative GPP Products

Table 5 shows the validation statistics for the 460 cases of the 8 day composite against the EC
measurements during 2006–2015. The performances of the three 8 day composites (DNN, Terra, and Aqua)
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were quite good because of temporal smoothing effects, but the DNN estimates outperformed the Terra
and the Aqua products for the Gwangneung site. In terms of the RMSE, our result was 58% better than that
of Terra ((1.278−0.537)/1.278) and 55% better than that of Aqua ((1.195−0.537)/1.195). Moreover, the DNN
estimates showed an excellent CC of 0.975.

Table 5. Validation statistics of 8 day gross primary productivity (GPP) at the Gwangneung site from
Moderate-resolution Imaging Spectroradiometer (MODIS) products and the deep neural network
(DNN) predictions, against the eddy covariance (EC) measurements during 2006–2015.

GPP Data MBE
(g m−2 d−1)

MAE
(g m−2 d−1)

RMSE
(g m−2 d−1) CC

DNN −0.014 0.405 0.537 0.975
MODIS (Terra) 0.224 0.998 1.278 0.916
MODIS (Aqua) 0.119 0.946 1.195 0.915

4. Discussions

In this study, we examined the suitability and the potential of AI models for the forest GPP
predictions in South Korea. Among the four AI models, DNN showed the best performance in terms
of validation statistics and the applicability to unexpected weather conditions. We discussed the
performance of the AI models and explored the advantages and the limitations of our experiment.

4.1. Performance of AI Models

The results showed a tendency of strong agreement between the GPPs predicted by the AI
models and by the EC measurements, explaining approximately 90% of the temporal changes in
daily GPP. The phenology of forest vegetation is primarily divided into growth and senescence phases.
The predicted GPP at the start of the growing season (increasing phase of each year) and the end
of the growing season (decreasing phase of each year) consistently followed the EC measurements.
Understanding the seasonal development on daily GPP and environmental factors such as Rs↓, Tair, VPD,
and EVI is critical to the applicability of the nonlinear relationships between the input variables and
the GPP predictions. Each phase follows a different phenological development, leading to different
relationships between the input variables and the GPP. The AI models consistently demonstrated
a reasonable correlation in the estimation of daily GPP (Table 4). Indeed, AI techniques in recent
years have been considered a viable option for the retrieval of terrestrial carbon fluxes on a spatially
continuous grid. Our experiment also showed the possibility of the AI-based GPP prediction,
particularly for the local-scale applications for the countries with complex terrains such as South Korea.
The integration of AI techniques with satellite images can be an alternative to studies of the interactions
between atmosphere and forest ecosystems. Previous studies showed that the AI applications combined
with satellite images were effective for estimation of GPP, above-ground biomass, ecosystem respiration,
and latent heat flux [24,25,48,49].

Moreover, a deep learning approach such as DNN in our experiment can be thought of as a better
method than the classical AI models such as RF, SVM, and ANN. The DNN presented a superior
performance to the other three models in terms of the validation statistics and the representation of
seasonal patterns. The overall accuracy decreased in winter because the site is a warm-temperate
deciduous forest in which winter photosynthesis is almost inactive. However, the DNN could
simulate the winter GPP values much better than the other three AI models. It is because the
DNN is a method developed to resolve local minima and overfitting problems of the classical
AI models. The DNN model was more optimized in a deep and thick network using the ReLU
activation function, the AdaDelta optimizer, and the appropriate outlier management by regularization
and dropout techniques. Moreover, we demonstrated that the DNN model performed well despite the
multiple extreme weather events such as cold waves, heavy rain, and an autumnal heatwave in 2011 in
South Korea. The comparison with MODIS products also showed that our DNN model was locally
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optimized for the forests in South Korea on a daily basis, while the parameterization of the MODIS
GPP was not specifically suitable for South Korea. Such an outcome of the DNN model was partly
because of the spatiotemporally appropriate arrangement of the satellite data. The 16 day albedo and
the daily EVI interpolated from 8 day data were also suitable for use in the estimation of daily GPP,
which is in accordance with previous studies [50,51].

4.2. Limitations and Future Work

We made sure that the AI models such as DNN were very effective in resolving the nonlinear
issues for GPP prediction. The DNN model provides a useful method to overcome the limitations
of linear and process-based models. However, a limited volume of data can lead to degradation of
accuracy since it may not sufficiently represent the various aspects of GPP changes [24,43]. A large
database from various locations of EC measurements will be required for a more advanced DNN model.
A longer time series to cover various weather events will also be necessary to cope with unexpected
outlier cases. By using such big data for GPP prediction, we can produce an alternative GPP map
from the improved DNN model. Moreover, a spatially continuous retrieval of forest GPP over South
Korea can be achieved after the improved DNN model is combined with a higher-quality dataset.
For example, the advanced versions of the MODIS products, such as gap-filled snow-free daily
albedo (MCD43GF), gap-filled daily AOD with the multi-angle implementation of atmospheric
correction (MAIAC) (MCD19A2), and gap-filled daily surface radiation (MCD18A1), are now available.
Additionally, the meteorological reanalysis such as Local Data Assimilation and Prediction System
(LDAPS) of South Korea can be used for the local-scale land surface variables such as sensible/latent/soil
heat flux, temperature, humidity, wind, and precipitation. The use of meteorological reanalysis will
also help avoid the problem of the cloud-covered pixels in satellite images.

5. Conclusions

Many process-based models for carbon flux predictions have faced a wide range of uncertainty
issues in the model result. The complex interactions between atmosphere and forest ecosystems are
the main reason for the uncertainty. However, the setting of too many initial parameters might lead
to disturbing accuracy improvement. On the other hand, artificial intelligence techniques, which are
novel methods to resolve complex and nonlinear problems, have shown a possibility for forest
ecological applications. This study is the first step to present an objective comparison between multiple
AI models for the daily forest GPP prediction using satellite remote sensing data. In particular, the DNN
model outperformed the other three models through an intensive hyperparameter optimization in a
deep learning network. We showed that the DNN model also performed well under conditions of
cold waves, heavy rain, and an autumnal heatwave. In the experiment, our DNN model showed better
accuracy than the operative MODIS GPP product, presumably because of the localized optimization
for the forests in South Korea. A spatially continuous retrieval of forest GPP can be achieved after
the integration of more improved DNN models and higher-quality datasets from satellite remote
sensing and meteorological reanalysis. As future work, a comprehensive comparison with the
result of process-based models will be necessary using a more extensive EC database from various
forest ecosystems. Such comparisons can produce a synergy between the process-based models that
have advantages for the understanding of the mechanism and the AI models that have the ability to
solve nonlinear problems. In this sense, more efforts for the AI-based modeling of forest GPP will also
be required.
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