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Abstract: Survival probabilities of white oak (Quercus alba) in small circular group and single tree
openings ranging in size from 0.001 to 0.175 ha twelve years after opening creation are presented.
At the beginning of the study, 3948 advance reproduction white oak trees were measured and tagged
to determine survival of each tagged seedling at the end of the study. Logistic regression indicated
that variables important in predicting advance reproduction survival included initial seedling basal
diameter, aspect, slope, canopy opening size, opening border tree height and treatment for control of
understory competition. Survival probability ranged from 10% to 90% depending on the combination
of and disposition of variables. For these small openings, the greatest probability of survival of
advance reproduction resulted when advance reproduction initial basal diameters were ≥1 cm,
when the height of trees bordering the openings were relatively short, with understory chemical
competition control, in the largest canopy openings, on 6% slopes, and on southwest and northwest
aspects. These criteria can help managers select sites and treatment options for group opening
creation that provide optimal conditions for advance reproduction survival.
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1. Introduction

Group selection is a regeneration method in which trees are harvested in small groups which
typically range in size from 0.08 to 0.20 ha [1] but can sometimes be as large as 0.80 ha. Group selection
is a useful silvicultural tool when planning management of forests in visually sensitive areas and where
uneven-aged forest management is desired. This method minimizes visual impacts by distributing
small canopy openings across a forest. Another aim in using group selection is to maintain advance
regeneration of tree species that are mid-tolerant to shade and those that are shade-intolerant. Normally
the diameter of a circular canopy opening created through group selection is equal to at least
one-tree-height of the trees bordering the opening [2] with a maximum opening size of twice the height
of mature trees [3]. Maximizing survival of advance oak reproduction in small openings, where border
tree height is greater than the diameter of the canopy opening, such as those produced from removal
of single trees, is poorly understood, especially for white oak (Quercus alba). Note that throughout this
manuscript the term reproduction refers to plants and regeneration refers to process.

Oaks are keystone species across forests of the Eastern United States [4]. However, reproduction
of oaks has been declining across the area since at least the 1970s [5]. White oak is important to
wildlife, to forest aesthetics and to wood-oriented industries making products ranging from cooperage
to furniture and cabinetry. Oak decline has impacted millions of acres of forest across the Eastern
United States and is expected to be a significant problem in the future [6,7] making it imperative to
regenerate species resistant to oak decline to help maintain oak in future forests. More resistant to
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oak decline than most other oak species [6,8], white oak also has shown increased growth efficiency
in a CO2-enriched atmosphere, an increasingly important attribute [9]. Additionally, white oak is
considered intermediate in shade tolerance lending itself well to the group opening environment.

Group selection can be useful in regenerating intermediate shade-tolerant species [10].
Fan, et al. [11] found that group selection was a useful method for regenerating white oak on
sites with high oak regeneration potential such as those found in the Ozark Highlands. Jenkins
and Parker [12] found that oak species were more important in group openings on dry-mesic slopes
than mesic slopes. Group selection was also effective in mitigating oak decline for up to 50 years in
a modeling study examining harvesting alternatives on oak decline [13]. However, attributes that
maximize survival of white oak using this method have not been fully examined.

The overarching goal in this study was to determine how to maximize survival of white oak
advance reproduction in small group openings. The objectives of this analysis are to (1) evaluate
the effect of competition control on survival of white oak advance reproduction in group openings,
(2) evaluate the relationship of border tree height to white oak advance reproduction survival including
canopy openings smaller in diameter than average border tree height, and (3) determine the size of
advance white oak reproduction necessary to maximize survival in small group openings.

2. Materials and Methods

2.1. Site Description

This small group opening study was established in the Ozark-St. Francis National Forest in the
Boston Mountains of Arkansas. This area encompasses the southernmost lobe of the central hardwood
region [14] (p. 108) and the Boston Mountain Section (M222A) of the Hot Continental Division (220) of
Bailey’s ecoregions [15]. Part of the Ozark Highland Physiographic Province, the Boston Mountains are
part of an uplifted peneplain. Mountaintops are relatively level to gently rolling, while mountainsides
are an alternating series of steep slopes and gently sloping benches. Study plots were established in
stands 70 to 90 years old that were predominantly sawtimber size with basal areas of at least 16 m2/ha.

2.2. Study Establishment, Measurements and Treatments

In 1990, six upland hardwood forest stands were identified and eighteen future openings were
located within each stand. These openings were established in six sizes with radii of 5.68 m, 8.03 m,
11.35 m, 16.05 m, 21.23 m and 25.5 m as measured to the trunks of bordering trees. This method of
measuring to the bordering tree trunks helped to simplify logistics of establishing the openings but
does not define the canopy opening area.

Within each future opening, permanent reproduction measurement plots were established.
Reproduction measurement plots were not restricted by area but by meeting seedling measurement
criteria where the goal was to measure two seedlings in each 2.54-cm height class. To increase field
efficiency, technicians began by measuring all white oak reproduction within a standard radius from
plot center and continued beyond the starting radius until up to two seedlings for each 2.54-cm height
class were located (with distance and azimuth from plot center recorded for every stem). Starting radii
increased with opening size ranging from 1.13 m in the smallest openings to 2.44 m in the largest.
The smallest two future openings had five reproduction plots, while larger future openings had nine.
One reproduction measurement plot was placed at the center of the opening. The other plots were
placed along the four cardinal directions. In openings with nine plots, the additional four plots were
placed midway between the opening center plot and the outer plots.

In late 1990 (July through November), individual stems of advance reproduction less than 4 cm
d.b.h. in the reproduction plots were measured, and each measured stem was identified by a unique
identification number on a metal tag so it could be tracked throughout the study. Measurements of
advance reproduction included basal diameter to the nearest 0.254 cm (measured at 2.54 cm above
ground level on the uphill side of each stem).
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Three understory treatments were applied in early 1991. The treatments were:

• U1, no control of competing reproduction;
• U2, mechanical control of all competing woody stems greater than 30.5 cm tall and less than or

equal to 14 cm d.b.h. (cut stems);
• U3, chemical control of all competing woody stems greater than 30.5 cm tall and less than or equal

to 14 cm d.b.h. (cut stems sprayed with an herbicide).

Competing vegetation to be controlled consisted of all woody vegetation excluding white oak,
northern red oak (Quercus rubra L.), black oak (Quercus velutina Lam.), black cherry (Prunus serotina
Ehrh.), white ash (Fraxinus americana L.), post oak (Qurecus stellata Wangenh.), hickory (Carya Nutt.),
and black walnut (Juglans nigra L.).

In 1992, group openings were created by harvesting all trees greater than or equal to 14 cm d.b.h.
within the border tree area of the previously established future openings. The study is a split plot
experimental design with 6 replicates (stands). There were 108 openings in total (6 opening sizes × 3
treatments = 18 openings per stand, and 18 openings× 6 stands = 108). After the harvest, the distance to
the drip line of the bordering trees was measured. This defined the canopy opening area which ranged
from 0.001 to 0.175 ha that was used in analysis of reproduction response to canopy opening size.

The ranges of initial seedling basal diameter (i.e., the diameter measured in 1990), aspect, slope,
canopy opening diameter and border tree height were 0.254 to 5.6 cm, 2 to 360 degrees, 6% to 30%, 5 to
48 m, and 17.6 to 30.4 m, respectively. All illustrations in this manuscript are within these ranges.

2.3. Data Analysis and Modeling

White oak advance reproduction survival was examined in relation to initial seedling basal
diameter, aspect, slope, canopy opening size, border tree height, and understory treatment. Logistic
regression was used to estimate survival probabilities of the advance reproduction 14 years after
initial measurement (13 years after understory treatment and 12 years after harvest/group opening
creation). We used the model building approach recommended in Hosmer and Lemeshow’s [16]
(p. 82) text on applied logistic regression. Logistic regression has been used in studies to predict
oak reproduction [17], to estimate the contribution of planted trees to future stocking [18], to model
regeneration of oak stands [19], and to determine the competitive capacity of planted oaks [4].

Independent variables included initial basal seedling diameter, aspect, slope, diameter of canopy
openings, border tree height, and three levels of competition control. The dependent variable is
survival of advance reproduction of white oak that was present during the initial 1990 inventory.

In logistic regression, the observed value of the dependent variable is binary (0 or 1); however,
the resulting probability estimates are continuous and restricted to the interval 0 to 1. To prepare
for logistic regression analysis, each tree was assigned either 1 (successful) or 0 (unsuccessful) with
unsuccessful defined as the mortality of an individual stem by 2004.

Predictors with a p-value of 0.05 or less and a variance inflation factor (VIF) of less than 1.99 were
selected to evaluate logistic regression model performance based on the chi-square distribution with
one degree of freedom. The Hosmer–Lemeshow goodness-of-fit statistic (Hosmer and Lemeshow 1989,
p. 140) was used to test the null hypothesis that the equation described the data. For Hosmer–Lemeshow
goodness-of-fit p-values of 0.05 or less (indicating a poor fit of the equation to our data) the null
hypothesis was rejected. It is therefore important to note that predictor p-values of 0.05 or less have a
different interpretation than the Hosmer–Lemeshow goodness-of-fit p-values of 0.05 or less.

3. Results

3.1. Survival Model

Twelve years after overstory removal to create the openings (fourteen years after initial
reproduction measurements), overall survival of white oak advance reproduction was 37%. The greatest
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mortality occurred in seedlings with initial basal stem diameters of less than 1cm. Survival varied
by initial seedling basal diameter, understory treatment, aspect, slope, border tree height and canopy
opening diameter. Those relationships are described in the following model:

Ps = (1/(1 + EXP(−(3.576 + (0.191 × dU1) + (0.352 × dU2) + (0.00101 × Aspect) − (0.0245
×% Slope) − (0.523 × 1/Basal Diameter (cm)) − (0.121 × Border Tree Height (m)) +

(0.00738 × Canopy Opening Diameter (m)))))
(1)

where Ps is the probability of survival, dU1 and dU2 are the dummy variables for the competition
control treatments as explained in the data analysis and modeling section above, basal diameter is
the initial basal diameter in centimeters of the advance reproduction in 1990, border tree height is the
average height of trees bordering the opening and canopy opening diameter (m) is the average diameter
of the opening area within the drip line of the bordering trees in meters. Dummy variables dU1 and
dU2 were coded as 0, 0 for understory treatment U1; as 1, 0 for understory treatment U2; and 0, 1 for
understory treatment U3. The value 3.576 is the constant of the logit model with a p-value of <0.001.

The Hosmer–Lemeshow goodness-of-fit p-value for this model is 0.404. Predictor p-values are
as follows: dU1 = 0.035, dU2 = < 0.001, Aspect = 0.001, % Slope = 0.003, 1/Basal Diameter = < 0.001,
Border Tree Height = < 0.001 and Canopy Opening Diameter = 0.008.

3.2. Competition Control Treatments

Competition control treatment differences were tested using the Mann–Whitney rank sum test
for survival of advance reproduction. For understory treatment 1 (no treatment) vs. understory
treatment 2 (mechanical control) there was no statistical difference (p-value = 0.343). With that in mind,
only survival probabilities for understory treatments U1 (no treatment) and U3 (chemical control)
are illustrated. In all cases, the understory control treatment with a herbicide, U3, resulted in higher
survival probabilities than for U1-no control of competing vegetation (Figures 1–6).

Figure 1. The relationship between seedling diameter, survival probability and understory treatment
(U3 is understory treatment with an herbicide applied to cut stems, U1 refers to no understory treatment).
(A)–(D) With 6% slope, canopy border tree height of 24 m, and canopy opening diameter of 48 m.
(A) Northeast aspect. (B) Southeast aspect. (C) Southwest aspect. (D) Northwest aspect.
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Figure 2. The relationship between seedling diameter, survival probability and understory treatment
(U3 is understory treatment with an herbicide applied to cut stems, U1 refers to no understory treatment).
(A)–(D) With 6% slope, canopy border tree height of 24 m, and canopy opening diameter of 5 m.
(A) Northeast aspect. (B) Southeast aspect. (C) Southwest aspect. (D) Northwest aspect.

Figure 3. The relationship between seedling diameter, survival probability and understory treatment
(U3 is understory treatment with an herbicide applied to cut stems, U1 refers to no understory treatment).
(A)–(D) With 30% slope, canopy border tree height of 24 m, and canopy opening diameter of 48 m.
(A) Northeast aspect. (B) Southeast aspect. (C) Southwest aspect. (D) Northwest aspect.
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Figure 4. The relationship between seedling diameter, survival probability and understory treatment
(U3 is understory treatment with an herbicide applied to cut stems, U1 refers to no understory treatment).
(A)–(D) With 30% slope, canopy border tree height of 24 m, and canopy opening diameter of 5 m.
(A) Northeast aspect. (B) Southeast aspect. (C) Southwest aspect. (D) Northwest aspect.

Figure 5. The relationship between canopy border tree height, survival probability and understory
treatment (U3 is understory treatment with an herbicide applied to cut stems, U1 refers to no understory
treatment). (A)–(D) With aspect of 45 degrees and 6% slope. (A) Seedling diameter = 5.6 cm, canopy
diameter = 48 m. (B) Seedling diameter = 5.6 cm, canopy diameter = 5 m. (C) Seedling diameter = 0.254 cm,
canopy opening diameter = 48 m. (D) Seedling diameter = 0.254 cm, canopy opening diameter = 5 m.
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Figure 6. The relationship between canopy border tree height, survival probability and understory
treatment (U3 is understory treatment with an herbicide applied to cut stems, U1 refers to no understory
treatment). (A)–(D) With aspect of 225 degrees and 6% slope. (A) Seedling diameter = 5.6 cm, canopy
diameter = 48 m. (B) Seedling diameter = 5.6 cm, canopy diameter = 5 m. (C) Seedling diameter
= 0.254 cm, canopy opening diameter = 48 m. (D) Seedling diameter = 0.254 cm, canopy opening
diameter = 5 m.

3.3. Survival by Canopy Opening Diameter, Border Tree Height, Seedling Basal Diameter, Aspect and Slope

White oak survival ranged from 10% to 90% (Figure 5D or Figure 6A) and depended on a
combination of factors. Survival decreased with increasing border tree height, decreasing seedling
diameter and decreasing canopy opening diameter. Additionally, survival was lower at an aspect of 45
degrees than at 225 degrees (Figures 5 and 6).

The greatest survival (90%) occurred on a 225-degree aspect, initial seedling basal diameter
of 5.6 cm, a canopy opening diameter of 48 m and border tree height of 17.6 m, with competition
control (U3) (Figure 6A). Changes in border tree height resulted in relatively large changes in survival
probability for all initial advance reproduction diameter classes. Differences in survivability between
shortest border tree height and tallest border tree height ranged from 25% (Figure 6A) to 34% (Figure 6C).

The lowest survival (10%) occurred on a 45-degree aspect, initial seedling basal diameter of
0.254 cm, a canopy opening diameter of 5 m, no competition control (U1) and border tree height of
30 m (Figure 5D). For the smallest seedlings with a 0.254-cm basal diameter, the difference in survival
narrowed between understory treatments as border tree height increased in both canopy opening sizes
of 48 m and 5 m in diameter (Figure 5C,D or Figure 6C,D).

From the largest (48 m) to the smallest (5 m) canopy openings on 6% slopes there were relatively
small increases in seedling survival as aspect changed from 45 to 135 to 225 to 315 degrees (Figures 1
and 2). Southwest and northwest aspects had somewhat higher survival than northeast and southeast
aspects across all initial white oak basal diameters. Increasing slope to 30% resulted in an overall
decrease in survival ranging from 12% to 18% for reproduction across initial basal diameters ≥ 1 cm
(Figures 3 and 4 versus Figures 1 and 2).
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4. Discussion

4.1. Competition Control

Competitors of white oak reproduction in 70 to 90 year old oak-dominated hardwood stands of
the Boston Mountains are principally non-oak species and can take up a significant amount of growing
space 20 or more years after opening creation. In older stands, these competitors often have limited
capacity for height growth or can have relatively high mortality rates in the early stages of stand
development. Still, without competition control by fire or other treatment, they are able to continue as
advanced reproduction in the understory, influencing survival of oak reproduction for decades [1–4].
This study compared control of white oak competitors to no competition control.

Understory mechanical competition control was no better than no understory treatment in terms
of advance reproduction survival. The lack of significant statistical difference between understory
treatment U1 (no treatment) vs. understory treatment U2 (mechanical control) is comparable to a similar
treatment comparison in an oak underplanting study that also had a no treatment vs. mechanical
understory treatment [4]. Although multiple treatments using mechanical control over a period of
years may somewhat simulate the top kill effects of repeated prescribed fire treatments, the practice of
repeated mechanical control treatments would likely be costly.

While the U3 competition control (chemical control applied to cut stems) consistently resulted
in greater survival of white oak reproduction, the maximum increase in survival attributable to this
treatment alone was only about 10%. Increasing survival to a greater extent using U3 might be
accomplished through follow-up treatments, perhaps at 4 and 8 years after opening creation. However,
this would be at increased expense and may be unnecessary if a sufficient number of large advance
reproduction trees existed prior to opening creation [20].

Development of a sufficient number of large oak reproduction trees prior to opening creation
would likely lead a to greater number of seedlings surviving post-opening creation. Methods to do
so include the use of fire or midstory removal. For instance, one study found that fire increased
the number of tall oak stems per acre over no fire [21]. Another study found that spring burns and
winter burns resulted in increased oak reproduction height 11 years after a single fire in shelterwood
stands [22]. Similarly, a study that examined both advance reproduction and underplanted white
oak 6 years after midstory removal found greater height and diameter growth due to the midstory
treatment [23].

Where herbicide treatment and/or fire is not an option, survival can still be optimized through
suitable site and stand selection. For example, in Figure 6A, advance reproduction could reach
maximum survival of greater than 80% without herbicide treatment when border tree height is 20.6 m
or less, canopy opening diameter is 48 m, aspect is 225, slope is 6%, and advanced reproduction
diameter is 5.6 cm (or greater than 50% when border tree height is 30 m or less).

4.2. Reproduction Size and Survival

It is well established that oak reproduction increases its probability of survival with increasing
basal diameter and that in most stands the number of seedlings per unit area decreases with increasing
seedling stem diameter, a negative exponential curve [1]. In studies of oak reproduction survival such
as this one, we are often trying to determine the point at which an increase in diameter results in
minimal increase in survival. This is the optimal diameter managers need to know, where investing
additional effort and resources in seedling development may be inefficient. An underplanting study
with understory treatments comparable to those of this study and applied on similar dry-mesic sites
in the Ozark National Forest used Northern Red Oak (Quercus rubra L.) with seedling sizes from 0.4
to 2.2 cm in basal diameter. In that study, survival began to level off at the 1.2-cm basal diameter [4]
comparable to 1 cm in this study of advance natural reproduction. Although there is a difference in
species (red vs. white oak), in silvicultural treatment (opening size vs. shelterwood) and in type of
reproduction (natural vs. artificial), comparison of the two studies is useful for resource planners
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weighing decisions about silvicultural options, species and potential survival of oak reproduction.
When using group selection as a management method, it is advisable to have sufficient advance
reproduction of at least 1-cm basal diameter to obtain a high probability of survival after the group
opening is created. Similarities in these two studies may indicate that these treatments could be useful
for other species and should be considered in the design and implementation of future studies.

4.3. Canopy Opening Diameter, Border Tree Height, Aspect and Slope

Changes in canopy opening diameter and aspect resulted in only small changes in survival across
all seedling diameter classes (Figures 1 and 2). However, in many cases the largest number of seedlings
are in small diameters under 1 cm. Therefore, even a small increase in survival will normally represent
more live trees relative to advance reproduction larger than 1 cm. Canopy opening size relates to
light availability and may also indicate the degree of root competition. For instance, Longleaf pine
studies have indicated that root competition introduced by mature trees can reduce growth of nearby
seedlings [24,25].

One aim in utilizing group selection is to minimize the visual impact of harvesting. This study has
shown that under the proper combination of conditions, survival of white oak advance reproduction
could maintain acceptable survival 11-years after opening creation in even the smallest openings.
With the information gained through this study, managers can better match the smallest size of opening
to site conditions, treatment and stand conditions.

Boston Mountains and Ozark Highlands forests have been undergoing repeated cycles of oak
decline for decades and this is expected to continue into the future [8]. Small openings may be
a useful tool in establishment and growth of white oak over other less shade-tolerant but more
decline-susceptible species. For instance, red oak is the oak species most suspectable to oak decline
while white oak is the most decline-resistant species [6–8]. Additionally, white oak has greater shade
tolerance than other oak species such as red oak and black oak (Quercus velutina Lam.); these species
would likely respond differently [26,27]. Mitigation of oak decline in the Ozark Highlands will require a
shift in species on dry sites where red oak is currently established and highly susceptible to decline [28].
Red oak requires an opening size the diameter of at least one tree height [29] while white oak can
achieve acceptable survival in openings of less than one tree height. Utilizing small group openings of
less than one tree height could help achieve that species shift by favoring white oak over red oak.

It is unclear from this study if silviculturally altering border tree height would also have a positive
impact on reproduction survival, and options to do so would likely be limited. However, based on the
relationship between border tree height and survival in this study, it would be reasonable to investigate
silviculturally altering border tree height in future studies. Silvicultural control of border tree height
through thinning the tallest border trees surrounding the opening may be a viable option to help
maximize white oak survival in small group openings. This would produce openings with minimal
visual impact by providing a more gradual transition in tree height around the edge of an opening,
a feathering effect rather than an abrupt increase in tree height. A study of this type should include
site quality measures such as site index to help determine how each factor contributes to advance
reproduction survival.

Overall, the optimal combination of conditions for increased survival occurred with the largest
advance reproduction diameters, competition control using an herbicide, the largest canopy opening
diameters, the shortest border tree heights, minimal slopes, and southwest and northwest aspects.
Lowest survival occurred when conditions included the smallest advance reproduction diameters,
the smallest canopy opening diameters, no competition control, steep slopes, northeast aspects,
and tallest border tree heights.

5. Conclusions

The probability of advance reproduction survival was predicted by the level of understory
competition control treatment, aspect, slope, initial basal diameter of the advance reproduction, canopy
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opening size and border tree height. Overall survival of advance reproduction in these small group
openings was only 37%. However, by utilizing the treatments in this study in combination with optimal
site and stand conditions, survival of white oak reproduction can be as high as 90%. Maximizing
survival of regenerating white oak in small group openings involved advance reproduction with
basal stem diameters of at least 1 cm, minimal slope, southwest or northwest facing slopes, minimal
border tree height, larger canopy openings, and competition control using a herbicide. However,
if one or more of the factors are not available, for instance if herbicide treatment is not a viable option,
then resource managers can choose those sites with the largest number of factors that maximize
survival. This knowledge of the probability of success of reproduction after a future harvest based on
current site conditions is a valuable tool for forest managers.
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