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Abstract: Madhuca pasquieri (Dubard) Lam. is a tree on the International Union for Conservation
of Nature Red List and a national key protected wild plant (II) of China, known for its seed oil
and timber. However, lacking of genomic and transcriptome data for this species hampers study
of its reproduction, utilization, and conservation. Here, single-molecule long-read sequencing
(PacBio) and next-generation sequencing (Illumina) were combined to obtain the transcriptome
from five developmental stages of M. pasquieri. Overall, 25,339 transcript isoforms were detected by
PacBio, including 24,492 coding sequences (CDSs), 9440 simple sequence repeats (SSRs), 149 long
non-coding RNAs (lncRNAs), and 182 alternative splicing (AS) events, a majority was retained
intron (RI). A further 1058 transcripts were identified as transcriptional factors (TFs) from 51 TF
families. PacBio recovered more full-length transcript isoforms with a longer length, and a higher
expression level, whereas larger number of transcripts (124,405) was captured in de novo from Illumina.
Using Nr, Swissprot, KOG, and KEGG databases, 24,405 transcripts (96.31%) were annotated by
PacBio. Functional annotation revealed a role for the auxin, abscisic acid, gibberellin, and cytokinine
metabolic pathways in seed germination and post-germination. These findings support further
studies on seed germination mechanism and genome of M. pasquieri, and better protection of this
endangered species.
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1. Introduction

Madhuca pasquieri (Dubard) Lam., a member of the Sapotaceae family, is considered a vulnerable
(VU) species on the International Union for Conservation of Nature (IUCN) Red List, and in
China, is listed as a national key protected wild plant (II) and wild plant of extremely small
population. This tree is endemic to southwest Guangdong, southern Guangxi, and southeast
Yunnan, China, and usually grows in mixed forests or mountain forest margins at elevations below
1100 m. The oil content of M. pasquieri seeds can reach approximately 30%. In addition, it is a
precious timber species, with a basic density of 0.711 and an air-dry density of 0.893, which is
often used for its strength, wear resistance, when used for equipment or furniture, and in veneer
manufacturing. The whole M. pasquieri plant is rich in latex; its bark contains tannin, which can be
extracted for hard rubber and rubber. However, we previously showed that understory seedlings of
M. pasquieri are rare, and its native habitat is fragmented or lost due to excessive logging and digging,
which affects regeneration (including seed germination, seedling survival, and growth) of the wild
M. pasquieri community. To date, few studies have investigated the in-situ protection, ex-situ protection,
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chemical composition, and artificial cultivation of this species; however, such studies remain in the
preliminary stage, and data from long-term follow-up are lacking. Moreover, a lack of genomic and
high-quality transcriptome information acts as a barrier to the development of in-depth molecular
studies, preventing a comprehensive exploration of the plant’s value.

Knowledge on the transcriptome, which comprises all RNA transcripts produced by the genome,
is vital for understanding the relationship between genotype and phenotype [1]. Next-generation high-
throughput sequencing (NGS) technology, also known as second-generation sequencing,
is a revolutionary tool that aims to better understand differential gene expression and regulatory
mechanisms due to its lower costs and greater sequencing depth compared with first-generation Sanger
sequencing technology [2]. This approach requires no strict reference genome sequence [3]; therefore,
it is suitable for model species, such as Arabidopsis (Arabidopsis pumila [Steph.] N. Busch) [4] and
rice (Oryza sativa L.) [5], or non-model species, such as sugarcane (Saccharum officinarum L.) [6]
and Nothapodytes nimmoniana (Graham) Mabb [7]. Transcriptome sequences obtained by NGS
have been important for capturing diversity in RNA populations at a high sequencing depth [8].
However, incomplete and low-quality transcripts are a major limitation in NGS short-read sequencing,
which makes it difficult to analyze alternative splicing (AS) variants and to correct annotation [9].
Single-molecule real-time (SMRT) sequencing, developed by Pacific Biosciences (PacBio, Menlo Park,
CA, USA), enables long-read or full-length (FL) transcriptomes to be obtained without assembly,
permitting the collection of large-scale long-read transcripts with complete coding sequences, and the
subsequent characterization of gene families [10,11]. FL transcripts can significantly improve the
accuracy of genome annotation and transcriptome information [12]. Thus, the PacBio platform provides
a user-friendly and accurate technique that can be used for gene annotation [13], novel gene and
isoform identification [14], AS identification [15], and long non-coding RNA (lncRNA) discovery [16].
For example, RNA-Seq was able to map up to 85.94% of the castor (Ricinus communis) genome to
the reference genome; however, using PacBio, 22.71% of the transcripts were completely or partially
mapped to the reference genome, and nearly 62% of those might be new transcripts of known genes.
This indicates that the information content of the genome covered by SMRT sequencing is greater
than that of the known genome [11]. Using PacBio transcriptome sequencing, 30,591 transcripts were
identified in ramie (Boehmeria nivea L. Gaud), with an average length of 2629 bp, 91.1% of which were
functionally annotated. Compared with previous studies, PacBio significantly improved the length
and number of annotated transcripts, further demonstrating the advantage of PacBio in transcriptome
sequencing [17]. So far, no report has been found about the application of SMRT technology in a plant
species from the family Sapotaceae.

Although PacBio reads are longer than Illumina reads, PacBio provides inaccurate isoforms
on genes and less coverage of genes, leading to a high error rate [18]; this can be corrected using
Illumina RNA-Seq reads and circular consensus sequence (CCS) reads [19]. In a study on the highly
polyploid sugarcane, Illumina RNA-Seq was used to improve the PacBio transcript isoforms by
short-read error correction. The results showed that the corrected PacBio dataset was more complete
than the non-corrected dataset (CEGMA (Core eukaryotic genes mapping approach): 98 and 96%;
BUSCO (Benchmarking universal single-copy orthologs): 90 and 87%, respectively) [20]. Recently,
PacBio and Illumina have been combined to obtain comprehensive information, detect more gene
isoforms, and determine functional variety on a transcriptional level. Thus, the genome database offers
a scientific basis for species conservation and molecular breeding [21–24].

According to our previous investigation, we found that the seedlings of M. pasquieri in understory
were very rare, and difficult to regenerate. Seed germination is the beginning of plant life cycle [25],
and seed germination and post-germination directly affect the maintenance of the population and its
quantity in time and space, which is particularly important for the protection of rare and endangered
plants [26]. To evaluate seed germination and post-germination stages, and ensure wide coverage of
transcript isoforms, M. pasquieri plants from five developmental stages, including seed germination,
hypocotyl elongation, epicotyl elongation, two-leaf, and nine-leaf stages, were mixed for transcriptome
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analysis by SMRT. The PacBio Sequel platform has been used to generate comprehensive full-length
transcriptome of M. pasquieri, and combined with Illumina platform to obtain a more complete
transcriptome. In this study, Illumina RNA-Seq was used to correct short-read errors on SMRT
transcripts obtained from PacBio, allowing differences to be compared between the two platforms. Then,
we functionally annotated the full-length transcriptomes. Isoform analysis revealed the complexity of AS
in M. pasquieri, and lncRNAs were also identified. Thus, we systematically characterized the complexity
of the M. pasquieri transcriptome, as well as its structure and functional annotation. This in-depth
characterization will provide a valuable tool for understanding the seed germination and growth
mechanism of M. pasquieri and for future conservation purposes. Furthermore, this transcriptome
provides basic data and important references for future studies on functional gene mining and
utilization, genetic resource classification and evolution, and molecular marker development to
promote the efficient and sustainable exploitation of this precious biological resource.

2. Materials and Methods

2.1. Plant Materials

M. pasquieri was grown in an artificial climate chamber, with a light cycle of 14 h/10 h (day/night),
17,600 lx, temperature 25 ◦C, and humidity of 60%–80%, at South China Agricultural University in
China. During seed germination and post-germination growth, M. pasquieri plants were selected
based on five developmental stages from the same batch of light matrix culture in the artificial climate
chamber (seed germination, hypocotyl elongation, epicotyl elongation, two-leaf, and nine-leaf stages;
Figure 1), with three biological replicates per stage. Collected samples were snap frozen in liquid
nitrogen and stored at −80 ◦C until use.

2.2. Library Construction and SMRT Sequencing

Total M. pasquieri plants from five developmental stages, with three biological replicates per
stage, were pooled. Total RNA was extracted by grinding tissue in TRIzol reagent (Life Technologies,
Carlsbad, CA, USA) on dry ice and processed following the manufacturer’s protocol. RNA integrity
was determined using the Agilent 2100 Bioanalyzer and agarose gel electrophoresis. RNA purity and
concentration were determined via a Nanodrop micro-spectrophotometer (Thermo Fisher Scientific,
Wilmington, DE, USA). mRNA was enriched by Oligo (dT) magnetic beads, and then reverse-transcribed
into cDNA using the Clontech SMARTer PCR cDNA Synthesis Kit (Clontech Laboratories, CA, USA).
The PCR program was optimized to determine the optimal number of amplification cycles for the
downstream large-scale PCR. Then, the optimized cycle number was used to generate double-stranded
cDNA. In addition, cDNA of >4 kb was selected using the BluePippinTM Size Selection System
(Sage Science, Beverly, MA, USA) and mixed equally with the no-size-selection cDNA. Large-scale
PCR was also performed to construct the next SMRTbell library. cDNA underwent DNA-damage
repair, end-repair, and was ligated to sequencing adapters. The SMRTbell template was annealed to a
sequencing primer, bound to a polymerase, and sequenced on the PacBio Sequel platform using P6-C6
chemistry with 10 h movies.

2.3. Analysis of SMRT Sequencing Data

The raw sequencing reads of cDNA libraries were classified and clustered into a transcript
consensus using the SMRT Link v5.0.1 pipeline supported by Pacific Biosciences. CCS reads were
extracted from subreads BAM files and then were classified as FL non-chimeric, non-full-length (nFL),
chimeras, or short reads based on cDNA primers and the polyA tail signal. Short reads were discarded.
Subsequently, the full-length non-chimeric (FLNC) reads were clustered by Iterative Clustering for
Error Correction (ICE) software to generate the cluster consensus isoforms. To improve the accuracy
of PacBio reads, two strategies were employed: (1) the nFL reads were used to polish the obtained
cluster consensus isoforms by Quiver software to attain FL polished high-quality consensus sequences
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(accuracy ≥ 99%). (2) The LoRDEC tool (version 0.8) was used to further correct the low-quality
isoforms using Illumina short reads obtained from the same samples. Then, the final transcriptome
isoform sequences were filtered by removing redundant sequences using the software CD-HIT-v4.6.7
with a threshold of 0.99 identities (Figure 1).Forests 2020, 11, x FOR PEER REVIEW 4 of 25 
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2.4. Illumina RNA Sequencing and De Novo Assembly of Short Reads

M. pasquieri plants sampled at five developmental stages, with three biological replicates per
stage, were each used for Illumina RNA sequencing. After total RNA was extracted, eukaryotic
mRNA with a polyA tail was enriched by Oligo (dT) beads, and then the enriched mRNA was
fragmented into short fragments by ultrasonic waves and reverse-transcribed into cDNA using
random primers. Second-strand cDNA was synthesized by DNA polymerase I, RNase H, dNTP,
and buffer (New England Biolabs, Ipswich, MA, USA). Next, the cDNA fragments were purified
using a QiaQuick PCR extraction kit (Qiagen, Düsseldorf, GER) end-repaired, the polyA was added,
and the fragments were then ligated to Illumina sequencing adapters. The ligation products were
size-selected by agarose gel electrophoresis, amplified by PCR, and sequenced using Illumina HiSeqTM
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4000. SMRT sequencing and Illumina RNA sequencing were performed by Gene Denovo Biotechnology
Company (Guangzhou, China).

Reads obtained from the sequencing machines included raw reads containing adapters or
low-quality bases, which affect subsequent assembly and analysis. Thus, high-quality clean reads
were obtained by further filtering according to the following rules: (1) removal of reads containing
adapters; (2) removal of reads containing more than 10% of unknown nucleotides (N); (3) removal of
reads containing all A bases; (4) removal of low-quality reads containing more than 50% low-quality
(Q-value ≤ 20) bases. After filtering the data, base composition and mass distribution were analyzed to
visualize data quality. The more balanced the base composition, the higher the quality, and the more
accurate the subsequent analysis will be. Then, Trinity v2.8.4 software was used to assemble reads
(Figure 1), and the quality of the assembly could be evaluated from the N50 value.

2.5. Evaluation of Sequencing Results

The protein sequences predicted from two sequencing results were analyzed using BUSCO v3
i to determine the completeness of the conserved content in the transcriptome. The percentage of
transcripts that fully aligned (≥70%) and partially aligned to the conserved proteins, as well as the
percentage missing proteins were determined and compared.

2.6. Prediction of Coding Sequences (CDSs), Simple Sequence Repeats (SSRs), and Transcription Factors (TFs)

Open reading frames (ORFs) in the isoform sequences were detected using ANGEL software in
order to determine the CDSs, protein sequences, and untranslated region (UTR) sequences.

SSR prediction was analyzed using the MISA (version 1) software (http://pgrc.ipk-gatersleben.de/

misa/) 64 with default parameters in the whole transcriptome. Based on the MISA results, Primer 1.1.4
was used to design primer pairs specific for the flanking regions of SSRs for subsequent validation.

Protein coding sequences of isoforms were aligned by hmmscan to Plant TFdb (http://planttfdb.
cbi.pku.edu.cn/) or Animal TFdb (http://www.bioguo.org/AnimalTFdb/) to predict TF families.

2.7. Characterization of AS Events

To analyze AS events of transcript isoforms, the COding GENome reconstruction Tool (Cogent)
was first used to partition transcripts into gene families based on k-mer similarity, and to reconstruct
each family into a coding reference genome based on De Bruijn graph methods. Then, the SUPPA
tool was used to analyze AS events of transcript isoforms. Five major types of AS events, namely A3
(alternative 3′ splice sites), A5 (alternative 5′ splice sites), AF (alternative first exon), RI (retained intron),
and SE (skipping exons), were extracted from the output files and counted.

2.8. LncRNA Identification from PacBio Sequences

CNCI (version 2), CPAT, CPC (version 1), and Pfam were used to assess the protein-coding
potential of transcripts without annotations by default parameters for potential lncRNAs. To better
annotate lncRNAs on an evolutionary level, the software Infernal (http://eddylab.org/infernal/)
was used for sequence alignment. LncRNAs were classified based on their secondary structures and
sequence conservation.

2.9. Functional Annotation

Corrected isoforms were analyzed by BLAST against the NCBI non-redundant protein (Nr)
database (http://www.ncbi.nlm.nih.gov), the Swiss-Prot protein database (http://www.expasy.ch/sprot),
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg),
and the COG/KOG database (http://www.ncbi.nlm.nih.gov/COG) using the BLASTx program (http:
//www.ncbi.nlm.nih.gov/BLAST/) at an E-value threshold of 1 × 10−5 to evaluate sequence similarity
with genes of other species. Gene Ontology (GO) annotation was analyzed by Blast2GO software

http://pgrc.ipk-gatersleben.de/misa/
http://pgrc.ipk-gatersleben.de/misa/
http://planttfdb.cbi.pku.edu.cn/
http://planttfdb.cbi.pku.edu.cn/
http://www.bioguo.org/AnimalTFdb/
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http://www.ncbi.nlm.nih.gov
http://www.expasy.ch/sprot
http://www.genome.jp/kegg
http://www.ncbi.nlm.nih.gov/COG
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with Nr annotation results of isoforms. Isoforms with the top 20 highest scores, and no shorter than
33 high-scoring segment pair (HSP) hits were selected for Blast2GO analysis. Then, isoforms were
functionally classified using WEGO software.

3. Results

3.1. General Properties of Single-Molecule Long-Reads

In order to obtain M. pasquieri transcripts that were as complete as possible, high-quality total
RNA was extracted from each pooled sample representing the five different developmental stages.
Because PacBio Sequel does not screen fragments, a full library of samples was built. After filtering,
22,704,140 subreads were obtained, with a mean length of 1193 bp and a N50 of 1529 bp. A total
of 438,795 CCSs with an average depth of nine passes were generated from subreads after merging
and correcting errors by multiple sequencing. The length distribution of CCSs was consistent with
the expected size (Figure 2a). Furthermore, ICE and Quiver algorithms were used to obtain 29,003
high-quality sequences and 85 low-quality sequences. The length distribution of consensus isoforms is
shown in Figure 2b.Forests 2020, 11, x FOR PEER REVIEW 7 of 25 
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3.2. Acquisition of High-Quality Sequences and Error Correction of Long Reads Using Illumina Data

The basic error rate of the SMRT sequences was 12–15%, mainly due to the insertion of extra
bases. Low-quality sequences obtained on the PacBio Sequel platform were corrected using Illumina
RNA-Seq transcripts and LoRDEC (version 0.8). After polishing, low-quality sequences with polish
coverage (percentage of bases corrected by the second-generation data in the third-generation consistent
sequence) of more than 99% were combined with the high-quality sequences obtained by Quiver polish.
Finally, 29,042 sequences were obtained, with a mean length of 1438.11 bp, a N50 of 1645 bp, and GC
content of 44.59% (Table S1). Then, cd-hit-v4.6.7 software was used to remove redundant sequences
from the high-quality consistent sequences in the library. Local alignment was adopted, where the
alignment rate was 99% for shorter sequences and the number of bases unaligned was less than 30 bp.
For longer sequences, the alignment rate was 90% and the number of bases unaligned was less than
100 bp. The final set of PacBio transcript isoforms contained 25,339 sequences, with a mean length of
1436.77 bp, a N50 of 1652 bp, and GC content of 44.39% (Table S1); the length distribution of these
isoforms is shown in Figure 2c. Overall, correcting errors improved transcript prediction, with more
transcripts covering the full-length of known proteins, and a longer N50, which is suitable for further
structural and functional analysis. To assess the completeness of our transcriptome, BUSCO was used
to evaluate the sequencing results and showed that 26.81% were complete and single-copy BUSCOs,
12.22% were complete and duplicated BUSCOs, 3.54% were fragmented BUSCOs, and 57.43% were
missing BUSCOs (Figure S1).
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3.3. Comparison of PacBio and Illumina Transcripts and Sequencing Depth

De novo assembly has been used widely to construct transcriptomes without any reference
sequence; therefore, the M. pasquieri transcriptome was assembled from Illumina short-reads to provide
a comparative reference for the isoform transcript sequences obtained from PacBio Sequel. In this
study, 15 samples were tested, generating an average of 45,627,996 raw reads. Then, fastp 0.18.0
was used to filter raw data and obtain clean reads (each sample > 99.5%, Table S2). After filtering,
the base composition and mass distribution was analyzed to visualize data quality. The results showed
that the Q20 and Q30 of each sample were both >90% and the GC content of each sample was >47%
(Table S3), indicating the quality of data sequencing. Trinity v2.8.4 was used to assemble reads,
resulting in 124,405 unigenes, with a mean length of 834 bp, a N50 of 1387 bp, and a GC content of
44.89% (Table S1). The length distribution of assembled unigenes is shown in Figure S2. BUSCO was
then used to evaluate the sequencing results; there were 1035 (71.88%) complete and single-copy
BUSCOs, 108 (7.5%) complete and duplicated BUSCOs, 170 (11.81%) fragmented BUSCOs, and 127
(8.82%) missing BUSCOs (Figure S1).

Compared to PacBio transcript isoforms, de novo assembly form Illumina detected more
unigenes (124,405), as well as more annotated unigenes (66,026 de novo versus 24,405 PacBio)
(Figure 3a and Figure S3). Of the annotated transcripts, 8.2% of the de novo transcript unigenes
(10,140 unigenes) exhibited similarity to 61.4% of the PacBio transcript isoforms (15,564 isoforms)
by BLASTN (e-value ≤ 1 × 10−20, pairwise identity ≥ 75%, min bit score ≥ 100), and 114,265 (91.8%)
de novo transcript unigenes, and 9775 (38.6%) PacBio transcript isoforms were specifically identified
by each of the datasets (Figure 3b). Moreover, the de novo transcript unigenes from Illumina were
expressed at low levels and were shorter than the PacBio transcript isoforms in SMRT (Figure 3c,d).
In conclusion, these results indicated that although the SMRT sequencing depth was less than that of
the Illumina platform, SMRT significantly improved the length and expression level of transcripts.

3.4. Prediction of CDSs, SSRs, and TFs

CDS is a sequence of protein products that correspond exactly to a protein codon. A total of
24,492 CDSs were predicted by PacBio Sequel, and the number and length distribution of proteins
encoded by CDS regions are shown in Figure 4. Additionally, 65,297 CDSs were identified based on
Illumina data; however, the mean length was less than that predicted by PacBio (Figure S4).

SSR markers can serve as useful tools for genetic diversity analysis, genetic linkage,
evolutionary studies, and marker-assisted breeding in many species, especially endangered species,
due to their abundance, highly polymorphic nature, co-dominant inheritance, and random distribution
throughout the genome [27–30]. In this study, 9400 SSRs and 7819 SSR-containing sequences were
detected across 25,339 transcripts from M. pasquieri. Of these, 1363 transcripts contained more than one
SSR, and 1033 contained compound SSRs. Di-nucleotide repeat transcripts were the most frequent type
(5269, 67.39%) with six to 30 repeats, followed by 1718 (21.97%) tri-nucleotide repeats transcripts with
five to 24 repeats, 369 (4.72%) tetra-nucleotide repeats transcripts with four to eight repeats, 162 (2.07%)
penta-nucleotide repeats, and 141 (1.80%) hexa-nucleotide repeats both with four to seven repeats
(Figure 5a). Among the di-, tri-, and tetra-nucleotide repeats, the motifs were AC/GT, AAC/GTT,
and AAAT/TTTA, respectively. Detailed information is shown in Figure 5b. A total of 18,070 SSRs
and 15,444 SSR-containing sequences were detected across 124,405 unigenes. Di-nucleotide repeat
unigenes were also the most frequent type (11,633), followed by 5105 tri-nucleotide repeats unigenes,
1081 tetra-nucleotide repeats unigenes, 451 penta-nucleotide repeats unigenes, and 326 hexa-nucleotide
repeats unigenes (Table S4). In the di-, tri-, tetra- and penta-nucleotide repeats, the motif was AG/CT,
AAG/CTT, AAAT/ATTT, and AAACC/GGTTT, respectively (Figure S5).

TFs play important roles in the regulation of plant growth and development [31]. We compared
the predicted protein sequences with the corresponding TF database (plant TFdb/animal TFdb)
for hmmscan. A total of 1058 transcripts were identified as TFs and classified into 51 TF families.
The top 10 TF families were ERF (121, 11.44%), WRKY (96, 9.07%), GRAS (87, 8.22%), NAC (71, 6.71%),
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bHLH (70, 6.62%), C3H (68, 6.43%), bZIP (49, 4.63%), C2H2 (46, 4.35%), MYB_related (45, 4.25%),
and TALE (38, 3.59%) (Table 1). Conversely, among the de novo transcript unigenes, we identified
2048 TFs from 57 TF families, among which HB-PHD, SRS, SAP, STAT, LFY and HRT-like families
were specific. And C2H2 (241, 11.77%), bHLH (172, 8.40%), ERF (154, 7.52%), bZIP (141, 6.88%),
MYB (124, 6.05%), NAC (99, 4.83%), GRAS (88, 4.30%), WRKY (83, 4.05%), MYB_related (82, 4.00%),
and C3H (72, 3.52%) were the top 10 TF families (Table 1).
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Illumina. (d) Boxplot showing the expression level of transcript isoforms in PacBio and transcript
unigenes in Illumina.
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Table 1. Statistics for the transcriptional factor (TF) family predicted by Illumina and PacBio in M. pasquieri.

Family PacBio Illumina Family PacBio Illumina Family PacBio Illumina

ERF 121 154 TCP 13 28 ARR-B 2 8
WRKY 96 83 BBR-BPC 12 9 CPP 2 11
GRAS 87 88 ARF 11 24 LSD 2 8
NAC 71 99 B3 11 37 M-type 2 22

bHLH 70 172 BES1 11 10 S1Fa-like 2 6
C3H 68 72 DBB 10 13 YABBY 2 9
bZIP 49 141 Dof 9 42 CAMTA 1 7
C2H2 46 241 GeBP 9 6 E2F/DP 1 7

MYB_related 45 82 CO-like 6 12 GRF 1 11
TALE 38 29 ZF-HD 6 22 HB-other 1 11
MYB 28 124 FAR1 5 38 Whirly 1 3
EIL 27 6 LBD 5 32 HB-PHD 0 2

HD-ZIP 25 55 NF-YA 5 11 HRT-like 0 1
Trihelix 25 47 NF-YB 5 30 LFY 0 1
GATA 23 48 SBP 5 22 SAP 0 2

Nin-like 19 13 AP2 4 20 SRS 0 8
G2-like 18 40 RAV 4 2 STAT 0 1

HSF 17 32 WOX 4 5
NF-YC 14 18 NF-X1 3 2
MIKC 13 20 VOZ 3 1

3.5. AS Events Detected from PacBio Sequel

Using the results obtained from PacBio transcript isoforms, 182 AS events were identified,
including 42 (23.08%) A3, 33 (18.13%) A5, 18 (9.89%) AF, 82 (45.05%) RI, and seven (3.85%) SE,
among which RI was the main AS event (Figure 6a,b). The AS events in our study largely enriched
the transcript information for M. pasquieri. Due to the lack of a genome database, splice isoforms of
unannotated genes remain unknown. Results from the PacBio analysis indicated that only a single
isoform was detected in 109 (2.44%) genes, and two or more isoforms were found in 4353 genes (97.55%)
(Figure 6c). Ten; and more than ten splice isoforms were detected in 204 (4.57%) genes. For example,
16 different COGENT000951 isoforms were identified in this study and were predicted to be associated
with metabolic pathways, biosynthesis of secondary metabolites, and phenylpropanoid biosynthesis;
sequencing results are shown in Figure 6d (example of A3). Additionally, 11 different COGENT002109
isoforms were identified, and the results are shown in Figure 6e, which were predicted to be associated
with plant hormone signal transduction (an example of RI).

3.6. LncRNA Detected from PacBio Sequel

Four computational approaches (CNCI, CPAT, CPC, and Pfam) were combined to predict lncRNAs
from putative protein-coding RNAs among the unknown transcripts. From the four different analyses,
779, 264, 866, and 933 transcripts longer than 200 nt were selected as lncRNAs, among which
149 common lncRNAs were predicted for subsequent analysis (Figure 7a). Some of these lncRNAs
were up to 4000nt long (Figure 7b).

3.7. Functional Annotation of Transcripts

All 25,339 transcripts (corrected isoforms) were functionally annotated by searching Nr, Swissprot,
KOG, and KEGG databases, and 24,405 transcripts (96.31%) were annotated in PacBio. Of these,
24,358 transcripts were annotated in the Nr database, 21,059 were annotated in the Swissprot database,
16,957 were annotated in the KOG database, and 13,185 were annotated in the KEGG database
(Figure 8a and Figure S3). A total of 934 transcripts did not return any matches and may reflect novel
transcripts in the M. pasquieri transcriptome. Homologous species were analyzed by comparing the
transcript sequences with those in the Nr database, and the results showed that the highest numbers of
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transcripts were found in Vitis vinifera (3484, 14.30%), Theobroma cacao (1432, 5.88%), Sesamum indicum
(1182, 4.85%), Juglans regia (1182, 4.85%), Nelumbo nucifera (1063, 4.36%), Cephalotus follicularis (895, 3.67%),
Ziziphus jujuba (753, 3.09%), Camellia sinensis (725, 2.98%), Jatropha curcas (664, 2.73%), and Citrus sinensis
(535, 2.20%) (Figure 8b).

3.8. Gene Ontology (GO) Annotation

GO analysis showed that 11,810 PacBio transcript isoforms (46.61% of total set) could be divided
into three groups; biological processes, molecular functions, and cellular components. Transcripts in
‘biological processes’ were mainly enriched for metabolic process, cellular process, single-organism
process, and others (Figure 9). Transcripts involved in ‘cellular components’ consisted of cell, cell
part, organelle, membrane, and membrane part. For the category ‘molecular function’, transcripts
were mainly involved in catalytic activity, binding, and transporter activity. A comparison of enriched
GO terms between the PacBio transcript isoforms and de novo transcript unigenes (which had 76,548
unigenes annotated, accounting for 61.53% of the total de novo set) is presented in Figure 9.Forests 2020, 11, x FOR PEER REVIEW 12 of 25 
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of different COGENT000951 isoforms. (e) Sequence analysis of different COGENT002109 isoforms.
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3.9. Analysis of KEGG Pathways and Gene Annotation Information

KEGG pathway analysis provided additional functional information relating to the pathways
associated with each transcript isoform, since one gene could be assigned to more than one
GO term in the Gene Ontology annotation. The KEGG results demonstrated that 13,185 PacBio
transcript isoforms (52.03% of the total) from M. pasquieri were annotated to 132 KEGG pathways,
while 55,975 de novo transcript unigenes (44.99% of the total) were annotated to 136 KEGG pathways
(Figure 10). The functional pathway was first assigned to five KEGG biochemical pathways,
including cellular processes, environmental information processing, genetic information processing,
metabolism, and organismal systems. ‘Metabolism’ represented the largest group in both PacBio
and de novo transcript datasets, containing 102 and 105 pathways, respectively. With most associated
with metabolic pathway (3795/7267), biosynthesis of secondary metabolites (2189/4069), biosynthesis
of antibiotics (1229/0), microbial metabolism in diverse environments (1081/0), carbon metabolism
(910/1504), and biosynthesis of amino acids (679/1236). Those pathways related to genetic information
processing were the second largest group, including transcripts involved in protein processing in
endoplasmic reticulum (715/971), ribosome (672/2321), spliceosome (509/780), and RNA transport
(387/718). The third largest group comprised cellular processes, with a majority of transcripts involved
in endocytosis (381/618) and phagosome (220/430). Plant hormone signal transduction (349/436)
and plant-pathogen interaction (336/728) were the most in environmental information processing
and organismal systems, respectively. In addition, some important pathways were also found in
M. pasquieri, including carbon fixation in photosynthetic organisms, photosynthesis, phenylpropanoid
biosynthesis, flavonoid biosynthesis, anthocyanin biosynthesis, isoflavonoid biosynthesis, flavone and
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flavonol biosynthesis, terpenoid backbone biosynthesis, sesquiterpenoid and triterpenoid biosynthesis,
monoterpenoid biosynthesis, and diterpenoid biosynthesis (Table S5). These results provide a valuable
resource for investigating metabolic pathways in M. pasquieri.
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transcript unigenes.

Plant hormone signal transduction is important for regulating germination and growth,
and 349 PacBio transcript isoforms have been shown to be involved in plant hormone signal
transduction pathway (ko04075; Table S5). Auxin, gibberellin (GA), and cytokinine signal transduction
pathways accelerate seed germination and plant development, while abscisic acid (ABA) signal
transduction pathway plays the opposite role. In the auxin pathway, 59 transcripts were annotated
as key genes, which encoded auxin transporter protein 1 (AUX1), transport inhibitor response
1 (TIR1), auxin/indole-3-acetic acid (AUX/IAA), auxin response factor (ARF), gretchen hagen 3 (GH3),
and small auxin upregulated RNA (SAUR). In the GA pathway, 22 transcripts were annotated as four
key genes, GA-insensitive dwarf mutant 1 (GID1), GA-insensitive dwarf mutant 2 (GID2), DELLA,
and TF. In the cytokinine pathway, nine transcripts were annotated as four key genes, cytokinin response
1 (CRE1), arabidopsis histidine-containing phosphotransfer protein (AHP), type-B arabidopsis response
regulators (B-ARR), and type-A arabidopsis response regulators (A-ARR). In the ABA pathway,
47 transcripts were annotated as pyrabactin resistance/PYR-like (PYR/PYL), Protein Phosphatase 2 C
(PP2C), Sucrose non-fermenting 1-related protein kinases subfamily 2 (SnRK2), and ABRE-binding
factor (ABF) (ko04075; Figure S6).

4. Discussion

4.1. Comparison of PacBio Transcripts and De Novo Unigenes

The de novo transcriptome assembly of second-generation sequencing technology has been used
widely for transcriptome analysis in species without a genomic reference. Large-scale sequencing
of transcriptome data by second-generation sequencing cannot generate full-length sequences or
alternatively spliced forms of RNA. With the emergence of SMRT sequencing technology, full-length
transcripts could be obtained without large-scale assembly. For example, de novo assembly from short
reads only reconstructed 8% of PacBio isoforms in maize (Zea mays) [32]. Moreover, compared with
RNA-Seq data or previously annotated references, PacBio retrieved longer transcripts, including
for Amborella trichopoda [33], avocado (Persea americana) [34], and Populus alba var. pyramidalis [35].
To date, no genomic or transcriptome information for M. pasquieri has been reported. In this study,
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five developmental stages of M. pasquieri were sampled to obtain more comprehensive transcript
information, and 438,795 CCSs were obtained by PacBio Sequel. Due to the high error rate associated
with third-generation sequencing, Illumina RNA-Seq transcripts and LoRDEC (v 0.8) were used
to correct the low-quality sequences. Finally, 25,339 full-length transcripts were obtained, with a
mean length of 1436.77 bp and an N50 value of 1652 bp, which will benefit further studies on
M. pasquieri. However, these transcripts were shorter than reported in previous transcriptome studies
of alfalfa (Medicago sativa L.) (mean length = 2551 bp, N50 = 2928 bp) [36] and Gnetum luofuense
(mean length = 3237 bp, N50 = 3629 bp) [37], using the same technology. This result may be related to
the differences in the parameters and nature characteristics of the species.

In this study, de novo assembly from Illumina using the same experimental material generated
more transcripts (124,405 unigenes) than PacBio Sequel; however, the mean length of the transcripts
was 834 bp and the N50 was 1387 bp, which were substantially shorter than those obtained by PacBio,
at 1436.77 bp and 1652 bp, respectively (Table S1). The results indicate that PacBio is better able to capture
long transcript sequences, similar to those reported in adlay (Coix lacryma-jobi) [38]. Although de novo
assembly resulted in a higher number of transcripts and annotated transcripts (66,026), the latter
accounted for only 53.07% of the total transcripts, which was much lower than the 96.31% obtained by
PacBio. Notably, the annotation rate in all databases was significantly higher with PacBio sequencing
data compared with Illumina data; for example, Nr, 51.19% Illumina versus 96.13% PacBio; Swissprot,
36.69% Illumina versus 83.11% PacBio; COG/KOG, 30.58% Illumina versus 66.92% PacBio; and KEGG,
44.99% Illumina versus 52.03% PacBio) (Figure 3a and Figure S3). By comparing de novo and PacBio
transcripts, 10,140 unigenes and 15,564 isoforms were found in common by BLASTN, accounting for
8.2 and 61.4% respectively. Additionally, 91.8% (114,265) transcripts were found specifically in de novo
assembly, and 38.6% (9775) in PacBio (Figure 3b). Thus, although de novo assembly can obtain a
large number of transcripts and annotated transcripts, this may account for the great depth of reads
used for assembly [20], while a large number of unannotated transcripts may contain many new
transcripts. Therefore, although Illumina provides more transcripts and greater sequencing depth
compared with PacBio Sequel, the PacBio Sequel method can detect more full-length transcripts
and more accurately annotated transcripts; this is more conducive to obtaining accurate transcript
information for M. pasquieri.

4.2. Analysis of Alternative Splicing in Transcriptomes

AS of precursor mRNAs (pre-mRNAs) during eukaryotic gene transcription may increase the
number of protein isoforms produced by the removal of introns and the joining of exons [39–41].
The splicing mode of multi-exon mRNA may vary in several ways, and is usually divided into SE,
A5, A3, Mutually Exclusive Exon (MX), RI, AF, and Alternative Last Exon (AL), leading to multiple
transcripts of some genes [42]. Therefore, AS markedly increases the complexity and flexibility of the
transcriptome and proteome [43]. In addition, AS is involved in the regulation of growth, development,
signal transduction, flowering, and responses to various abiotic stresses [44–47]. Although RNA-Seq
can accurately quantify and annotate individual AS events, it is hard to deduce full-length splicing
isoforms that contain a combination of these individual events [48,49]. SMRT sequencing enables
the generation of full-length sequences and the identification of complex splice isoforms, which are
difficult to detect and reconstruct by RNA-Seq [50]. For example, PacBio identified more AS events in
strawberry (Fragaria vesca) (17,260) compared with Illumina (12,080) [42]. In cotton (Gossypium spp.),
PacBio (133,229) retrieved eight-times more AS events than Illumina (16,437) [51]. In the present
study, 182 AS events were identified by PacBio Sequel in M. pasquieri, which were classified into five
types, including 42 A3, 33 A5, 18 AF, 82 RI, and seven SE (Figure 6b,c). The majority of AS events
were RI (45.5%), similar to previous reports in other plant species, such as sorghum (Sorghum bicolor
BTx623) [52], bread wheat (Triticum aestivum L.) [53], and cassava (Manihot esculenta) [54]. In our study,
these AS events greatly enriched the transcriptional information of M. pasquieri. Studies have reported
specific expression of AS events in different plant tissues. For example, the proportion of different AS
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events varied among maize and sorghum tissues [55]. Dynamic changes in AS events occur during
different development stages and tissues of strawberry; for example, anthers at floral stages 7 and 8
had more AS genes compared with anthers from other anther stages [42]. These studies also provide
direction for further research on AS events in M. pasquieri.

4.3. Analysis of lncRNAs Detected by PacBio Sequel

In addition to protein-coding RNAs, non-coding RNAs constitute a major component of the
transcriptome [56]. Generally, lncRNAs are more than 200 nt in length, possess no apparent CDS
or ORF, and lack protein coding capability [57]. Based on their genomic location, lncRNAs can be
classified as antisense, intronic, and long intergenic noncoding RNA [58]. In recent years, studies have
found that lncRNAs play a significant role in the physiology and development of plants, especially in
some key biological processes [59]. However, only a small number of lncRNA functions have been
determined. For example, studies have confirmed that lncRNAs participate in abiotic stress responses
and act as regulatory factors [60]. In a transcriptional study on soybean (Glycine max) roots under
continuous salt stress, about 77% of identified lncRNAs were activated or up-regulated by more than
two-fold, and functional analysis of proteins with binding and catalytic activities were major targets of
these newly identified lncRNAs, indicating the regulatory role of lncRNAs in soybean roots resistant
to salt stress [61]. RNA Seq short-read sequencing, which is a powerful tool used to describe gene
expression, has been widely used; however, it cannot provide full-length sequences for each RNA,
which also increases the difficulty of detecting lncRNAs. Nevertheless, SMRT-seq technology can
effectively capture full-length sequences of the genome and transcriptome [50]. In a study investigating
the maize transcriptome, SMRT-seq identified 867 novel high-confidence lncRNAs with a mean length
of 1.1 kb, which were much longer than the lncRNAs identified by RNA-Seq short-read sequencing [32].
LncRNAs have not yet been identified in M. pasquieri. In the present study, 149 common lncRNAs
were predicted by four programs (Figure 7a), which will contribute to the functional study of lncRNAs
in M. pasquieri. Although lncRNAs were identified by PacBio Sequel in this study, they could not
be classified nor further studied due to a lack of genome data for M. pasquieri. A previous study
also detected 223 and 205 lncRNAs in the leaf and root of Astragalus membranaceus, respectively [62],
which may be helpful for the further study of lncRNA expression in different tissues of M. pasquieri.

4.4. Analysis of Nr Annotation and Transcription Factors

Among 25,339 transcripts, a total of 24,405 transcripts were annotated using four databases
(Nr, Swissprot, KOG, and KEGG), including 24,358 transcripts annotated in the Nr database,
accounting for 96.13% of the total annotated transcripts (Figure 3a and Figure S3). Comparison of
M. pasquieri transcripts with the Nr data revealed that M. pasquieri shares homology with Vitis vinifera
(3484, 14.30%), Theobroma cacao (1432, 5.88%), Sesamum indicum (1182, 4.85%), Juglans regia (1182, 4.85%),
and Nelumbo nucifera (1063, 4.36%) (Figure 8b). Vitis vinifera possesses the highest homology, which may
be explained by its relatively extensive database and better annotation compared with that of other
species; however, its homology ratio is relatively low compared with other species. For example, in
coffee (Coffea arabica) bean, a Nr-annotated tobacco species was much larger than that of Coffea canephora
(1,746,308 versus 142,656 hits; maximum 50 hits per sequence) [63]. This is not unexpected, since there
is no available genomic and transcriptomic information for M. pasquieri or a comprehensive genomic
resource for Sapotaceae, only the genome of Argania spinosa has been reported [64], so as the plastome
sequence of Pouteria campechiana (Kunth) Baehni [65], Manilkara zapota (L.) P.Royen [66], and chloroplast
genome of Lucuma nervosa [67], Vitellaria paradoxa, and Sideroxylon wightianum [68]. Since studies on
M. pasquieri remain in their infancy, and information available from other plants is relatively limited,
further research is needed.

TFs are important regulatory components for seed germination and plant development [69],
and many TF families, including WRKY, MYB, NAC, and bHLH, have been studied extensively in model
plants and crops [70], but fewer studied in non-model plants [71]. For example, members of the MYB
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(HORVU0Hr1G018970, HORVU2Hr1G010450) and NAC (HORVU2Hr1G077320) family were found
associated with regulating germination or root development in barley (Hordeum vulgare) [72]. SPATULA,
a member of bHLH, mediates seed germination by affecting cell elongation in Arabidopsis [73]. Here,
1058 and 2048 TF genes were identified by PacBio and Illumina, and were classified into 51 and 57 TF
families, respectively. Moreover, we found that they have the same abundant TF families, including ERF,
WRKY, GRAS, NAC, bHLH, C3H, bZIP, C2H2, and MYB_related (Table 1). This indicated that these
TF families were actively involved in the material synthesis and growth metabolism of M. pasquieri
during all stages, which requires further studies.

4.5. Excavation of KEGG Annotation Pathways Gene Annotation Information in M. pasquieri

A large number of transcripts from M. pasquieri were associated with metabolic pathways (3795),
biosynthesis of secondary metabolites (2189), biosynthesis of antibiotics (1229), microbial metabolism
in diverse environments (1081), and carbon metabolism (910), indicating that the germination and
growth of M. pasquieri requires varied metabolic supports. This also shows that there are multiple
functional metabolites in M. pasquieri, many of which may be of potential value. Although some
pathways were associated with fewer transcripts, they may still be worth noting.

Previous studies have indicated that most phytohormones, such as ABA, GA, auxin, ethylene,
cytokinine, brassinosteroid and jasmonic acid are involved in seed germination and growth
regulation [74]. In this study, 349 PacBio transcript isoforms have been involved in plant hormone signal
transduction pathway (ko04075; Table S5). Studies have shown that GA promotes seed germination,
whereas ABA is the most notorious GA antagonist for its inhibitory effect on seed germination [75,76].
It has been reported that GA mainly stimulates germination by promoting radicle elongation and
penetration of the seed coat [71], and GA-GID1 complex induces the degradation of the plant growth
inhibitor DELLA proteins to promote plant germination [77]. In the study, 22 transcripts were involved
in GA pathway, and nine and ten transcripts were annotated as GID1 and DELLA, respectively.
These results might suggest that specific members of the GID1 and DELLA genes of M. pasquieri are
involved in the regulation of seed germination. Furthermore, PYR/PYL (17), PP2C (10), SnRK2 (19),
and ABF (11), associated with ABA pathway, were identified in our study, which have been proven to be
key components of ABA signaling in sheepgrass (Leymus chinensis) [78]. Auxin is present in the seedling
radicle tip during and after germination, and cytokinine is activated during germination [79]. And,
we found AUX1 (8), TIR1 (5), AUX/IAA (26), ARF (12), GH3 (2), and SAUR (6) were involved in auxin
pathway; CRE1 (1), AHP (2), B-ARR (3), and A-ARR (3) in cytokinine pathway of M. pasquieri. Although,
these results might indicate that these specific transcripts were associated with the regulation of seed
germination and post-germination in M. pasquieri, we could not obtain more accurate information in
specific time, and tissues.

Other pathways, like carbon fixation in photosynthetic organisms (ko00710),
photosynthesis (ko00195) pathways were also important in M. pasquieri, especially in post-germination
stages. Notably, during cultivation of M. pasquieri, the leaves changed from a distinct red to a dark red,
and finally to green between the two to the nine-leaf stage, which may be associated with anthocyanin
biosynthesis pathway (ko00942) and 20 annotated transcripts were involved in the study. Furthermore,
flavonoid biosynthesis pathway (ko00941), isoflavonoid biosynthesis pathway (ko00943), flavone and
flavonol biosynthesis pathway (ko00944), terpenoid backbone biosynthesis (ko00900), sesquiterpenoid
and triterpenoid biosynthesis (ko00909), monoterpenoid biosynthesis (ko00902), and diterpenoid
biosynthesis (ko00904) pathways were also found, providing support for development and utilization
of M. pasquieri.

Interestingly, 1229 and 1081 PacBio transcript isoforms have been involved in biosynthesis of
antibiotics (ko01130) and microbial metabolism in diverse environments (ko01120), respectively,
while none of transcript unigenes involved in de novo assembly from Illumina. On the one hand,
this might be the differences between PacBio and Illumina platforms. And the sample used in SMRT
sequencing were mixed, however in NGS de novo assembly were individual samples, which may filter
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some lowquality reads during assembly, resulting in different transcripts being obtained. On the other
hand, previous studies have shown that the annotation rate of PacBio isoforms were much higher
than that of the de novo unigenes [42,80]. And our results showed the same conclusion (96.31% versus
53.07%), suggesting that longer transcripts may be easier annotated. This may explain that transcript
unigenes, involved in biosynthesis of antibiotics and microbial metabolism in diverse environments,
were not annotated, which need further studies.

5. Conclusions

In conclusion, this was the first comprehensive transcriptome analysis of M. pasquieri combining
SMRT and NGS sequencing. We identified 25,339 transcript isoforms by PacBio, including 24,492 CDSs,
9440 SSRs, and 149 lncRNAs. A total of 1058 transcripts were identified as TFs, which were classified
into 51 TF families. Additionally, 182 AS events were detected across five types (A3, A5, AF, RI,
and SE), among which a majority was IR. Although de novo assembly from Illumina obtained more
unigenes (124,405) owing to its greater sequencing depth, PacBio Sequel recovered more FL transcripts,
with a longer mean length and N50, longer CDSs, and higher expression level. Using four databases,
24,405 transcripts (96.31%) were annotated by PacBio, while 66,026 unigenes were annotated by de novo
assembly, accounting for only 53.07% of the total, indicating that PacBio can more accurately annotate
transcripts. And, we found that 8.2% of the de novo transcript unigenes exhibited similarity to 61.4% of
the PacBio transcript isoforms, and that 91.8% unigenes and 38.6% isoforms were unique to the Illumina
and PacBio database, respectively. Functional annotation revealed a role for the auxin, GA, ABA,
and cytokinine metabolic pathways, which are associated with seed germination and post-germination.
In addition, multiple flavonoid and terpenoid metabolic pathways have been identified, which may
be related to the potential value of M. pasquieri. Moreover, we can combine the metabolomics and
proteomics in the further research, so as to better understand the mechanism of germination and growth
of M. pasquieri. Our work provides a comprehensive transcriptome resource for future studies on
functional gene mining and utilization, genetic resource classification and evolution, molecular marker
development, and endangered mechanism of M. pasquieri.
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