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Abstract: Research Highlights: This paper compares the thermal requirements in three different
olive-growing areas in the Mediterranean region (Toledo, central Spain; Lecce, southeastern Italy;
Chaal, central Tunisia). A statistical method using a partial least square regression for daily
temperatures has been applied to study the chilling and heat requirements over a continuous period.
Background and Objectives: The olive is one of the main causes of pollen allergy for the population
of Mediterranean cities. The physiological processes of the reproductive cycle that governs pollen
emission are associated with temperature, and thermal requirements strongly regulate the different
phases of the plant’s life cycle. However, the point when several specific processes occur—Such as
the phases within the dormancy period—Is unclear, and the transition between endodormancy and
ecodormancy is not easily distinguishable from an empirical point of view. This work focuses on
defining the thermal accumulation periods related to the temperature balance needed to meet the
chilling and heat requirements for the metabolic activation and budbreak in olive trees. Results and
Conclusions: Thermal accumulation patterns in olive trees are strongly associated with the bioclimatic
conditions of olive-growing areas, and the olive flowering start dates showed significant differences
between the three studied stations. Our results show that the chilling requirements were fulfilled
between late autumn and early winter, although the chilling accumulation period was more evident
in the coldest and most continental bioclimatic areas (central Spain). The heat accumulation period
(forcing period) was clearly defined and showed a close relationship with the timing of olive flowering.
Heat requirements were therefore used to generate accurate forecasting models to predict the beginning
of the olive bloom and subsequent olive pollen emission. A forecasting model considering both the
chilling and heat requirements was generated in Toledo, where the estimated days displayed an error
of 2.0 ± 1.8 days from the observed dates. For Lecce, the error was 2.7 ± 2.5 days and for Chaal,
4.2 ± 2.4 days.

Keywords: phenology; pollen emission; olive tree; thermal requirements; dormancy; flowering

1. Introduction

The olive (Olea europaea L.) is one of the main causes of pollen allergy for the population of
Mediterranean cities. The phenological modeling of the olive life cycles allows olive pollen allergy
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sufferers to receive advanced warnings of the main periods of allergenic risk [1]. Olive trees are not
only of interest from an allergological point of view; they also represent an important socioeconomic
resource in the Mediterranean basin, where knowledge of floral phenology is very useful for good crop
management and the optimization of agronomic tasks [2].

Olive trees are a very sensitive species with regard to temperature, and the plant’s thermal
requirements strongly regulate the different phases of the life cycle of the olive [3,4], as well as other
temperate fruit trees [5–8]. The induction, initiation and differentiation of the floral buds are three
important processes in the olive reproductive cycle [9,10], in which the temperature recorded during
the period between dormancy and budbreak (i.e., from winter or the previous autumn until early
spring) plays a crucial role [11].

Dormancy is a physiological phenomenon resulting from the adaptation of the majority of
woody plants in middle latitudes [12,13]. The climate in these areas is characterized by a marked
seasonality and alternating favorable and non-favorable periods for plant development, according to
the thermal conditions influenced by periodic seasons [14]. This behavior is related to frost resistance
and allows plants to protect their vegetative and reproductive tissues in unfavorable conditions,
mainly low temperatures in winter [15]. Other limiting environmental conditions, such as intense
summer droughts, may also induce plants to initiate a specific latent period (in this case called as
paradormancy) with a different biological meaning [12,16].

In winter, olive trees require specific chilling requirements to break the dormancy in buds [17].
The period when these chilling requirements are satisfied is known as endodormancy. Chilling units are
accumulated during endodormancy until a given level is reached and ecodormancy then begins [16].
In this phase, the floral buds are ready to activate flowering and need to accumulate relatively
warm temperatures (heat requirements) to start their metabolic development, bud swelling and the
development of inflorescences from the floral buds (forcing period). The winter chill accumulation
cannot be easily observed without experimentation, so little is known about the specific time span
during which trees accumulate winter chill [18] and its importance for forcing periods.

Along with other factors, the thermal requirements are genetically established. Even different
olive cultivars show variations in their chilling and heat levels that must be satisfied to promote
budbreak [19], and thus exhibit different phenological patterns [20]. Geographical features also
determine changes in thermal requirements, and different thermal levels have thus been calculated
following a latitudinal, longitudinal or altitudinal gradient [5,21,22]. Biotic (pests) and anthropogenic
factors (management) are also sources of phenological variability [11,23]. Due to this phenotypic
plasticity, the numerical equations (e.g., the Utah model, dynamic model) used in thermal models are
calibrated for each specific location [6,17], and, less frequently, the thermal accumulation periods are
optimized independently for different olive-growing areas.

A large number of previous studies based on chilling and forcing periods have tended to use
arbitrary accumulation periods or intuition-based definitions of the thermal accumulation periods [24]
to calculate the chill and heat requirements [19]. The relevant optimal periods are often fitted using
statistical procedures based on reducing the measurements of error (root mean square error, coefficient of
variation, etc.) [25], assuming the reliable periods of thermal accumulation are critical for analyzing the
different phases within the dormancy stage [7]. However, the changes in the flower buds during the
different phases within the dormancy, i.e., endodormancy or ecodormancy, are imperceptible [18,26],
and using predefined accumulation periods may lead to errors.

A statistical methodology developed by Luedeling et al. (2013b) [27] was used to study the
continuous behavior of fruit trees according to their chilling and heat requirements [28]. This method has
been widely used for deciduous woody fruit plants such as Prunus armeniaca Marshall, Prunus avium L.,
Prunus dulcis (Mill.) D.A.Webb, Castanea mollissima Blume, Juglans californica S. Watson, Pistacia vera L.
or Vitis vinifera L. [8,24,29–33], but until now has sparsely been applied in olive trees to determine
the critical temperature periods that influence floral phenology [34]. This methodology has also been
combined for the first time with phenological data provided by numerical analyses of pollen patterns
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which reduce the local variability, after which the method is again optimized with these characteristics.
This methodology has also been used to identify the temperature periods that cause changes in olive
oil accumulation [35], therefore not only constrained to the phenological purposes.

The aims of this study were to estimate the periods of the year in which temperature influences
the flowering dates, i.e., to determine the chilling and heat accumulation periods (forcing periods) in
olive trees following a statistical method, and to calculate the thermal requirements in order to model
the dates of the onset of the flowering period according to an optimized method based on the chilling
and heat requirements during the accumulation periods in various stations in the Mediterranean
region. This methodology has been implemented for forecasting purposes in olive trees, and the
models estimating olive pollination with a sufficient accuracy provide advanced warnings of high risk
pollination levels for allergy sufferers in Mediterranean cities.

2. Material and Methods

2.1. Phenological Data

The phenological data used in this work were the olive pollination start dates from three different
sampling stations in the Mediterranean region (Figure 1): Toledo (Spain) for the period 2003–2016
(39◦51′ N, 04◦02′ W, 450 m above sea level (ASL)), Lecce (Italy) for the period 1999–2011 (40◦25′ N,
18◦03′ E, 36 m ASL) and Chaal (Tunisia) for the period 1999–2014 (34◦34′ N, 10◦19′ E, 78 m ASL).
Lecce and Chaal are two sites near the coast that are characterized by flat surrounding areas, in an
altitudinal range between 0 and 200 m above sea level in the case of Lecce and 0–300 m ASL in Chaal
(Supplementary Materials Figure S1). These areas have large surfaces of olive groves. In contrast,
Toledo is located in a more complex topographical area and in a wider altitudinal range between 400
and 1400 m ASL, although most of the olive-growing areas are located below 800 m ASL.

Figure 1. Location of the sampling stations (source: Google Earth©).

Lecce recorded higher maximum temperatures than Toledo during November–January, and the
opposite during February–May, when Toledo showed slightly higher temperatures. However, the minimum
monthly temperatures were significantly higher in Lecce than in Toledo for November–May. Chaal is
located in warmer areas than the other Mediterranean locations (Figure 2). From a bioclimatic point
of view, all the stations belong to the Mediterranean macroclimate, according to the classification
proposed by Rivas-Martínez et al. (2017) [36]. Toledo and Lecce are located in xeric-oceanic and
pluviseasonal-oceanic bioclimates, respectively, characterized by a wide annual range of temperatures and
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a marked summer drought. Thanks to its location in central Spain, Toledo has a higher continentality
index and lower winter temperatures than Lecce, which is in the southeast corner of Italy. The annual
accumulated rainfall in Toledo is also scarcer than Lecce and is located in the mesomediterranean
belt, while Lecce is located in the thermomediterranean belt [37]. Chaal in Tunisia belongs to the
desertic-oceanic bioclimate characterized by aridity during the entire year and an annual rainfall
below 200 mm, and monthly average temperatures constantly above 10 ◦C, and is also located in
the thermomediterranean belt [37]. For more details about the bioclimatic characterization of the studied
areas, see Supplementary Materials (Tables S1–S3 and Figures S2–S4).

Figure 2. Meteorological data (average monthly maximum and minimum temperature) between the
different sampling stations. Calculated for the period common to the three stations, 2002–2011.

The timing of olive flowering was estimated according to an airborne pollen-based approach
which indirectly measures the floral phenology and intensity of flowering [3,38]. Airborne pollen
data were collected continuously using a Hirst-type volumetric pollen trap for Toledo in Spain and
Lecce in Italy [39]. In Chaal (Tunisia), pollen was monitored using a Cour sampler [40], and the pollen
amounts were downscaled to estimate the continuous comparable data with the pollen concentrations
coming from the Hist-type trap [41]. The analysis of the pollen content in the atmosphere allows for
the study of the phenology of a large area of olive crops. The pollen season must be defined to best
estimate the onset of flowering from local areas and eliminate the effect of long-distance transport that
is responsible for the influx of pollen from outside the flowering period in the territory [42].

The calculation of the pollen season (date of the onset of flowering) was based on the method
proposed by Ribeiro et al. (2007) and modified by Cunha et al. (2015) [43,44]. This method consisted of
annually fitting a non-linear logistic regression model to the daily accumulated curve for the olive
pollen type. The start and end dates were mathematically calculated from asymptotes of the non-linear
logistic curve. This method for defining the pollen season is based on the shape of the pollen curve and
is independent of the annual pollen amount [43], making it optimal for the Olea pollen type in this work
since it allows the methodology to be unified for olive crop areas with very different pollen emission
rates (Supplementary Materials Figures S5–S7). R software [45] have been used for the calculation of
the pollen season by using AeRobiology R package, which implements this method [46].

2.2. Meteorological Data

Daily minimum and maximum temperatures were provided by the weather stations nearest to
the sampling sites. The weather stations belonged to the National Council of Agricultural Research in
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Italy, the Spanish Meteorological Agency in Spain and the National Meteorological Institute in Tunisia.
Since the chill and heat calculations require hourly input data, these were estimated from the daily
temperatures and the latitude using the idealized temperature curve [47–49].

2.3. Chilling and Heat Accumulation Periods

The accumulation periods were estimated following the methodology proposed by Luedeling et al. [27]
for the training period selected between 2003 and 2014 for Toledo and Chaal (and only the period 2003–2011
for Lecce, due to unavailability of pollen data). This method followed a statistical model based on a
continuous approach to the reproductive cycle in relation to the effects of temperature during the months
prior to the flowering dates.

A partial least square (PLS) regression was used to estimate the most relevant periods when the
thermal requirements influence the onset of flowering, i.e., the chilling and heat accumulation periods.
The phenological date (onset of flowering) was used as the response variable, and the predictors were
the daily mean temperatures for each day during the previous months (from November of the previous
year to the flowering dates). Temperatures were subjected to an 12-day moving average to ensure
that the accumulation periods were clearly recognizable from the statistical method recommended
by Luedeling and Gassner [28]. The order of the moving average (12 days) was the result of the
optimization process, but is very similar to the 11-day moving average applied by Luedeling et al. [27]
in deciduous temperate trees.

The results of the PLS analysis revealed the effect of the temperature of each day on the onset of
the flowering period, and the most influential days were highlighted using a variable importance in
projection value (VIP) of 0.7, as adapted from Luedeling et al. [27], optimized in this study based on
the best results of the model accuracy. The signs of the coefficients were also considered, since positive
coefficients imply that the temperatures on these days were positively correlated with the flowering
dates, i.e., lower temperatures during winter lead to earlier flowering dates (equivalent to the chilling
accumulation period). In contrast, negative coefficients signify that the temperatures were negatively
correlated with the flowering dates, i.e., higher temperatures in spring also contribute to earlier
flowering (equivalent to the forcing period).

Potential periods with a significant accumulation of chilling and heat units were estimated from the
results of the PLS regression, and these periods were then used to calculate the thermal requirements in
relation to the flowering dates based on various chilling and forcing models. The package “chillR” for R
software was used in order to estimate the chilling and forcing accumulation periods in a statistical way [27].

2.4. Chilling and Heat Models

Three different chilling models were tested, although only the results of the most suitable
model for prediction were shown. The first was the chilling hours model [50], which accumulates
all hours with temperatures between 0 and 7.2 ◦C. This approach has been widely used in olive
chilling calculations [51].

The second model applied was the Utah model, which determines the chilling effectiveness
according to different weights based on hourly temperature thresholds. This model does not assign
chilling accumulation to temperatures below 1.4 ◦C. It assigns an accumulation of 0.5 for temperatures
between 1.4 and 2.4 ◦C and between 9.1 and 12.4 ◦C, and an accumulation of 1 for temperatures
between 2.4 and 9.1 ◦C. The chilling model assigns a reduction for the chilling effectiveness based on
a negative accumulation of −0.5 for temperatures between 15.9 and 18 ◦C and −1 for temperatures
above 18 ◦C [52].

Finally, the dynamic chilling model proposed by Fishman et al. (1987) [53] was applied too.
This model assumes that the winter chill accumulation is the result of a two-step process. In the first
step, low temperatures produce an intermediate chilling product. This intermediate product can be
converted into the permanent chill accumulation at moderate temperatures, although it can be removed
by high temperatures. The “chill portions” are summed throughout the winter. The equations of this
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model have been described by Darbyshire et al. [54] and were implemented for R software in the chillR
package [27], as well as the rest of the chilling models used.

The heat model based on heat accumulation, which was used in this study, was proposed by
Anderson et al. [55] for fruit trees. The heat accumulation (growing degree hours, GDHs) is based
on three temperature estimates for physiological effects: a lower threshold for heat accumulation,
upper threshold and critical temperature, above which heat is no longer effective. While the critical
temperature has been adjusted to 36 ◦C [55], the lower and upper thresholds have been optimized in the
olive trees from each study site. The optimization of the thresholds used in thermal forcing calculations
was based on the accuracy of the models and the variability of the requirements, i.e., according to the
greatest R2 for the models (relationships between the thermal accumulation and the flowering dates)
and the lowest coefficient of variation in the year-to-year heat requirements. The lower threshold was
evaluated considering values between 0 and 10 ◦C, and the upper threshold was evaluated considering
values between 0 and 35 ◦C.

The chilling (chill portions) and heat accumulations (growing degree hours) were related to the
onset of the flowering period by fitting linear regressions with the flowering dates. Forecasting was
also done outside of the training period (2003–2014) for independent cases that were not included
during the modeling process. The validation of independent cases (external validation) indicates the
real accuracy of the model for preventing overfitting from the models. Specifically, two years were
considered for external validation in Toledo (2015–2016), four years in Lecce (1999–2002) and ten years
in Chaal (1993–2002), due to the different pollen time series available for the sites. The observed
flowering dates were compared with the estimated dates using the estimations produced by the
predictive chilling and heat accumulations. The mean absolute error (MAE) was shown for each site.

3. Results and Discussion

3.1. Flowering of Olive Trees

The olive flowering start dates showed significant differences between the studied areas
(central Spain, southeastern Italy and central Tunisia (F = 41.1, p < 0.001; Figure 3)). Chaal (Tunisia)
was the station where olive trees flower the earliest: the average day was the 18th April (DOY 108 ± 7,
average value ± standard deviation).

Figure 3. Dispersion of the data of the start date of flowering in days of the year (DOY) for each station
in the common study period (2003–2011).
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The maximum and minimum monthly temperature during the olive preflowering period is
noticeably higher in Chaal compared to the Toledo and Lecce stations (Figure 2). The onset of flowering
occurs in southern Italy (Lecce) and central Spain (Toledo) on average on the 14th and 15th May
(DOY 134 ± 5 and 135 ± 8), respectively.

The bioclimatic characterization of the respective study areas according to Rivas-Martínez et al.
(2011) may explain these phenological differences, i.e., Chaal is located in warmer areas [56]. However,
temperature levels are not the only relevant factor for floral phenology in olive trees; their distribution
during the year (seasonality) and temperature ranges (continentality) are also important [25]. The maximum
and minimum monthly temperatures between Toledo and Lecce showed different patterns: in general,
the minimum monthly temperatures were significantly higher in Lecce than in Toledo for November–May
(Figure 2), as winters are colder in Toledo due to its greater continentality. See the bioclimatological
characterization in Figure 2 and the Supplementary Material [37].

3.2. Estimation of the Thermal Accumulation Periods

The critical phases to apply the chilling and heat models in Toledo (Spain), Lecce (Italy) and Chaal
(Tunisia) were identified based on the results of the PLS analysis for the estimation of the thermal
accumulation periods (Figure 4). From a physiological point of view, this statistical approach could be
useful for a better understanding of the dormancy process, rather than considering arbitrary dates
for the possible start of thermal accumulation [19]. This methodology relates the onset of flowering
with the daily meteorological data in a continuous way, indicating the length of the chilling and heat
accumulation periods (forcing periods) according to the positive (chilling requirements) or negative
(heat requirements) coefficients for each daily temperature [27]. The identification of both the chilling
and heat accumulation periods may therefore indicate the end date of endodormancy and the start
date of the ecodormancy phase [16].

The transition between endodormancy and ecodormancy is not easily distinguishable,
although physiological and anatomical changes have been reported in olive flower buds during
dormancy compared to vegetative buds [57–59]. The flower buds of other tree species, such as sweet
cherry, were differentiated and remained at an early dormant stage during the entire dormancy
phenomenon, and no morphological changes were observed when the chilling requirements were
fulfilled (end of endodormancy) [26]. The fact that endodormancy and ecodormancy phases are not
clearly defined from a morphological point of view supports the idea that statistical approaches such
as the ones used in this work may help analyze the biological meaning of temperature on the different
processes involved in dormancy.

The critical period for the chilling accumulation was identified in Toledo from mid-November
to late December (10th November–20th December). The Chaal and Lecce stations showed a shorter
chilling accumulation period than Toledo. A short chilling period was identified in Lecce only during
the second half of November and early December (29th November–10th December). In Chaal the
chilling accumulation occurred between the 25th November and 18th December (Figure 4). Our results
showed that chilling requirements were fulfilled between late autumn and early winter, after the
moment in which Rallo and Martin (1991) hypothesized that floral initiation occurs. Thus, chilling must
be fulfilled to release the ecodormancy of potentially reproductive olive buds [4].

The heat accumulation period was similar between both Chaal and Lecce from December 27th and
18th of December, respectively, to 4th and 23rd April, respectively, precisely when the chilling period
occurred (Figure 4). The critical chilling and heat accumulation periods in terms of flowering dates
were almost connected—i.e., the heat accumulation begins immediately when chilling accumulation
ends—And cover a long period of time until the beginning of flowering.

However, the results for the Toledo station showed a longer period of time between the chilling
and forcing periods that was significantly related to the onset of flowering; i.e., there is a period of time
after the chilling requirements are fulfilled when the temperature is not statistically related to olive
flowering. The heat accumulation period occurred later in the Lecce and Chaal sites, from mid-February
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(10th February) to early May (3rd May), at the beginning of the range of flowering start dates for the study
period (Figure 4). The fact that the chilling and heat accumulation periods appear disconnected may
be due to the greater continentality of Toledo, where the requirements for the release of ecodormancy
are fulfilled later.

Figure 4. Estimation of the chilling and heat accumulation periods according to the thermal requirements.
The chilling periods are shown in blue and heat periods in red. Horizontal lines represent the proposed
chilling period (blue) and heat period (red). The dark grey area represents the range (min–max) of the
onset of flowering for the periods studied.

3.3. Calculation of the Thermal Requirements

The chilling hours model [50] was the optimal method to calculate the chilling requirements
according to the accuracy of the forecasting in this study. The chilling (chilling hours, CH) and heat
(growing degree hours, GDH) requirements of the olive trees for the three studied stations are shown
in Table 1. However, obviously these measurements cannot be compared between the stations as these
values have been calculated from different thermal requirement periods. However, this information is
very valuable for assessing the interannual variability of the flowering start dates for the different sites.

The chilling requirements were an average of 395.9 ± 74.2 CH in the Toledo station, and a higher
value than the chilling accumulations for both Lecce and Chaal stations (52.8 ± 36.2 and 39.6 ± 29.9
CH, respectively) due to their shorter accumulation period. The Utah [52] and dynamic methods [53]
were also used to analyze the chilling requirements, but poor results were observed, mainly for Lecce
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and Chaal. Although the Utah and dynamic models have shown accurate results for modeling the
phenology of temperate fruit trees [5,19], in our case the very short chilling periods statistically related
to olive flowering did not allow for a comparison of the different models. The best results were
obtained by the simplest model [50], possibly due to the shortness of the chilling accumulation periods.
Several previous studies have reported that the Utah chilling model performs poorly in warm areas
such as the Mediterranean region [27], and even Benmoussa et al. (2017a) proposed that new models
for chilling calculations must be developed for warm areas such as Tunisia.

Table 1. Calculations for the Chilling and Heat Requirements According to the Estimated Thermal
Accumulation Periods (Heat Requirements have Been Calculated Based on the Optimal Thresholds).
CH, Chill Hours; GDH, Growing Degree Hours.

Toledo (Spain) Lecce (Italy) Chaal (Tunisia)

Seasons CH GDH Seasons CH GDH Seasons CH GDH

1998/1999 91.0 27,283.8 1998/1999 44.0 21,105.2
1999/2000 51.0 26,583.4 1999/2000 97.0 25,863.9
2000/2001 74.0 34,348.6 2000/2001 26.0 25,589.7
2001/2002 140.0 30,364.1 2001/2002 67.0 25,914.5

2002/2003 291.0 20,306.4 2002/2003 2.0 26,165.0 2002/2003 39.0 26,287.2
2003/2004 407.0 15,657.4 2003/2004 39.0 26,735.2 2003/2004 90.0 25,392.7
2004/2005 477.0 19,246.8 2004/2005 10.0 25,639.3 2004/2005 17.0 26,445.2
2005/2006 414.0 21,110.1 2005/2006 61.0 26,560.8 2005/2006 25.0 26,388.6
2006/2007 330.0 19,253.0 2006/2007 67.0 30,706.6 2006/2007 3.0 30,186.0
2007/2008 451.0 20,848.8 2007/2008 48.0 29,016.2 2007/2008 18.0 28,153.6
2008/2009 537.0 19,723.3 2008/2009 49.0 27,870.8 2008/2009 15.0 25,421.2
2009/2010 374.0 19,344.0 2009/2010 23.0 31,526.8 2009/2010 0.0 25,137.1
2010/2011 416.0 22,419.0 2010/2011 32.0 28,621.0 2010/2011 63.0 23,998.3
2011/2012 368.0 17,636.9 2011/2012 0.0 25,447.6
2012/2013 324.0 16,604.6 2012/2013 44.0 29,177.1
2013/2014 482.0 22,149.6 2013/2014 92.0 27,302.5
2014/2015 287.0 21,473.5
2015/2016 385.0 18,119.2

Mean 395.9 19,563.7 Mean 52.8 28,570.9 Mean 39.6 26,320.5
SD 74.2 2022.3 SD 36.2 2549.3 SD 29.9 2195.4

CV% 18.7 10.3 CV% 68.5 8.9 CV% 75.6 8.3

Therefore, as shown in the results, the relationship between the heat accumulation and the
beginning of the flowering period was stronger than the relationship with the chilling accumulation.
Menzel et al. (2006) [60] found that the temperature of the preceding months produced significant
changes in the phenological event, and plants were more sensitive to spring temperatures when
heat requirements were fulfilled. El Yaacoubi et al. (2014) suggested that heat accumulation in olive
flowering is more important than the chilling requirements, and that the timing of the flowering period
is closely associated with the heat requirements, as documented by other authors [51].

Luedeling et al. (2013b) in their work that proposed the statistical method used, indicated that
the forcing period was much more clearly defined than the chilling period, which sometimes showed
ambiguous periods for chilling fulfilment in woody fruit plants [24,33]. However, for other fruit trees
such as Pistacia vera or Prunus dulcis, Benmoussa et al. (2017a, 2017b) and El Yaacoubi et al. (2019) [61]
documented the chilling periods for several pistachio and almond trees cultivars that were much
longer than the forcing period in warm areas of the Mediterranean region. Longer time series may be
necessary for a better understanding of the relationship with chilling accumulations in warm areas [28].

In terms of the heat requirements, Lecce and Chaal were the stations with the highest accumulation
(28,570.9 ± 2549.3 and 26,320.5 ± 2195.4 GDH, respectively), while the Toledo station recorded the
lowest heat requirements (19,563.7 ± 2022.3 GDH (Table 1)), driven by the lowest temperatures of all
the stations (Figure 3) and the shortest heat accumulations period statistically calculated in the Figure 4.
The optimization of the heat models based on different thresholds (lower and upper thresholds) is
shown in the Figure 5. Both thresholds have been optimized in olive trees based on the best results
for the relationships between the thermal accumulation and flowering start dates (according to the
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greatest R2 coefficient) and the lowest coefficient of variation. The lowest selected threshold was
similar for the three sites: 1 ◦C in Toledo and Chaal and 0 ◦C in Lecce. The optimal upper threshold
was also similar for all stations, and varied between 23 and 28 ◦C. Toledo and Chaal registered the
highest upper thresholds (26 and 28 ◦C, respectively), and Lecce the lowest upper threshold (23 ◦C);
these thresholds were used for the heat models as the optimal in the olive trees for the stations studied.
These results revealed minor differences in the thresholds used to calculate heat requirements with the
method proposed by Anderson et al. (1986).

Figure 5. Selection of the most accurate heat accumulation thresholds based on the consensus between
the maximum R2 coefficient (relationship heat accumulation—Onset of flowering) and lower coefficient
of variation possible.

The relationships between the chilling and heat accumulation and the onset of the flowering period
showed a strong influence of the heat accumulation (growing degree hours) for the three stations in
the study (Figure 6), while a weaker relationship was observed between the chilling requirements and
the onset of flowering. The strongest relationships in terms of the heat and chilling requirements were
achieved for the Toledo station with R2 = 0.89 and R2 = 0.23, respectively. A greater understanding
of the chilling phenomenon could be obtained by using phenological events related with the real
metabolic activation in plants [18]. It would be interesting to study chilling and heat accumulation
periods using a PLS approach, considering that phenological events affect the development of the
vegetative cycle or budbreak time from field observations or remote sensing data [22,62,63].



Forests 2020, 11, 835 11 of 17

R2 = 0.23120

130

140

150

300 350 400 450 500

Chilling accumulation (Chilling hours)

O
ns

et
 o

f f
lo

w
er

in
g 

(D
O

Y
)

Toledo

R2 = 0.89
120

130

140

150

17000 19000 21000

Forcing accumulation (GDH)

O
ns

et
 o

f f
lo

w
er

in
g 

(D
O

Y
)

Toledo

R2 = 0.16125

130

135

140

145

0 20 40 60

Chilling accumulation (Chilling hours)

O
ns

et
 o

f f
lo

w
er

in
g 

(D
O

Y
)

Lecce

R2 = 0.75
125

130

135

140

145

26000 28000 30000

Forcing accumulation (GDH)

O
ns

et
 o

f f
lo

w
er

in
g 

(D
O

Y
)

Lecce

R2 = 0.1190

100

110

120

0 25 50 75

Chilling accumulation (Chilling hours)

O
ns

et
 o

f f
lo

w
er

in
g 

(D
O

Y
)

Chaal

R2 = 0.74
90

100

110

120

24000 26000 28000 30000

Forcing accumulation (GDH)

O
ns

et
 o

f f
lo

w
er

in
g 

(D
O

Y
)

Chaal

Figure 6. Regression analysis between the chilling and heat accumulation units with respect to the date of
the onset of flowering (heat requirements have been calculated taking into account the optimum thresholds).

3.4. Predictive Models and Applications

Olive trees have very specific thermal requirements and are therefore a very sensitive indicator of
climate change [3]. Overall, a reduction in chilling accumulation and an increase in heat accumulation
can be expected in the main olive-growing areas [64], which may significantly modify the phenological
cycles and promote changes in the quantity and quality of olive harvests [14,65,66].

The results of this work have important implications in view of the effect of global warming on
crucial Mediterranean-region agronomic trees such as olives. Climate change may lead to a deficient
chilling fulfilment as a result of rising air temperatures in autumn and winter, and these alterations
will be more pronounced in the Mediterranean area [67,68]. The timing of phenological olive tree
development in relation to climate change (increasing temperature, extreme precipitation events,
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season shifts, etc.) is crucial during late winter and early spring, since the most sensitive stages of
olive bud development occur around the budburst phenophase [17]. As both extreme meteorological
conditions (i.e., frost events or heat waves) and plant phenology are related to seasonal temperatures,
the risk of damage in the future will depend not only on the change in the frequency and occurrence of
extreme events, but also on the shifting phenology of olive trees.

In practical terms, this work offers accurate predictions of the onset of the flowering period,
which is one of the most important applications of this type of model [20,21]. Considering both the
chilling and heat requirements in Toledo, a linear model was generated where the estimated days
displayed a mean absolute error (MAE) of 4.4 days from the independent years. For Lecce, the error
(MAE) was 4.8 days and for Chaal 4.4 days (Figure 7). These are important findings from a clinical point
of view, since olive pollen is one of the most important causes of pollen allergy in the Mediterranean
basin. The results of the forecasting models provide an accurate way to alert the allergic population of
the start date of the highest levels of pollen exposure [69].
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Figure 7. Estimated vs. observed start date of flowering based on the chilling and heat requirements.
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These forecasting models are based on relating the phenological events to the fulfilment of
thermal requirements during the statistically calculated accumulation periods, in contrast to other
statistical approaches that apply the premise that thermal requirements attain a specific constant level
(thermal threshold), and that phenological events occur when the plant reaches that threshold [6]. However,
the two approaches are not mutually exclusive but complementary, as they only differ in that they maintain
the thermal units (thermal threshold models) or the accumulation period constant (our statistical approach).

4. Conclusions

The physiological processes and the environmental parameters that regulate the reproductive
cycle of the olive tree are the subject of numerous studies. Our work focuses on defining the
thermal accumulation periods related to the temperature balance needed to fulfil the chilling and
heat requirements required for metabolic activation and budbreak time. The results shed some light
on the theoretical approach of dormancy induction. From an empirical point of view, it is difficult
to identify the point when the different processes that are part of the dormancy period occur—i.e.,
endodormancy and ecodormancy. Our results allow the chilling and heat accumulation periods to be
defined for different locations using statistical models based on the behavior of the fruit trees according
to the chilling and heat requirements in a continuous way. Thermal accumulation patterns in olive
trees are strongly associated with the bioclimatic conditions in the olive-growing areas, so each station
studied (Toledo, Spain; Lecce, Italy; Chaal, Tunisia) showed its own particularities due to its bioclimatic
peculiarities within the Mediterranean macroclimate. The chilling period was more evident in colder
and more continental bioclimatic areas, while the heat accumulation period was clearly defined
and showed a close relationship with the timing of the olive flowering. Understanding the chilling
periods in warmer areas requires the study of longer phenological time series and the consideration
of other phenological events such as the development of the vegetative cycle or budbreak time.
Heat requirements may be used to generate accurate forecasting models to predict the beginning
of the olive bloom. Predictions with an average error of four days were generated in this work,
which considers both the chilling and heat requirements in Mediterranean areas. The accuracy and
error of the models predicting olive pollination are sufficient to alert allergy sufferers to the start of
high allergenic risk periods in Mediterranean cities.
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33. Martínez-Lüscher, J.; Kizildeniz, T.; Vučetić, V.; Dai, Z.; Luedeling, E.; van Leeuwen, C.; Gomès, E.; Pascual, I.;
Irigoyen, J.J.; Morales, F.; et al. Sensitivity of Grapevine Phenology to Water Availability, Temperature and
CO2 Concentration. Front. Environ. Sci. 2016, 4. [CrossRef]

34. el Yaacoubi, A.; Malagi, G.; Oukabli, A.; Hafidi, M.; Legave, J.-M. Global warming impact on floral phenology
of fruit trees species in Mediterranean region. Sci. Hortic. 2014, 180, 243–253. [CrossRef]

35. Navas-Lopez, J.F.; León, L.; Trentacoste, E.R.; de la Rosa, R. Multi-environment evaluation of oil accumulation
pattern parameters in olive. Plant Physiol. Biochem. 2019, 139, 485–494. [CrossRef]

36. Rivas-Martínez, S.; Penas, Á.; del Río, S.; González, T.E.D.; Rivas-Sáenz, S. Bioclimatology of the Iberian
Peninsula and the Balearic Islands. In The Vegetation of the Iberian Peninsula; Springer: Berlin, Germany, 2017;
pp. 29–80.

37. Rivas-Martínez, S.; Rivas-Saenz, S.; Penas, A. Worldwide bioclimatic classfication system. Glob. Geobot. 2011,
1, 1–634.

38. Oteros, J.; García-Mozo, H.; Hervás, C.; Galán, C. Biometeorological and autoregressive indices for predicting
olive pollen intensity. Int. J. Biometeorol. 2013, 57, 307–316. [CrossRef]

39. Hirst, J.M. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 257–265. [CrossRef]
40. Cour, P. Nouvelles techniques de d’etection des flux et des retombées polliniques: Étude de la sedimentation

des pollens et des spores à la surface du sol. Pollen Spores 1974, 16, 103–141.
41. Orlandi, F.; Oteros, J.; Aguilera, F.; Ben-Dhiab, A.; Msallem, M.; Fornaciari, M. Design of a downscaling

method to estimate continuous data from discrete pollen monitoring in Tunisia. Environ. Sci. Process. Impacts
2014, 16, 1716–1725. [CrossRef]

42. Rojo, J.; Pérez-Badia, R. Spatiotemporal analysis of olive flowering using geostatistical techniques.
Sci. Total Environ. 2015, 505, 860–869. [CrossRef]

43. Ribeiro, H.; Cunha, M.; Abreu, I. Definition of Main Pollen Season Using a Logistic Model. Ann. Agric.
Environ. Med. 2007, 14, 259–264. [PubMed]

44. Cunha, M.; Ribeiro, H.; Costa, P.; Abreu, I. A comparative study of vineyard phenology and pollen metrics
extracted from airborne pollen time series. Aerobiologia 2015, 31, 45–56. [CrossRef]

45. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2019. Available online: https://www.R-project.org/ (accessed on 16 October 2019).

http://dx.doi.org/10.1007/s00468-013-0962-1
http://dx.doi.org/10.1111/j.1439-0418.2005.00985.x
http://dx.doi.org/10.1016/j.agrformet.2017.02.017
http://www.ncbi.nlm.nih.gov/pubmed/16028866
http://dx.doi.org/10.1007/s00468-018-1735-7
http://dx.doi.org/10.1007/s00484-012-0594-y
http://dx.doi.org/10.1016/j.agrformet.2011.10.020
http://dx.doi.org/10.1016/j.envexpbot.2017.05.007
http://dx.doi.org/10.1016/j.agrformet.2017.02.030
http://dx.doi.org/10.1016/j.agrformet.2013.06.004
http://dx.doi.org/10.1016/j.agrformet.2013.06.018
http://dx.doi.org/10.3389/fenvs.2016.00048
http://dx.doi.org/10.1016/j.scienta.2014.10.041
http://dx.doi.org/10.1016/j.plaphy.2019.04.016
http://dx.doi.org/10.1007/s00484-012-0555-5
http://dx.doi.org/10.1111/j.1744-7348.1952.tb00904.x
http://dx.doi.org/10.1039/c4em00153b
http://dx.doi.org/10.1016/j.scitotenv.2014.10.022
http://www.ncbi.nlm.nih.gov/pubmed/18247462
http://dx.doi.org/10.1007/s10453-014-9345-3
https://www.R-project.org/


Forests 2020, 11, 835 16 of 17

46. Rojo, J.; Picornell, A.; Oteros, J. AeRobiology: The computational tool for biological data in the air.
Methods Ecol. Evol. 2019, 1371–1376. [CrossRef]

47. Almorox, J.; Hontoria, C.; Benito, M. Statistical validation of daylength definitions for estimation of global
solar radiation in Toledo, Spain. Energy Convers. Manag. 2005, 46, 1465–1471. [CrossRef]

48. Linvill, D.E. Calculating chilling hours and chill units from daily maximum and minimum temperature
observations. HortScience 1990, 25, 14–16. [CrossRef]

49. Linvill, D.E. Using maximum and minimum temperatures to determine chilling completion. In Proceedings
of the II International Peach Symposium 254, Clemson, SC, USA, 19–23 June 1988; pp. 249–254.

50. Weinberger, J.H. Chilling requirements of peach varieties. In Proceedings of the American Society for
Horticultural Science; American Society for Horticultural Science: Alexandria, VA, USA, 1950; Volume 56,
pp. 122–128.

51. Gabaldón-Leal, C.; Ruiz-Ramos, M.; de la Rosa, R.; León, L.; Belaj, A.; Rodríguez, A.; Santos, C.; Lorite, I.J.
Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in
southern Spain. Int. J. Climatol. 2017, 37, 940–957. [CrossRef]

52. Richardson, E.A. A model for estimating the completion of rest for ’Redhaven’ and ’Elberta’ peach trees.
Hortscience 1974, 9, 331–332.

53. Fishman, S.; Erez, A.; Couvillon, G.A. The temperature dependence of dormancy breaking in plants:
Mathematical analysis of a two-step model involving a cooperative transition. J. Theor. Biol. 1987, 124,
473–483. [CrossRef]

54. Darbyshire, R.; Webb, L.; Goodwin, I.; Barlow, S. Winter chilling trends for deciduous fruit trees in Australia.
Agric. For. Meteorol. 2011, 151, 1074–1085. [CrossRef]

55. Anderson, J.L.; Richardson, E.A.; Kesner, C.D. Validation of chill unit and flower bud phenology models for
“Montmorency” sour cherry. Acta Hortic. 1986, 71–78. [CrossRef]

56. Aguilera, F.; Ruiz, L.; Fornaciari, M.; Romano, B.; Galán, C.; Oteros, J.; Dhiab, A.B.; Msallem, M.; Orlandi, F.
Heat accumulation period in the Mediterranean region: Phenological response of the olive in different
climate areas (Spain, Italy and Tunisia). Int. J. Biometeorol. 2014, 58, 867–876. [CrossRef] [PubMed]

57. de la Rosa, R.; Rallo, L.; Rapoport, H.F. Olive Floral Bud Growth and Starch Content During Winter Rest and
Spring Budbreak. HortScience 2000, 35, 1223–1227. [CrossRef]

58. Fabbri, A.; Alerci, L. Reproductive and vegetative bud differentiation in Olea europaea L. J. Hortic. Sci. Biotechnol.
1999, 74, 522–527. [CrossRef]

59. Pinney, K.; Polito, V.S. Flower initiation in “Manzanillo” Olive. Acta Hortic. 1990, 203–206. [CrossRef]
60. Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.;

Briede, A.; et al. European phenological response to climate change matches the warming pattern.
Glob. Chang. Biol. 2006, 12, 1969–1976. [CrossRef]

61. el Yaacoubi, A.; Oukabli, A.; Legave, J.-M.; Ainane, T.; Mouhajir, A.; Zouhair, R.; Hafidi, M. Response of
almond flowering and dormancy to Mediterranean temperature conditions in the context of adaptation to
climate variations. Sci. Hortic. 2019, 257, 108687. [CrossRef]

62. González-Naharro, R.; Quirós, E.; Fernández-Rodríguez, S.; Silva-Palacios, I.; Maya-Manzano, J.M.;
Tormo-Molina, R.; Pecero-Casimiro, R.; Monroy-Colin, A.; Gonzalo-Garijo, Á. Relationship of NDVI
and oak (Quercus) pollen including a predictive model in the SW Mediterranean region. Sci. Total Environ.
2019, 676, 407–419. [CrossRef]

63. Testa, S.; Soudani, K.; Boschetti, L.; Borgogno-Mondino, E. MODIS-derived EVI, NDVI and WDRVI time
series to estimate phenological metrics in French deciduous forests. Int. J. Appl. Earth Obs. Geoinf. 2018, 64,
132–144. [CrossRef]

64. Santos, J.A.; Costa, R.; Fraga, H. Climate change impacts on thermal growing conditions of main fruit species
in Portugal. Clim. Chang. 2017, 140, 273–286. [CrossRef]

65. Benlloch-González, M.; Sánchez-Lucas, R.; Bejaoui, M.A.; Benlloch, M.; Fernández-Escobar, R. Global warming
effects on yield and fruit maturation of olive trees growing under field conditions. Sci. Hortic. 2019, 249, 162–167.
[CrossRef]

66. Moriondo, M.; Ferrise, R.; Trombi, G.; Brilli, L.; Dibari, C.; Bindi, M. Modelling olive trees and grapevines in
a changing climate. Environ. Model. Softw. 2015, 72, 387–401. [CrossRef]

67. Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63,
90–104. [CrossRef]

http://dx.doi.org/10.1111/2041-210X.13203
http://dx.doi.org/10.1016/j.enconman.2004.07.007
http://dx.doi.org/10.21273/hortsci.25.1.14
http://dx.doi.org/10.1002/joc.5048
http://dx.doi.org/10.1016/S0022-5193(87)80221-7
http://dx.doi.org/10.1016/j.agrformet.2011.03.010
http://dx.doi.org/10.17660/ActaHortic.1986.184.7
http://dx.doi.org/10.1007/s00484-013-0666-7
http://www.ncbi.nlm.nih.gov/pubmed/23591696
http://dx.doi.org/10.21273/hortsci.35.7.1223
http://dx.doi.org/10.1080/14620316.1999.11511146
http://dx.doi.org/10.17660/actahortic.1990.286.41
http://dx.doi.org/10.1111/j.1365-2486.2006.01193.x
http://dx.doi.org/10.1016/j.scienta.2019.108687
http://dx.doi.org/10.1016/j.scitotenv.2019.04.213
http://dx.doi.org/10.1016/j.jag.2017.08.006
http://dx.doi.org/10.1007/s10584-016-1835-6
http://dx.doi.org/10.1016/j.scienta.2019.01.046
http://dx.doi.org/10.1016/j.envsoft.2014.12.016
http://dx.doi.org/10.1016/j.gloplacha.2007.09.005


Forests 2020, 11, 835 17 of 17

68. Guiot, J.; Cramer, W. Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin
ecosystems. Science 2016, 354, 465–468. [CrossRef] [PubMed]

69. Karatzas, K.D. Informing the public about atmospheric quality: Air pollution and pollen. Allergo J. 2009, 18,
212–217. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1126/science.aah5015
http://www.ncbi.nlm.nih.gov/pubmed/27789841
http://dx.doi.org/10.1007/bf03362059
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Material and Methods 
	Phenological Data 
	Meteorological Data 
	Chilling and Heat Accumulation Periods 
	Chilling and Heat Models 

	Results and Discussion 
	Flowering of Olive Trees 
	Estimation of the Thermal Accumulation Periods 
	Calculation of the Thermal Requirements 
	Predictive Models and Applications 

	Conclusions 
	References

