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Abstract: Background and Objectives: Increased frequency and intensity of drought events are predicted
to occur throughout the world because of climate change. These extreme climate events result in
higher tree mortality and fraction of dead woody components, phenomena that are currently being
reported worldwide as critical indicators of the impacts of climate change on forest diversity and
function. In this paper, we assess the accuracy and processing times of ten machine learning (ML)
techniques, applied to multispectral unmanned aerial vehicle (UAV) data to detect dead canopy woody
components. Materials and Methods: This work was conducted on five secondary dry forest plots
located at the Santa Rosa National Park Environmental Monitoring Super Site, Costa Rica. Results:
The coverage of dead woody components at the selected secondary dry forest plots was estimated
to range from 4.8% to 16.1%, with no differences between the successional stages. Of the ten ML
techniques, the support vector machine with radial kernel (SVMR) and random forests (RF) provided
the highest accuracies (0.982 vs. 0.98, respectively). Of these two ML algorithms, the processing time
of SVMR was longer than the processing time of RF (8735.64 s vs. 989 s). Conclusions: Our results
demonstrate that it is feasible to detect and quantify dead woody components, such as dead stands
and fallen trees, using a combination of high-resolution UAV data and ML algorithms. Using this
technology, accuracy values higher than 95% were achieved. However, it is important to account
for a series of factors, such as the optimization of the tuning parameters of the ML algorithms,
the environmental conditions and the time of the UAV data acquisition.
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1. Introduction

Increasing emissions of greenhouse gases are acknowledged by the scientific community to
result in a significant increase in the global mean temperature [1]. In some regions, this is likely to
increase the frequency and severity of droughts and heatwaves [2,3]. Resulting from these extreme
weather phenomena, long-term field studies are reporting tree growth decline and mortality [4–7].
Anomalously long or intense mortality events can have long-term impacts on a range of ecosystems
and populations [8]. Mortality can impact biodiversity functions and ecosystem services such as
carbon and nutrient cycling, which could exacerbate biophysical and biochemical climate feedbacks [8].
One potential consequence of such mortality events is the increased growth of understory vegetation,
which in turn can impact successional pathways, productivity and surface hydrology [5]. Therefore,
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increasing tree mortality can reduce competition among plant communities, leading to a reduction in
the ability of forests to absorb CO2 [6].

Tree mortality can take place through different mechanisms. For instance, hydraulic failure occurs
when water supply is reduced during high evaporative demand, causing xylem conduits to become
air-filled. This halts the flow of water, bringing plant tissues to complete cellular death [5,9]. Another
mechanism, carbon starvation, occurs when plant stomata close to prevent hydraulic failure, reducing
carbon uptake at a time of continued metabolic demand for carbohydrates [5]. Carbon starvation may
be exacerbated during drought by photoinhibition and increased respiratory demands associated with
elevated temperatures [10]. Hydraulic failure occurs if a drought is sufficiently intense for plants to run
out of water before they run out of carbon [11]. In tropical forests, mortality is driven by a combination
of hydraulic failure and carbon starvation processes: where mortality is most likely triggered by
hydraulic processes, their effects can be aggravated by rapid limitations in carbon uptake [9].

In the last decade, machine learning (ML) has become a favored tool of remote sensing studies,
as a set of computational algorithms and techniques that acquire knowledge from existing data based
on inference strategies [12–14]. The principle of these algorithms is to model complex classes and
accept a variety of input data without making assumptions about the underlying statistical distribution
of a given dataset [12]. In remote sensing, a number of studies have found that ML methods tend to
produce higher accuracy than traditional parametric classifiers [12,15–17]. Among ML algorithms,
other approaches such as artificial neural networks (ANN), deep learning (DL), decision trees (DT),
boosting machines (BM) and support vector machines (SVM) can be found.

ANN and DL algorithms can map features to classes by associating elements in one set of data
with elements in a second set, motivated by the assumption that the human brain and artificial
intelligence apply similar decision criteria to classification tasks [18]. DL is similar to ANN but uses
deeper neural networks using various hierarchical representations [19]. DT is among the most intuitive
simple classifiers due to its flexibility, intuitive simplicity and computational efficiency [13]. Random
forest (RF) is a specific DT classification model that produces multiple subsets of training samples and
variables that are randomly selected [20]. In RF, the same sample can be selected several times, while
others may not be selected at all [21]. Likewise, BM models are DTs that incorporate a process known
as “boosting”: this algorithm generates an ensemble of decision trees, where each successive tree is
fitted with the remaining residuals from the previous trees [12]. Finally, SVM is very popular in remote
sensing because of its ability to classify highly dimensional data with a limited number of training
samples [22].

Unmanned aerial vehicles (UAVs) are well suited to addressing current issues in the remote sensing
of tropical forest ecology and conservation [23]. Compared with manned aircrafts, UAVs are more
flexible and economically affordable, which enables data acquisition of plant canopy measurements at
optimal weather conditions [23]. In tropical regions, UAV-derived information has been used in a wide
range of ecological applications. For instance, in neotropical dry forests, UAV derived information
has been applied to conservation biology [24], the detection of liana infested regions [25], ecological
monitoring [26], latent heat flux [27] and canopy temperature of liana-infested and non-liana infested
areas [28].

Given the emerging importance of quantifying tree mortality as a metric of the impacts of climate
change in tropical forests, we explore the use of UAVs and ten machine learning models to detect
and quantify dead woody components at a tropical dry forest (TDF) site. We conducted this study in
five forest plots that cover a gradient of secondary TDFs, in order to evaluate the role of ecosystem
succession on the extent of tree mortality.
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2. Materials and Methods

2.1. Study Site

We conducted this study at the Santa Rosa National Park Environmental Monitoring Super Site
(SR-EMSS), Guanacaste, Costa Rica (Figure 1). The SRNP-EMSS has a mosaic of TDFs in various
ecological successional stages that once suffered from intense deforestation [15]. The mean temperature
is 25 ◦C and the average annual rainfall is 1750 mm [29]. The dry season lasts for a minimum of
5–6 months, and it usually extends from approximately late December to mid-May [29].
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Figure 1. (a) Location map of the SR-EMSS; (b) ground reference points and GPS; (c) dead stand tree
from UAV R: band red, G: band green, B: band blue; (d); dead stand tree viewed from ground.

In this study, a gradient of the SR-EMSS was sampled following the findings of Li et al. [25]
(Table 1). In this area, succession is divided into early, intermediate and late forests based on age since
abandonment [30]. At the SRNP-EMSS, early forests are composed of patches of woody vegetation,
which include several species of shrubs, small trees and young trees with a maximum height of
approximately 6–8 m. Trees at the early stages of TDFs lose nearly all their leaves during the
dry season [31]. Early forest stages are dominated by species well adapted to open habitats, such
as Cochlospermum vitifolium, Gliricidia sepium and Rehdera trinervis, as well as sun-loving species
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(heliophytes) that have anemochory and autochory dispersal syndromes [32]. The intermediate
and late successional stages show significant differences in structure and composition [33]. These
differences are generally driven by species turnover, which causes a very dynamic structure and forest
species composition [34]. The intermediate and late successional stages have two vegetation layers.
The first layer encompasses fast-growing deciduous tree species that reach a maximum height of
10–15 m. The second layer is below the canopy and is composed of lianas (woody vines) and adults
of more shade-tolerant evergreen species and juveniles of many species [32,33]. Dominant species in
the early stage are Rehdera trinervis and Guazuma ulmifolia, whereas Calycophyllum candidissimum and
Hymenaea courbaril are dominant in the late stage [33]. Not all trees on the intermediate and late stage
are deciduous: several evergreen species are present.

Table 1. Description of the five forest plots surveyed on the estimation of dead woody components at
the Santa Rosa National Park Environmental Monitoring Super Site, Costa Rica.

Plot Secondary Succession Description

1 Intermediate-intermediate
Forest patch contiguous to an old-grown forest patch and

surrounded by early forests. The soils in this patch are shallow,
with large exposures of volcanic rocks.

2 Early-intermediate Forest composed of patches of grasses, shrubs, small deciduous
trees and clusters of Quercus oleoides (white oak tree).

3 Intermediate-intermediate

Forest with two vegetation layers. The first layer encompasses
deciduous tree species that reach a maximum height of 15 m.

The second layer is below the canopy, composed of more
shade-tolerant evergreen species and juveniles of many species.

There is a high liana infestation.

4 Early-early

Forest patch with a low recovery located next to a firebreak.
There is a high abundance of grasses, shrubs, small trees and

large gaps. The maximum height of the trees is approximately
6–8 m. There is a high abundance of Madero negro

(Gliricidia sepium), silk cotton tree (Cochlospermum vitifolium and),
Yayo (Rehdera trinervis), as well as sun-loving heliophytes.

5 Intermediate-intermediate
Forest patch surrounded only by similar successional stages.
This area was intensively used as cattle pasture during the

Hacienda epochs from the 1600s to 1960.

2.2. Field Acquisition

Field work was conducted in five 200 × 100 m plots, listed in Table 1, from May to July 2017. In the
field, observations were made on the following categories: (1) dead components, (2) living components and
(3) understory. The dead components category comprises the following: (1.1) dead woody components,
(1.2) dead stand trees, (1.3) dead fallen trees, (1.4) non-photosynthetic woody components within the
tree crown and (1.5) dead woody components of lianas (woody vines). The living components category
comprises the following: (2.1) healthy canopy trees and (2.2) healthy lianas within the tree crowns.
The understory category includes the following: (3.1) understory vegetation (shrubs, small trees and
young trees), (3.2) canopy gaps (grass-like vegetation, vines, shrubs and small trees), (3.3) exposed
rocks and soils and (3.4) shadowed vegetation.

On each plot, the locations of 50 dead components, 50 living components and 50 understory
components were recorded. This was achieved by systematically surveying each plot with transects
every 25 m along the short side of the plot. A compass and a Trimble® GeoXT® 6000 differential
GPS (average precision of 0.5 m horizontal and 0.54 m vertical; Trimble, Sunnyvale, CA, USA) with a
Hurricane antenna were used to record the locations. These components are referred to as ground
control points (GCPs) from herein.
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A RedEdgeTM 3 (MicaSense, Seattle, WA, USA) multispectral camera onboard a Draganflyer
XP-4 (DraganFly Inc., Saskatoon, Canada), operating at 120 m height from the ground, was used to
collect images at all plots. The Draganflyer XP-4 is a quadcopter equipped with a three-axes electronic
gimbal. The airframe was equipped with a three-axes gyrostabilizer, magnetometer and accelerometer.
The RedEdgeTM 3 camera has five lenses with a focal length of 5.5 mm, lens field of view of 47.2◦

and 1280 × 960 pixels. Each lens provides a separate 16-bit GeoTIFF image centered on a specific
wavelength and full width at half maximum (FWHM): blue at 475 nm (FWHM: 20 nm), green at 560 nm
(FWHM 20 nm), red at 668 nm (FWHM: 10 nm), red edge at 717 nm (FWHM: 10 nm) and near-infrared
at 840 nm (FWHM: 40 nm).

Spectral signatures and multispectral images of three reference panels (a white Spectralon panel,
a grey RedEdgeTM 3 panel and flat black presentation cardboard) were collected prior to and after
each flight to perform a radiometric calibration to surface reflectance. Specifically, at each site,
20 RedEdgeTM 3 images were acquired at a 1.5 m distance from the reference materials. Moreover,
20 spectra were acquired of every reference material, at a 0.75 m distance from the panel. These spectra
were acquired with a UniSpec-SC Dual Channel Spectrometer (PP Systems, Amesbury, MA, USA) that
has a wavelength range of 310–1100 nm, FWHM of <10 nm and a sampling of 3.3 nm. The instrument’s
dark signal noise removal was performed by taking a dark scan in the beginning of the measurements
and later, after every ten sampled measurements. Similarly, the integration time was adjusted with the
fiber-optic exposed to a white reference panel, also done in the beginning and after every ten samples.
The spectra were acquired by averaging 10 scans.

2.3. Data Preprocessing

The UAV image preprocessing workflow involved three steps: (1) radiometric calibration,
(2) mosaicking, and (3) data reduction and transformation.

2.3.1. Radiometric Correction and Mosaicking

To radiometrically correct the RedEdgeTM 3 UAV images, an empirical line method was used,
as suggested by Kalacska et al. [35] and Smith and Milton [36]. The generation of orthomosaics was
performed by the Pix4Dmapper (Pix4D Pro, Lausanne, Switzerland, version v3.3.29). However, in this
program, the radiometric correction step was skipped because it was previously performed with the
empirical line method. Five single band mosaics were obtained, one mosaic per each RedEdgeTM band.
The mosaics were then orthorectified using 7 to 10 GCPs distributed across each plot and described in
Section 2.2.

2.3.2. Data Reduction and Transformation

Despite multispectral sensors having advantages over Red Green Blue (RGB) technology due to
their larger number of bands and thus larger amount of information, their use implies a substantial
increase in data volume. Image transformation of high-resolution remote sensing data has been proven
to be useful for the quantification of forest structure and biomass [37] and in the estimation of the
extension and succession of tropical dry forests [15], among other applications. In this study, three
transformation methods were applied to reduce redundancies in individual bands in order to bring
out the total information captured by a combination of bands: principal components analysis (PCA),
tasseled cap (TC) and texture analysis (TA) (Figure 2). All transformations were performed using the
five multispectral mosaics. In the case of the PCA transformation, the first principal components were
retained, but in the case of the TC transformation, only the third component was retained. The TA
transformation was conducted using a Gabor filter, restricted to a maximum of five scales and ten
directions, to search for elements in a localized region of an image with specific frequency content in
particular directions [38].
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Figure 2. Color composites of each plot at the study area in Costa Rica. Plots: (a,f): plot #1,
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composites. Bottom row: tasseled cap (R), principal component (first band, G) and texture analysis
(mean, B) composites.

2.4. Classification Models

The “No Free Lunch” theorem of computing sciences states that, without having substantive
information about the modeling problem, there is no single model that is better than other models [39].
In this context, Kuhn and Johnson [17] suggested trying a wide variety of classification models to
determine which model performs better. Consequently, this study used ten ML classification algorithms,
shown in Table 2: support vector machines with linear kernel (SVML), support vector machines with
polynomial kernel (SVMP), support vector machines with radial kernel (SVMR), random forest (RF),
conditional inference tree (CIT), C4.5-like trees (C45), gradient boosting machines (GBM), neural
network (NNT), averaged neural network (ANN) and deep neural network (DNET). This approach
covers most of the available classification models of support vector machines, decision trees, boosting
machines and artificial neural networks.

Table 2. The implemented machine learning models and their parameters. Abbreviations: Acron:
acronym, Avail: available; Gen: general model.

Model Acron. Parameters Avail. Values
Plot

Gen
1 2 3 4 5

Support Vector Machines
with Linear Kernel SVML cost c(1:100) 55 56 19 1 3 62

Support Vector Machines
with Polynomial Kernel SVMP

degree c(1:10) 3 4 1 6 5 5
scale seq(1,10,100) 1 1 1 1 1 1

C c(1:100) 2 10 14 6 1 24

Support Vector Machines
with Radial Kernel

SVMR
C seq(1,10,100) 1 6 1 8 3 2

sigma c(0.5:100) 1 1 1 1 1 1

Random Forest RF mty c(1:100) 1 1 60 2 4 2

Conditional Inference Tree CIT
maxdepth c(1:100) 3 9 4 16 2 13

mincriterion c(0.01:0.99) 0.01 0.01 0.01 0.01 0.01 0.01

C4.5-Like Trees C45T
C c(0.05:1) 0.05 0.05 0.05 0.05 0.05 0.05
M c(1:100) 1 1 3 1 1 1

Gradient Boosting
Machines

GMB

n.trees c(1:100) 56 97 31 97 97 96
interaction.depth c(1:10) 10 10 6 10 1 10

shrinkage seq(0.1,0.5) 0.1 0.1 0.1 0.1 0.1 0.1
n.minobsinnode c(5,7,10) 10 10 5 5 5 10
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Table 2. Cont.

Model Acron. Parameters Avail. Values
Plot

Gen
1 2 3 4 5

Neural Network NNET
size c(1:100) 3 8 5 13 2 4

decay c(0.5:0.1) 0.5 0.5 0.5 0.5 0.5 0.5

Averaged Neural Network ANNT
size c(1:100) 16 41 62 12 33 28

decay seq(0.01, 0.1, 0.5) 0.01 0.01 0.01 0.01 0.01 0.01
bag seq(T, F) T T T T T T

Deep Neural Network DNET

layer1 c(1:10) 3 10 7 4 2 10
layer2 c(1:10) 1 8 9 5 10 6
layer3 c(0:10) 8 2 0 1 0 6

hidden_dropout seq(0, 0.1) 1 1 1 1 1 0
visible_dropout seq(0, 0.01) 0 0 0 1 0 0

2.5. Creation of Training and Validation Datasets

The total number of 2250 pixels of the multispectral mosaics (450 pixels per mosaic, five mosaics in
total) was divided into two datasets: training and validation. The training dataset was used for the model
development and the validation dataset was used to estimate the performance of the model. This was
achieved in three steps. In the first step, a 3 × 3-pixel area was extracted from the multispectral mosaics
around each of the 750 ground truth observations (dead components, living components, understory).
This step was conducted using the raster extraction function of the QGIS software package (QGIS
Development Team, 2009, QGIS Geographic Information System, Open Source Geospatial Foundation,
v3.8). In the case of leafless crowns of the dead component’s category, care was taken to select pixels
from the central regions of crowns to ensure that dead woody components, as opposed to understory,
would dominate the collected spectra. In the third step, this dataset was randomly split into a training
dataset (70% of the pixels) and a validation dataset (30% of the pixels) using the “createDataPartition”
function of the R program.

2.6. Implementation of Classification Models

The optimal number of training samples was estimated using the bootstrap “632 method” of
the “Caret” package of the R program. This was done to avoid overfitting the classification models:
the “632 method” creates a performance estimate that is a combination of a simple bootstrap estimate
and an estimate from re-predicting the training set [40]. Bootstrap error rates tend to have less
uncertainty than other methods such as k-fold cross-validation, especially if the training set size is
small [17]. Likewise, the optimal tune-up parameters of the classification models were estimated with
the “expand.grid:caret” and “tuneGrid:caret” functions of the R program using several combinations
of values and parameters, shown in Table 2. Two kinds of classification models were generated to
quantify the extent of mortality across the five TDF successional plots: five plot-specific models and a
general model. The plot-specific models were trained only with data from one plot. The general model
was trained and validated with data from the five plots. This is in accordance with the findings of
Miltiadou et al. [41], who found that a model that is based on all possible training samples and patterns
can perform better than a model generated from a single sampled plot with a lesser number of samples.

2.7. Model Validation

The models were validated by calculating the accuracy and kappa statistics. These statistics were
calculated on a per-pixel basis rather than per crown or trunk because the classification was performed
using pixels and not objects. Specifically, these metrics were estimated using the validation dataset,
with the function “confusionMatrix:caret” of the R program.

2.8. Differences in the Spatial Coverage of the Dead Woody Components between Plots

The spatial coverage of each of the three categories (dead components, living components and
understory) of the study was investigated by transforming the multispectral (raster) image mosaics
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into a vector format. This work was carried out using the conversion function of the QGIS software
package. Finally, potential statistical differences between the means of these three categories were
studied using the one-way analysis of variance (ANOVA) and Tukey’s post hoc tests.

3. Results

3.1. Effect of Tuning Parameters on the Accuracy Values

Regarding the tuning parameters used in the study, the results indicate that the models display
a varied selection of available parameters. For instance, CIT, C45T, RF, SVML and SVMR (Figure 3)
required a maximum of two tuning parameters, whereas SVMP, GBM, ANNT and DNET required three
or more tuning parameters and even more complex parametrization, such as applying learning rates,
in the case of GBM and DNET. Although ANNT and GBM required a more complex implementation
than the other models, they performed similarly in terms of accuracy.
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Looking at the tuning parameters of the models, the results suggest that some models were more
sensitive than others. Figure 4 shows that RF, CIT, SVML, NNET, ANNT and SVMP remain stable
after the values of the driver parameters increase. On the contrary, the accuracy of SVMR and C45T
decreases as the value of the driver parameters increases (Figure 3). Models such as RF, CIT, SVML and
NNET exhibited a kind of asymptote on the accuracy values when certain tuning parameter values
were reached (Figure 3). The latter suggests that at a certain point, no matter whether the numbers of
the input parameters grew, the accuracy remained stable. Contrary to this, models such as SVMR and
C45T reached their maximum accuracy values at some point and then their accuracy decreased as the
values of the driver parameters increased (Figure 3).
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(a) Averaged neural network with bagging (TRUE, FALSE)’, (b) support vector machine with
polynomial kernel.

Even though models such ANNT (Figure 4a) and GBM required a more complex implementation
than the other models (Table 3), their performance was not always superior to the other models in all
plots. For instance, in CIT (Figure 3b) and ANNT (Figure 4a), plot #3 showed lower accuracies than the
other plots. Similarly, RF, SVML, NNET and ANNT showed a similar pattern on plot #4. However,
in the case of ANNT, the general model displayed an accuracy drop, suggesting that the accuracy was
somehow influenced by the bagging operation (Figure 4).
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Table 3. Average values of accuracy, kappa and processing times.

Model
Accuracy Kappa Time (s)

Average Stdev Average Stdev Average Stdev

ANNT 0.968 0.035 0.955 0.05 69,307.83 20,306.71
CIT 0.958 0.036 0.948 0.047 173.88 119.46

C45T 0.967 0.032 0.95 0.045 373.78 56.68
DNET 0.915 0.005 0.955 0.021 4970.45 3550.2
GMB 0.957 0.023 0.97 0.031 2839.38 2195.19

NNET 0.955 0.054 0.94 0.075 9271.34 5272.409
RF 0.98 0.02 0.958 0.034 1523.25 989

SVML 0.95 0.056 0.938 0.069 595.57 1066.37
SVMP 0.977 0.024 0.972 0.031 8188.28 11,149.98
SVMR 0.982 0.021 0.977 0.024 4689.92 8735.64

Abbreviations: Stdev = standard deviation.

3.2. Model Selection

Of the ten ML models, RF and SVMR reported the highest accuracy values in the classification of
dead woody components across the five secondary TDF plots, whereas the lowest accuracy values
were reported by CIT, DNET and SVML (Table 3). The SVMR had the highest accuracy value with
0.982, followed by RF with 0.980 and GBM with 0.977.

As shown in Table 3, the processing times vary between the models. The SVMR reported the
highest processing time (4690 s), followed by GBM (2839 s) and RF (1523 s). It should be noted that the
relatively high standard deviations of the models (e.g., SVMR: 8735 s) suggest variation between the
different implementations. The neural networks algorithms (ANNT, NNET and DNET) were the most
time-consuming models. The ANNT was the most time-consuming model (69,307.8 sec), followed by
NNET (9271.3 sec) and SVMP (8188.3 sec). The most efficient models in terms of processing times were
CIT (173.9 sec), C45T (373.8 sec) and SVML (595.6 sec), respectively. Consequently, RF was chosen to
run the final classification since it had the highest accuracy and the lowest processing time.

The repeated measures ANOVA shows that the processing times and accuracy of the models were
significantly different at a 95% confidence level, but this was not the case for the kappa values (Table 4).
Specifically, with 95% of confidence, the accuracy (mean = 4.67, F-value = 150, sign = 0.000) and time
(mean = 0.886, F-value = 0.886, sign = 0.004) values from the ML models showed significant differences.

Table 4. Analysis of variance with repeated measures ANOVA of three performance variables (accuracy,
kappa and processing time).

Degree
Of Freedom (Df) Sum Sq Mean Sq F Value Pr (>F)

ML Model 9 1.370 4.667 150.000 0.000
Residuals 50

Accuracy Level
ML Model 9 0.009 0.001 0.886 0.004
Residuals 50 0.058 0.001

Kappa Level
ML Model 9 0.009 0.001 0.484 0.879
Residuals 50 0.106 0.002

Time Level
ML Model 9 23851 2650094356 40.132 0.000
Residuals 50 33017 66034978
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The results of the analysis of the Tukey test indicate that there are two accuracy groups: the first is
constituted by the ANNT, CIT, C45T, NNET, RF, SVMP and SVMR algorithms and the second group is
composed of the GBM, DNET and SVML algorithms (Table 5). In terms of ML family models, neural
networks and support vector machines belong to both accuracy groups, while decision tree models are
exclusive to the first group. The gradient boosting machines and deep learning models are exclusive of
the second group.

Table 5. Post hoc test p-values—Tukey multiple comparisons of means of the accuracy, kappa and time
of ML models, with 95% confidence level.

Accuracy

ML Model ANNT CIT C45T DNET GMB NNET RF SVML SVMP SVMR Means Group

ANNT 0 0.01 0.002 0.023 0.2 0.013 0.003 0.018 0.695 0.003 0.97 1
CIT 1 0 1 0.013 0.995 0.003 0.983 0.008 0.995 0.972 0.96 1

C45T 1 0.005 0 0.022 1 0.012 1 0.017 1 0.999 0.97 1
GMB 0.004 0.018 0.01 0.032 0 0.022 1 0.027 0 1 0.94 2

DNET 0.972 1 0.983 0 0.003 1 0.747 1 0.839 0.695 0.95 2
NNET 1 1 1 0.01 0.983 0 0.956 0.005 0.983 0.936 0.96 1

RF 0.012 0.022 0.013 0.035 0.003 0.025 0 0.03 0.003 1 0.98 1
SVML 0.995 1 0.004 0.005 0.936 1 0.002 0 0.003 0.003 0.95 2
SVMP 0.008 0.018 0.01 0.032 1 0.022 1 0.027 0 1 0.98 1
SVMR 0.013 0.023 0.015 0.037 0.005 0.027 0.002 0.032 0.005 0 0.98 1

Time

ML Model ANNT CIT C45T DNET GMB NNET RF SVML SVMP SVMR Means Group

ANNT 0 69,133.95 68,934.05 64,337.38 66,468.45 60,036.5 67,784.59 68,712.26 61,119.55 64,617.92 69,307.83 3
CIT 0 0 1 0.989 1 0.643 1 1 0.786 0.993 173.88 1

C45T 0 199.898 0 0.992 1 0.671 1 1 0.809 0.995 373.78 1
DNET 0 4796.568 4596.67 0 2131.068 0.995 3447.202 4374.878 0.999 280.532 4970.45 2
GMB 0 2665.5 2465.602 1 0 0.93 1316.133 2243.81 0.978 1 2839.38 2

NNET 0 9097.455 8897.557 4300.887 6431.955 0 7748.088 8675.765 1083.05 4581.418 9271.33 2
RF 0 1349.367 1149.468 0.999 1 0.816 0 927.677 0.915 1 1523.24 1

SVML 0 421.69 221.792 0.995 1 0.701 1 0 0.833 0.997 595.57 1
SVMP 0 8014.405 7814.507 3217.837 5348.905 1 6665.038 7592.715 0 3498.368 8188.28 2
SVMR 0 4516.037 4316.138 1 1850.537 0.992 3166.67 4094.347 0.999 0 4689.91 2

Regarding time, the post hoc test indicates that, at the accuracy level, there are three groups:
the first is constituted by CIT, C45T, RF and SVML algorithms; the second by DNET, GBM, NNET,
SVMP and SVMR algorithms, and the third group by the ANNT algorithm.

3.3. Extent of Dead Woody Components

The coverage of the dead woody components ranges from 4.8% to 16.1% for the general model and
from 3.9% to 16.1% for the specific model, as shown in Figure 5. The average coverage is 11.9% for the
generic model and 11.0% for the specific model. As such, the estimate that the general model gives for
the spatial extent of dead components is slightly higher than the estimate given by the specific model.

The results of the analysis of variance of the coverage of dead woody components at the five plots
indicated that there are significant differences in the coverage of dead woody components at the five
plots (Table 6).

Table 6. Analysis of variance of the coverage of dead woody components of the five plots of the
study area.

Df Sum Sq Mean Sq F Value Pr (>F)

Plots 4 1.29E-29 3.23E-30 3.296 0.046
Residuals 2 1.96E-30 9.81E-31
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The results of the analysis of the Tukey test indicate that there are three different groups
regarding dead woody components (Table 7). The first group is constituted by plots #1 (intermediate-
intermediate), #4 (early-early) and #5 (intermediate-intermediate); the second group by plot #3
(intermediate-intermediate), and the third group by plot #2 (early-intermediate).

Table 7. Tukey post hoc test—p-values results of the dead component coverage across the five plots of
the study at SR-EMSS.

Plot 1 2 3 4 5 Mean Group

1 0.000 9.100 3.450 0.089 0.050 13.45 a
2 0.000 0.000 0.004 0.000 0.000 4.35 c
3 0.034 5.650 0.000 0.003 0.036 10 b
4 2.650 11.750 6.100 0.000 2.700 16.1 a
5 1.000 9.050 3.400 0.083 0.000 13.4 a

The highest coverage of the dead components is reported in plot #4, #5 and #1, while the lowest
coverage of the dead components is reported in plot #2, a secondary early-intermediate forest patch,
followed by plot #3, a secondary intermediate-intermediate forest patch with a high liana infestation.
Comparing the general and specific models, both models report similar values for these plots, contrary
to plots #1 and #5, where the estimates deviate the most (Figure 6).
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in red and using the random forest algorithm results as an example. Plots: lot #1a-b, plot #2a-b, plot
#3a-b, plot #4a-b, plot #5a-b. Top row: specific model. Bottom row: general model.

4. Discussion

4.1. Effect of Tuning Parameters on the Accuracy Values and Performance of Selected Models

This paper examined the performance of ten ML algorithms on the classification of dead woody
components using UAV-based imagery. Our results show that the accuracy of the ML classifiers,
as expected for algorithm fitting exercises, is affected by the chosen tuning parameters. With the
optimal tuning parameters, the best three classification models reported accuracy values higher than
0.97 whereas, with the least optimal tuning parameters, the accuracy values were close to 0.8. This
outcome conforms to the argument by Castelvecchi [42], who suggested that ML models should not be
used as a black box, but instead, parametrization should be carefully considered.

All ML models provided high classification accuracy values for the detection of dead, living and
understory components. However, the accuracy values of the RF, SVMP and GBM were higher than
those of the other models. These models also had relatively low processing times. As such, our results
conform to those by Li et al. [25], Meddens et al. [43] and Garrity et al. [44].
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4.2. Extension of Dead Woody Components

This study demonstrates that it is possible to detect and quantify dead woody components in a
secondary TDF across the successional gradient. The spatial extent of the dead woody components
ranges from 4.8% to 16.1% in the five forest plots, with an overall accuracy of 98% and a kappa
value of 0.958.

We found that the highest coverage of the dead components was present in the secondary
early-early forest, represented by plot #4. However, plot #4 is in a very early successional stage, with a
sparse canopy and abundant canopy gaps which increase the spatial coverage for understory. In early
successional stages, the Jaragua grass is also abundant, which, together with the shadowing issues,
could cause an overestimation of dead woody components. This is because, on one hand, the Jaragua
could mimic the response of dead vegetation, and on the other hand, some dead woody components
could be masked by the shadows. Consequently, the low accuracy value of plot #4 could be explained
by the shadowed components and the abundance of Jarajua grass.

The intermediate-intermediate stages (plots #1 and #5) also show high coverage of the dead
components (14.4% and 14%, respectively) that is not statistically different to the early-early successional
stage (plot #4). Therefore, our results are in accordance with the findings of Cao et al. [34], who found
that the intermediate successional stage of a TDF has a higher growth rate and relatively low mortality
rates. On the other hand, the early-intermediate stages, represented by plot #2, show the lowest
coverage of the dead components (4.8%).The differences in coverage of dead woody components
between successional stages could be explained by the susceptibility of specific trees to mortality
mechanisms such as hydraulic failure and carbon starvation.

4.3. Dead Woody Components and Their Ecological Implications

In a TDF, droughts and liana infestation are factors that drive the path of succession [31], which in
turn influences the extent of dead woody components. The consequences of drought on forest function
and structure depend on which trees are the most adversely affected [4,45]. For instance, Bennett [46]
found that, in larger trees, droughts had a more detrimental impact on the growth and mortality rates.
In forests, large trees play keystone ecological roles by creating unique micro-environments for nesting
cavities [32]. Furthermore, large trees account for a more significant proportion of ecosystem-level
transpiration than smaller trees, and their drought-related decline could create detrimental canopy
transpiration contributions to cloud formation [47].

In neotropical forests, liana coverage is increasing as a result of higher CO2 concentration, increased
disturbance and decreased precipitation [48–50]. In TDFs, lianas can be abundant and play a more
important role in forest dynamics and mortality than in other tropical ecosystems [50]. Since lianas
reduce growth and survival of their host trees [51], with less investment in supporting tissues than in
the case of other kinds of growth forms, they can significantly contribute to tree mortality rates [52].
For instance, Li et al. [25] found a significant impact of liana infestation on tree mortality in an
intermediate secondary forest at the same study area as ours (same area as plot #1).

4.4. The Influence of Enviromental Conditions and Time in Accuracy of Remotely Sensed Data at Tropical
Dry Forests

Irrespective of the performance and tuning parameters of the ML algorithms used, the accuracy
of the remotely sensed data is also influenced by environmental conditions and the time of data
acquisition. The time of the year and the time of the day play crucial roles in the quality of the remotely
sensed data [53,54]. In TDF, the time of the year is associated with the seasonality of the vegetation [55].
For instance, in the study area, most of the trees lose nearly all their leaves during the dry season;
therefore, without field work, it is difficult to differentiate a seasonal leafless tree from a dead tree or a
tree with dead woody components. On the other hand, the time of the day unequivocally determines
the coverage of shadows within the canopy. Due to the lower solar angles, the solar energy is spread
over a larger surface, increasing the coverage of shadows [53]. Consequently, it could be expected that,
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by restricting the UAV flights to noon, the issues associated with shadows would be solved. However,
in this study, the shadowing issues were mitigated by flying at noon but not solved.

5. Conclusions

This study demonstrates that it is feasible to detect and quantify dead woody components such
as dead stands and fallen trees using multispectral UAV imagery and ML techniques. Of the ML
algorithms used in the study, the relatively high accuracy values and low processing times of RF
and SVMP made them superior to the other models. Likewise, this study illustrates, on one hand,
how the tuning parameters of the ML algorithms affect the accuracy of the classification results, and,
on the other hand, how a maximum number of training samples can increase the accuracy of ML
classification models.

This study found differences in the coverage of dead woody components across the successional
stages of a secondary tropical dry forest. The early successional stages showed the highest coverage of
dead woody components, followed by the intermediate stage. Although we found differences between
plots, there were no differences in dead woody components between the early and intermediate
successional stages.

Finally, further research related to this study could include discrimination of each dead woody
component—for instance, the identification of individual dead trees, which could be used for carbon
and nutrient cycle modeling.
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