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Abstract: Quantifying biomass is important for determining the carbon stores in land ecosystems.
The objective of this study was to predict aboveground biomass (AGB) of Agave lechuguilla Torr.,
in the states of Coahuila (Coah), San Luis Potosí (SLP) and Zacatecas (Zac), Mexico. To quantify
AGB, we applied the direct method, selecting and harvesting representative plants from 32 sampling
sites. To predict AGB, the potential and the Schumacher–Hall equations were tested using the
ordinary least squares method using the average crown diameter (Cd) and total plant height (Ht) as
predictors. Selection of the best model was based on coefficient of determination (R2 adj.), standard
error (Sxy), and the Akaike information criterion (AIC). Studentized residues, atypical observations,
influential data, normality, variance homogeneity, and independence of errors were also analyzed.
To validate the models, the statistic prediction error sum of squares (PRESS) was used. Moreover,
dummy variables were included to define the existence of a global model. A total of 533 A. lechuguilla
plants were sampled. The highest AGB was 8.17 kg; the plant heights varied from 3.50 cm to
118.00 cm. The Schumacher–Hall equation had the best statistics (R2 adj. = 0.77, Sxy = 0.418, PRESS
= 102.25, AIC = 632.2), but the dummy variables revealed different populations of this species, that is,
an equation for each state. Satisfying the regression model assumptions assures that the predictions
of A. lechuguilla AGB are robust and efficient, and thus able to quantify carbon reserves of the arid
and semiarid regions of Mexico.

Keywords: allometric equations; aboveground biomass; Schumacher–Hall; dummy variables;
robust regression

1. Introduction

Climate change is a problem of great magnitude. From 1950 to 2014, CO2 emissions increased
from 310 to 400 ppm [1], and currently the concentration is 409.92 ppm [2]. Forest ecosystems play
an important role in regulating the climate by absorbing carbon [3] into plant biomass through
photosynthesis [4]. Like many countries, Mexico has developed public policies to improve the
well-being of the communities that live in arid regions. It has also developed a National Strategy for
Reducing Emissions due to Deforestation and forest Degradation (ENAREDD+, the initials in Spanish),
which aims decelerate, stop, and reverse loss of forest cover and increase carbon sequestering and
ecosystem services through sustainable management [5], to contribute to climate change mitigation.
Arid regions are the most vulnerable to climate change [6]. Conservation and improvement of these
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areas is an option for maintaining carbon reserves [7]. Of Mexico’s territory, 54% is arid, and more
than 40% of the population live in these regions; however, it is known that above (23.2 Mg ha−1

±

4.15 Mg ha−1) and underground biomass (11.2 Mg ha−1
± 3.54 Mg ha−1) is more than the average

(2 Mg ha−1 to 5 Mg ha−1) that exists in the world’s deserts [8].
The UN Framework on Climate Change considers plant biomass as a necessary variable for

prediction and mitigation of climate change [9]. Quantifying plant biomass allows us to determine
how much carbon is stored in ecosystems [10]. For this reason, aboveground biomass equations are
fundamental to evaluating carbon stores [11]. Aboveground biomass of some scrub vegetation and
grasslands in arid and semiarid regions of Mexico varies from 1.6 to 30 Mg ha−1, while stored carbon
varies from 1 to 15.5 Mg C ha−1 [12]. Agave lechuguilla Torr., locally called “lechuguilla”, is distributed
in arid and semiarid regions of the Chihuahua desert in Mexico and southern USA [13]. From this
plant a fiber known as “ixtle” is extracted; ixtle is used to make brushes, mats, bags, and many other
industrial products [14].

Aboveground biomass in plant species has been estimated by: (a) direct methods, in which
complete plants are harvested to obtain fresh and dry weight [15]; and (b) by indirect methods, allometric
equations developed from the first method [11,16]. Recently, the two procedures have been combined:
aboveground biomass is estimated with remote sensors, the estimation is validated in the field with
direct measurements and, using different algorithms [17], such as ordinary least squares, random
forest or support vector regression [18–20], and the equations are generated. This type of equation uses
dasometric variables that are easily measured, such as tree diameter, total height, and crown diameter,
and are correlated with biomass [15]. Its predictive capacity depends on whether the assumptions
of regression, such as normality, homogeneity of variance, and independence, are satisfied [21–23].
In this type of model it is possible to include indicator or dummy variables, which are variables that
take values of 0, 1, or −1 to indicate absence or presence of some categoric effect [24] and that are useful
to differentiate a set of data that belong to independent samples and, in this way, identify one or more
models [25,26]. This method has been shown to be effective for resolving compatibility of biomass
estimations at different scales [27].

Evidence reveals a scarcity of models of aboveground biomass (AGB) for arid regions’ species,
except for the study by Pando-Moreno et al. [28] which estimated usable fiber. Others have calculated
the time of harvesting [29] or characterized the ecosystems where the plant grows [30,31]. The objective
of our study was to fit two allometric equations using dummy variables for predicting aboveground
biomass of A. lechuguilla samples from the Mexican states of Coahuila, Zacatecas, and San Luis Potosí.

2. Materials and Methods

2.1. Study Area

The study was conducted in north-central Mexico (99◦48′–103◦ W, 22◦50′–26◦38′ N) in three
states (Figure 1): Coahuila (Coah); San Luís Potosí (SLP); and Zacatecas (Zac). The predominant
vegetation is rosetophile scrub and, in a lesser proportion, microphile scrub [32,33], made up mostly of
Agave lechuguilla and genera such as Dasylirion sp., Larrea sp., Opuntia sp., Acacia sp., and species of
the family Cactaceae [30,33]. Altitude varies from 810–2166 m; climate type is very arid and warm
(BWhw) and arid temperate (BSokw). Mean annual precipitation varies from 126–600 mm and mean
annual temperature is 16–22 ◦C [34].

2.2. Sampling of Aboveground Biomass

Based on Picard et al. [15], the direct method was applied to quantify the AGB of A. lechuguilla.
Sampling was conducted only in “ejidos” and communities with permission to exploit plants of this
species. For sample collection, the central part of the managed area was located and a radius of
approximately 1 km was drawn; n number of plants were selected considering all the existing sizes
(diameter, height and crow diameter). Each plant was measured for crown diameter (Cd) and total
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height (H) with a 3 m tape measure (Truper®). The selected plants were then cut (only the aerial
part) with manual tools to obtain fresh weight immediately on a 5 kg capacity Torrey® (model L-EQ)
scale with a precision of 1 g. A subsample of all these aerial components was taken from each plant,
with which its fresh weight was determined. The subsamples were taken to the laboratory and dried
in an electric oven (mark Thermo Scientific™HERAtherm™, model OMH750) at 70 ◦C until a constant
weight was obtained. With this data, the ratio between dry and fresh weight was determined and
multiplied by the total fresh weight per plant to obtain total dry biomass or AGB [11,15].Forests 2020, 11, x FOR PEER REVIEW 3 of 15 
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2.3. Statistical Analysis

To determine A. lechuguilla AGB, the potential (Equation (1)) and the Schumacher–Hall [35]
(Equation (2)) equations were used, both in their linearized form. These equations have been
demonstrated to fit well and give reliable predictions of AGB of different forest species [4,11,36,37].

ln(AGBPotential) = ln β0 + ln β1 × ln(Cd) + ε (1)

ln(AGBSchumacher−Hall) = ln β0 + β1 × ln(Cd) + β2 × ln(H) + ε (2)

where AGB is dry aboveground biomass (kg), Cd is the average crown diameter (cm), H plant height
(cm), ln natural logarithm, βij are regression coefficients, and ε the random error of the model.

To determine the existence of one or more models, dummy variables were added thus denoting
the states, and leaving k−1 dummy variable based on the proposal of Montgomery et al. [22] and
Fox [25]. An affectation to the intercept was considered (without interaction of the quantitative dummy
variable), and the slope of the model (quantitative dummy interaction), resulting in Equations (3)
and (4).

ln(AGBPotential) = ln β0 + β1 ln(Cd) + β2 (Zac) + β3 (SLP) + β4 (Zac : Cd)
+β5 (SLP : Cd) + ε

(3)
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ln(AGBSchumacher−Hall) = ln β0 + β1 ln(Cd) + β2 ln(H) + β3 (Zac) + β4 (SLP)
+β5 (Zac : Cd) + β6 (Zac : H) + β7 (SLP : Cd) + β8 (SLP : H) + ε

(4)

Statistical analyses were performed in R [38]. The models were fit using the ordinary least
squares (OLS) method [22] using the ‘stats’ library and applying the correction factor by logarithmic
transformation [39]. This method is widely used because the statistical–mathematical solution to
obtain the regression coefficients is simple, minimizing the sum of squares of the observations with
a linear relationship. Furthermore, this method allows the basic assumptions of a regression model
to be met [25,26]; likewise, the use of logarithms by linearization of the model reduces the variance
of the error and corrects model inadequacies [22,40]. Selection of the best model was based on the
best coefficient of determination (R2 adj.), the smallest standard error (Sxy), and value of the Akaike
information criterion (AIC). To validate the models, the statistic prediction error sum of squares
(PRESS), calculated with the ‘qpcR’ library [41], was used. This statistic is considered a form of crossed
validation, as well as a way to evaluate the predictive capacity of a regression model [42].

2.4. Adaptation of the Regression Model

Atypical data in a regression model cause the noncompliance of the regression assumptions [25,43]
and, thus, bias in the predictions. Based on the studentized residues of the model, atypical observations
were identified, and values equal to or greater than 3 were eliminated from the analysis. Simultaneously,
influencing data were evaluated with the ‘stats’ library [44]. With the ‘nortest’ library [45], normality
of residuals was diagnosed using the Lilliefors test; variance homogeneity was verified using the
Breusch-Pagan test of the ‘lmtest’ library [46], and independence of errors was checked with the
Ljung-Box test [44]. When considering the multiple model, collinearity diagnostic was performed
using the variance inflation factor (VIF) of the ‘stats’ library and the condition number or index (CN)
based on eigenvalues [22].

2.5. Robust Regression Techniques

When the assumptions of regression are not satisfied by the effects of heavier, or atypical,
observations, methods alternate to OLS are employed [21]. These methods consist of reducing the effect
of these observations, as robust regression techniques or, in its case, generalized least squares [21,22,47].
Here, we applied the method of high breaking point estimation (MM estimation) proposed by Yohai [48]
and derived from the maximum likelihood method (M estimation) proposed by Huber [49], using robust
scale estimation (S estimation). The second method, least trimmed squares (LTS), minimizes the sum of
squares of the smallest k residues and tolerates a large quantity of atypical values [21], both analyzed
with the ‘robustbase’ library [50]. The method of least absolute deviation (LAD) minimizes the sum of
absolute residues [51] in the ‘L1pack’ library [52] and generalized least squares (GLS) that estimate the
coefficients of regression through iterative processes, based on the maximum likelihood method [53]
and analyzed in the ‘nlme’ library [54]. In addition, the mean square error (MSE) and the R2 adj.
(adjusted coefficient of determination) were examined, and the regression assumptions of each method
were verified.

3. Results and Discussion

3.1. Descriptive Statistics Within Its Algorithm

We sampled 533 A. lechuguilla plants distributed in the following manner: 175 in Coah, 178 in SLP,
and 180 in Zac (Supplementary Materials). Plant size varied (Table 1). Plant height varied from 3.50 to
118.00 cm, Pando-Moreno et al. [28] reported heights between 25 and 97 cm for the same species in
Coahuila and Tamaulipas. However, the analysis of variance (AOV) and the least significant difference
(LSD) test showed that there were no statistically significant differences in Cd (p > 0.05) and H (p > 0.05)
among states, but for AGB there were significant differences (p < 0.05); the highest average was found
in SLP (0.89 kg plant−1). According to Nobel and Quero [13], biomass is distributed as follows: 60% in
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leaves, 10% in core, and 4% in roots. The highest AGB registered for the species was 8.17 kg in SLP,
followed by Zac with 2.91 kg, and 2.03 kg for Coah. Conti et al. [55] reported that aboveground biomass
in eight species that grown in semi-arid conditions oscillates from 0.1 to 25.2 kg.

Table 1. Agave lechuguilla Torr. descriptive statistics of the variables evaluated in Mexico.

Coahuila (n = 175) San Luis Potosí (n = 178) Zacatecas (n = 180)

Parameter Cd H AGB Cd H AGB Cd H AGB

Minimum 7.50 9.00 0.01 5.10 6.10 0.00 3.50 3.50 0.00
Maximum 128.50 95.00 2.03 166.50 118.00 8.17 127.50 87.00 2.91

Mean 48.66 44.02 0.49 54.82 45.60 0.89 49.40 41.75 0.45
Standard deviation 25.90 16.90 0.47 36.24 23.50 1.28 29.32 17.89 0.54

C.V. 53.22 38.40 96.16 66.10 51.53 144.03 59.35 42.86 120.24

Note: Cd = average crown diameter (cm), H = total plant height (cm), AGB = dry aboveground biomass (kg), C.V. =
coefficient of variation (%).

3.2. Model Fit and Detection of Atypical Observations

Estimation of the regression coefficients by OLS showed that, for Equation (3), the coefficient of
regression for Cd (β1) and the indicator for Zac (β2) were statistically significant (p < 0.0001) (Table 2),
determining an independent model for predicting AGB in Zac (Equation (3a)).

Table 2. Model statistics for predicting aboveground biomass of Agave lechuguilla Torr. in México.

Equation Estimator Value Sxy (β) Value t Pr (>|t|) R2 adj. Sxy

3
β0 −8.722 0.132 −65.87 0.0001

0.865 0.558β1 (ln Cd) 2.001 0.035 57.866 0.0001
β2 [Zac] −0.301 0.051 −5.897 0.0001

4

β0 −10.183 0.155 −65.665 0.0001

0.901 0.478
β1 (ln Cd) 1.108 0.071 15.657 0.0001
β2 (ln H) 1.285 0.093 13.89 0.0001
β3 [Zac] −0.178 0.051 −3.481 0.0001
β4 [SLP] 0.127 0.051 2.496 0.0100

Note: Sxy (β) = standard error of regression coefficients; Cd = average crown diameter (cm), H = total plant height
(cm), R2 adj. = adjusted coefficient of determination; Sxy = standard error of the model; ln = natural logarithm; βij =
coefficients of regression.

AGBZac = (β0 + β2 [Zac]) + β1 × ln(Cd) (3a)

AGBCoah y SLP = β0 + β1 × ln(Cd) (3b)

In Equation (4) the coefficients for Cd (β1), H (β2) and the indicators Zac (β3) and SLP (β4) were
significant (p < 0.0001) (Table 2), indicating a model for predicting AGB in each state (Equations (4a)
to (4c)).

AGBSLP = (β0 + β4 [SLP]) + β1 ln(Cd) + β2 ln(H) (4a)

AGBCoah = β0 + β1 ln(Cd) + β2 ln(H) (4b)

AGBZac = (β0 + β3 [Zac]) + β1 ln(Cd) + β2 ln(H) (4c)

where AGB is dry aboveground biomass (kg), Cd is the average crown diameter (cm), H is total height
(cm), βij are coefficients of regression, and ln is the natural logarithm.

The use of dummy variables in the AGB equation showed differences among states, affecting the
independent term (β0). Aquino et al. [56] applied this type of dummy variable to differentiate groups
of species (Cupania dentata DC., Alchornea latifolia Sw. and Inga punctata Willd) when they estimated
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AGB in southern Oaxaca, Mexico. Also, Cortés et al. [57] estimated AGB in six species of the genus
Quercus in Guanajuato, Mexico.

Analysis of studentized residuals detected five atypical data for Equation (3) and nine for
Equation (4) (Figure 2a,b); these were eliminated, and the equations were again fit with 527 and 524
data points respectively (Figure 2c,d), resulting in new coefficients of regression (Table 3). Faraway [21]
and Fox [25] have demonstrated that this type of observation tends to bias the variance in regression
coefficients and, because the model assumptions are not satisfied, the prediction is not robust and
affects the direction of the regression slope [43]. For this reason, it is necessary to assure that atypical
observations are not the product of mistakes in capturing the information or of errors of measuring
tools [58].
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Figure 2. Atypical observations detected for the Agave lechuguilla Torr. aboveground biomass models
in Mexico (a,b) and with no atypical observations for both equations (c,d).

Table 3. Statistics of the models (without outliers) for estimating aboveground biomass of Agave
lechuguilla Torr. in Mexico.

Equation Estimator Valor IC Pr (>|t|) R2 adj. Sxy PRESS AIC CF

3
β0 −8.762 (± 0.249) 0.0001

0.877 0.531 149.55 834 1.151β1 (ln Dp) 2.014 (± 0.065) 0.0001
β2 [Zac] −0.299 — 0.0001

4

β0 −10.182 (± 0.285) 0.0001

0.914 0.44 102.25 632.2 1.101
β1 (ln Dp) 1.158 (± 0.130) 0.0001
β2 (ln H) 1.236 (± 0.169) 0.0001
β3 [Zac] −0.178 — 0.0001
β4 [SLP] 0.143 — 0.01

Note: βij = coefficients of regression; Cd = average crown diameter (cm), H = total plant height (cm), CI = confidence
interval (95 %); R2 adj. = adjusted coefficient of determination; Sxy = standard error; PRESS = prediction error sum
of squares; AIC = akaike information criterion; CF = correction factor.
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3.3. Selection of the Best Model

Equation (4) had the best statistics: significant coefficients of regression (p < 0.0001); smallest
standard error (Sxy = 0.439); and the lowest AIC (632), with an acceptable R2 adj. (0.914). Moreover,
it had a lower PRESS value (102.25), demonstrating the model’s good predictive capacity [42], where
Cd and H explain 91.4% of the variation in A. lechuguilla AGB. The correction factor (by transformation
logarithmic) was 1.101 (Table 3). According to Ali et al. [59], the combination of these variables
(Cd and H) and the use of the natural logarithm better predicts AGB in shrub species. For the above,
this equation was selected to predict aboveground biomass by state (Figure 3). The Schumacher–Hall
model showed good fit for estimating leaf biomass in arid region plants in Mexico, e.g., Litsea parvifolia
(Hemsl.) and Lippia graveolens Kunth, with R2 of 0.820 and 0.810, respectively [36,60], and total
biomass in Euphorbia antisyphilitica Zucc, with R2 of up to 0.897 [37] using Cd, base diameter and H.
The β1 coefficients reported in these studies (1.994, 1.935, and 1.611–1.703) were higher than that of
A. lechuguilla, and β2 coefficients (0.251, 0.257 y 0.300–0.774) were lower. Logically, these discrepancies
are due to different AGB of each species. The usable fiber of A. lechuguilla can be estimated adequately
with the polynomial model (R2 = 0.869) using core height and diameter as predictor variables [28].Forests 2020, 11, x FOR PEER REVIEW 8 of 15 

 

 
Figure 3. Tridimensional regression plane of Equations (4.d) to (4.f) for estimation of Agave lechuguilla 
Torr. aboveground biomass in Mexico. (a) San Luis Potosí, (b) Coahuila, (c) Zacatecas. 

Three equations were derived from Equation (4) by effect of the dummy variables. By 
substituting the values of the coefficient of regression and adding the correction factor, we derived 
Equations (4.d) to (4.f) as follows: 

ௌ௅௉ܤܩܣ  = exp[−10.038 +  1.158 × ln(݀ܥ) +  1.236 × ln(ܪ)] ×  1.101 (4.d) 

஼௢௔௛ܤܩܣ  = exp[−10.182 +  1.158 × ln(݀ܥ) +  1.236 × ln(ܪ)] ×  1.101 (4.e) 

௓௔௖ܤܩܣ  = exp[−10.359 +  1.158 × ln(݀ܥ) +  1.236 × ln(ܪ)] ×  1.101 (4.f) 

where AGB is dry aboveground biomass (kg), Cd is average crown diameter (cm), H is total height 
(cm), and ln is natural logarithm. 

The relationship between observed AGB and estimated AGB had a strong linear correspondence 
(1:1 relation), with intercept (β0) and slope (β1) close to zero and one, respectively (SLP: β0 = −0.09, β1 
= 0.92; Coah: β0 = −0.11, β1 = 0.92; Zac: β0= −0.18, β1 = 0.88). This demonstrates the high predictive 
capacity of the model to estimate AGB of A. lechuguilla [23]. The technique has also been used with E. 
antisyphilitica [37], Tamarindus indica L. [64], and woody bush species of the Sonora Desert, Mexico 
[65]. According to Brown [66], one of the concerns in estimating biomass and carbon reserves is the 
possible error that can occur, from measuring different parameters to error in the final regression 
model. Cunia [67] attributes these possible errors to the sampling design. However, a review of the 
literature reveals that few comply with the assumptions of the regression models. In our study, we 
were very strict in this sense, and the estimations of AGB of Agave lechuguilla were efficient and 
robust. 

Figure 3. Tridimensional regression plane of Equations (4d) to (4f) for estimation of Agave lechuguilla
Torr. aboveground biomass in Mexico. (a) San Luis Potosí, (b) Coahuila, (c) Zacatecas.

In tree species, Equation (4) has had good fit (R2 adj. 0.971) for estimating aboveground biomass
of Quercus sp. in Guanajuato, Mexico, using diameter at breast height (Dbh) and H as predictors [57],
as with tropical species (Cupania dentata DC., Alchornea latifolia Sw. and Inga punctata Willd) with R2 adj.
> 0.98 [56]. Araujo et al. [61] used the same equation in 111 trees belonging to 50 tropical species in
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restoration areas in Rio de Janeiro, Brazil, with an R2 of only 0.65, a β1 lower than that found in our
study (0.91), and a higher β2 (1.62), using diameter at breast height (Dbh) and height (H) as predictors.

Equation (3) explained only 87.70% of the AGB of A. lechuguilla and gave higher values of Sxy

(0.531) and AIC (834) than Equation (4). Equation (3) has been used to predict AGB in arid region species
in Mexico, such as Prosopis sp. [11,62] and in central Asia in Hardwickia binata Roxb. [16] recording an R2

between 0.70 and 0.99. In bushy species (Calligonum polygonoides L.) Singh and Singh [4] obtained an R2

of 0.95; because of the nature of this plant, it was used as a predictor of biomass, the square root of the
number of plants stems resulting in β1 = 3.065, higher than that of our study (β1 = 2.014). Ali et al. [59]
used this same equation with eight shrub species and trees of less than 5 cm Dbh in a subtropical forest
in China to estimate AGB, and obtained varying R2 values (0.59–0.99). Conti et al. [55] developed
equations for eight species of a semi-arid forest in Argentina, where they reported an R2 of 0.61–0.85 for
the multiple model using the variables crown, total height, number of branches, and diameter of the
largest stem. In another study, Zeng et al. [63] used the quadratic model for total biomass prediction in
four subtropical shrub species in China, obtaining an R2 above 0.95 with the variables base diameter
and height. This reveals the large diversity of allometric models used to quantify AGB, as well as the
need to develop specific equations.

Three equations were derived from Equation (4) by effect of the dummy variables. By substituting
the values of the coefficient of regression and adding the correction factor, we derived Equations (4d)
to (4f) as follows:

AGBSLP = exp[−10.038 + 1.158× ln(Cd) + 1.236× ln(H)] × 1.101 (4d)

AGBCoah = exp[−10.182 + 1.158× ln(Cd) + 1.236× ln(H)] × 1.101 (4e)

AGBZac = exp[−10.359 + 1.158× ln(Cd) + 1.236× ln(H)] × 1.101 (4f)

where AGB is dry aboveground biomass (kg), Cd is average crown diameter (cm), H is total height
(cm), and ln is natural logarithm.

The relationship between observed AGB and estimated AGB had a strong linear correspondence
(1:1 relation), with intercept (β0) and slope (β1) close to zero and one, respectively (SLP: β0 = −0.09,
β1 = 0.92; Coah: β0 = −0.11, β1 = 0.92; Zac: β0= −0.18, β1 = 0.88). This demonstrates the high predictive
capacity of the model to estimate AGB of A. lechuguilla [23]. The technique has also been used
with E. antisyphilitica [37], Tamarindus indica L. [64], and woody bush species of the Sonora Desert,
Mexico [65]. According to Brown [66], one of the concerns in estimating biomass and carbon reserves
is the possible error that can occur, from measuring different parameters to error in the final regression
model. Cunia [67] attributes these possible errors to the sampling design. However, a review of the
literature reveals that few comply with the assumptions of the regression models. In our study, we were
very strict in this sense, and the estimations of AGB of Agave lechuguilla were efficient and robust.

3.4. Model Validation

The Lilliefors test in Equation (4) showed normality of residuals (D = 0.020, p value = 0.863)
(Figure 4a). According to Fox [25], the coefficients of regression are efficient when this assumption
is satisfied. Alonso and Montenegro [68] showed that satisfying normality improves estimations of
the dependent variable. The Breusch–Pagan test denoted the residues as homoscedastic (BP = 4.580,
df = 4, p = 0.333) (Figure 4b); when this assumption is not satisfied (heteroscedasticity), the coefficients
are not efficient for any sample size [69]. The Ljung-Box test revealed that the residues are not
correlated (χ2 = 2.371, df = 1, p = 0.124) (Figure 4c). These results suggest that the error variance is
adequately estimated; the confidence intervals and the estimations of A. lechuguilla AGB are efficient
and unbiased [22].
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In some cases, validation of equations is directed toward selection of the best statistics for their
predictive capacity and, in the best of cases, to distribution of the residuals (e.g., Owate et al. [70];
Moore [71]; Zeng et al. [63]), leaving aside parametric tests that could verify regression assumptions
and corroborate efficiency of the coefficients.

The H matrix, or Hat values, detected five potentially influencing observations, surpassing the
critical value given by hii = (3 × k)/n = 0.029, where k is the number of coefficients of regression and
n the sample size (Figure 4a). The highest values are found in observations 354 and 357 (hii = 0.05
and 0.06, respectively). Therefore, this type of observation does not exert a leveraging effect on the
regression slope [22]. The DFFITS (difference in fits) statistic identified three influencing observations
(p < 0.01), surpassing the limit given by 2

√
(k/n) = 0.195 (Figure 4b). These observations have a slight

influence in A. lechuguilla AGB estimation [22,72]. Verification of influencing observations after fitting
any equation provides relevant information when considering omission or not of an observation [26].
These observations were not removed from the database. Observation 354 is influential both potentially
and in estimation, but it is distributed on the same cartesian plane as the rest of the observations
(Figure 5).
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Equation (4) did not have serious collinearity; the VIF values of both variables were less than 10
(Cd = 5.64 and H = 5.66). VIF values above 10 in a regressor indicates problems of collinearity [47];
others consider a problem to exist when values are above 5 [22]. The condition number (CN) proposed
by Montgomery et al. [22] demonstrated that there is moderate collinearity for H (CN = 193.85) and null
collinearity for Cd (CN = 7.90). Therefore, application of a corrective method, such as ridge regression,
principal components, or partial least squares, was not necessary [21].
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3.5. Robust Estimation

Application of the robust techniques tested in Equation (4) to determine whether to conserve
atypical data or not was highly significant (p < 0.0001) in the coefficient of regression (Table). The MM
estimation technique reduced the confidence intervals (CI) of the regression coefficients (β0 = ± 0.300,
β1= ± 0.136 and β2 = ± 0.177), compared with the LAD, LTS, and GLS methods (Table 4). Moreover, this
technique was the only one to satisfy the assumption of error normality, according to the Lilliferos test
(D = 0.039, p = 0.053), and it had the smallest mean square error (MSE). Simpson and Montgomery [73]
demonstrated that the MM estimation method is efficient when there are atypical data, but sensitive to
high leverage atypical data [74].

Table 4. Statistics of robust regression methods.

Estimator OLS MM LAD LTS GLS

β0 −10.183 * (±0.304) −10.214 * (±0.300) −10.244 * (±0.467) −10.349 * −9.959 * (±0.328)
β1 1.108 * (±0.139) 1.129 * (±0.136) 1.155 * (±0.214) 1.181 * 1.048 * (±0.138)
β2 1.285 * (±0.181) 1.273 * (±0.177) 1.245 * (±0.279) 1.208 * 1.285 * (±0.180)

β3 (Zac) −0.178 * (±0.100) −0.161 * (±0.098) −0.099 ** (±0.072) −0.098 * −0.179 * (±0.113)
β4 (SLP) 0.127 ** (±0.100) 0.147 * (±0.098) 0.210 (±0.154) 0.195 *** 0.127 ** (±0.113)
R2 adj. 0.901 0.907 0.901 0.919 0.901
MSE 0.226 0.226 0.228 0.229 0.228
CF 1.121 1.111 —- 1.092 1.120

Normality (LF) 0.043 0.053 0.022 0.014 0.014
Homogeneity (B-P) 0.031 0.031 0.031 0.031 —-

Autocorrelation (LJ-B) 0.007 0.013 0.013 0.015 0.000

Note: OLS = Ordinary least squares; MM = MM estimation; LAD = Absolute least deviation; LTS = Least trimmed
squares; GLS = Generalized least squares; MSE = Mean square error; CF = Correction factor; LF = Lilliefors test; B-P
= Breusch-Pagan test; LJ-B = Ljoung-Box test; * = p < 0.0001; ** = p < 0.001; *** = p < 0.01.

When the above was demonstrated the MM estimation technique had a smaller MSE (0.226),
while the LAD, LTS, and GLS methods had higher values (0.228, 0.229 and 0.228); according to Simpson
and Montgomery [73], this parameter shows the efficiency of the robust method. Some studies have
demonstrated the efficiency of robust techniques [75–77], specifically LTS, which predicts adequately
when there are atypical observations [78]. That, however, depends on the nature of the observations [21].
Susanti et al. [79] demonstrated the efficiency of the S estimation technique against the M and MM
techniques, significantly reducing the effect of atypical observations and increasing the value or R2.

The R2 was similar among the robust techniques (0.901 to 0.919). The highest value was found
with the LTS technique (Table 4). According to Faraway [21], there is no sense in evaluating this
coefficient in robust techniques; we calculated it only to make comparisons. However, Alma [74]
compared four robust methods, of which the MM method stood out over the estimation methods
M, LTS, and S estimation using R2. The usefulness of robust estimation lies in the fact that atypical
observations do not influence estimations of the coefficients of regression [73]. Also, they can be used
to stabilize the variance [22] in the GLS method.

The estimators obtained using the MM technique are an alternative for predicting A. lechuguilla
AGB by state considered the outliers detected. Derived from this, the following equations are proposed:

AGBSLP = exp[−10.067 + 1.129× ln(Cd) + 1.273× ln(H)] × 1.11 (5a)

AGBCoah = exp[−10.214 + 1.129× ln(Cd) + 1.273× ln(H)] × 1.11 (5b)

AGBZac = exp[−10.375 + 1.129× ln(Cd) + 1.273× ln(H)] × 1.11 (5c)

4. Conclusions

The use of dummy variables in the Schumacher–Hall equation was found to be a useful tool
to differentiate models of A. lechuguilla aboveground biomass at the regional scale and, therefore, to
improve estimations of this species, resulting in a model of AGB by state. Satisfaction of the regression
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model assumptions confirms that the Schumacher–Hall equation predictions of A. lechuguilla AGB
are efficient and robust. When the method of ordinary least squares has difficulties in satisfying
the assumptions because of atypical data, the robust regression technique is a good option, but it is
necessary to test the different methods, since each method will give different results with different
sets of data. The inclusion of the variables average crown diameter (Cd) and plant height (H) in
the Schumacher–Hall model improved the predictions more than when a single variable was used
(potential model). Crown diameter and plant height can predict up to 90% of the AGB of this species.
The robust regression technique by MM estimation to predict the AGB of this species was shown to
be a good alternative when atypical data are present. This study contributes an equation to predict
A. lechuguilla AGB at a regional scale and, thus, to quantify carbon reserves of the arid and semiarid
regions of Mexico.
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