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Abstract: Short-rotation forestry is of interest to provide biomass for bioenergy and act as a carbon sink
to mitigate global warming. The Poplar tree (Populus× xiaohei) is a fast-growing and high-yielding tree
species in Northeast China. In this study, a total of 128 Populus × xiaohei trees from the Songnen Plain,
Heilongjiang Province, Northeastern China, were harvested. Several available independent variables,
such as tree diameter at breast height (D), tree’s total height (H), crown width (CW), and crown
length (CL), were differently combined to develop three additive biomass model systems and eight
stem volume models for Populus × xiaohei tree. Variance explained within the three additive biomass
model systems ranged from 83% to 98%, which was lowest for the foliage models, and highest for
the stem biomass models. Similar findings were found in the stem volume models, in which the
models explained more than 94% of the variance. The additional predictors, such as H, CL, or CW,
evidently enhanced the model fitting and performance for the total and components biomass along
with the stem volume models. Furthermore, the biomass conversion and expansion factors (BCEFs)
of the root (118.2 kg/m3), stem (380.2 kg/m3), branch (90.7 kg/m3), and foliage (31.2 kg/m3) were
also calculated. The carbon concentrations of Populus × xiaohei in root, stem, branch, and foliage
components were 45.98%, 47.74%, 48.32%, and 48.46%, respectively. Overall, the newly established
models in this study provided complete and comprehensive tools for quantifying the biomass and
stem volume of Populus × xiaohei, which might be essential to be specifically utilized in the Chinese
National Forest Inventory.

Keywords: biomass additivity; Populus spp.; quantifying carbon stock; short-rotation coppice;
stem volume equations

1. Introduction

Short-rotation forests pertain to plantations of certain fast-growing tree species and harvests
continually at a brief period of rotations, which is possible due to the implementation of high planting
density and intensive forest management [1,2]. These types of plantations have various objectives,
such as alleviating the contradiction between ecology and economy, estimating carbon accumulation,
shortening the cycle of timber production management, prompting to produce biomass for bioenergy
production, and providing the material for the production of wood pulp, feed, and biomass fuels by
short-rotation management [3–7]. Not surprisingly, then, many researchers worldwide are exploring
the biomass production potentials of fast-growing tree species [6–9]. Poplar is one of the most important
tree species on earth due to its fast growth, strong adaptability, easy reproduction, and extensive
use; thus, it is widely used to produce energy, fuelwood, pulp, and agricultural protection forests in
China [10,11].
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Populus × xiaohei is currently the most widely cultivated poplar tree, ranging from the northeast to
the central areas of China [12,13]. It is commonly used to establish high-yielding and short-rotation
plantation forests, and it is one of the primary protection forests and timber species in the Songnen Plain
of China. The area and stand volume of Populus × xiaohei plantation forests in the Songnen Plain of
China is about 550,000 ha and 52,000,000 cubic meters, respectively [14]. At present, many researchers
have strengthened their focus on transgenic technology, growth dynamic, and physiological and
ecological characteristics for the biomass of Populus × xiaohei [12,13,15–18]. Unfortunately, the available
information regarding this species’ potential is still inadequate, and only a limited number of studies
have been reported about the estimation of its biomass, carbon, and volume production. The in-depth
knowledge of this species’ ability to accumulate biomass and volume is necessary to reveal the variation
rules of the ecological system balance, and to assess the carbon storage, nutrient cycle, and energy
flow. Thus, the production of biomass and volume from Populus × xiaohei, mainly the aim of the
Populus × xiaohei forests, should also be considered and evaluated.

As it has been known, directly measuring the stem volume and weights of the tree components are
undeniably the most precise approach for estimating individual tree biomass [19,20]. Thus, biomass is
often estimated by utilizing the biomass allometric equations or merely by multiplying the stem
volume approximations with biomass conversion and expansion factors (BCEFs) or basic wood
density [13,21–25]. The BCEFs would be more favorable in case the tree volume is the only existing
data; thus, it is possible to convert the stem volume data into the tree components’ (i.e., root, stem,
branch, and foliage) dry biomass [26,27]. However, utilizing the biomass and stem volume equations
are still considered as a better way of quantifying forest biomass and volume [21,23,28]. To date,
a considerable amount of volume and biomass models for various tree species have been developed
across numerous geographical and ecological regions globally [29–34].

The vast majority of the established biomass equations utilize diameter at breast height (D) as a
sole predictor of tree components’ biomass or stem volume equations [13,21,24,34–36]. Furthermore,
numerous studies have shown that adding the tree’s total height (H) as a predictor in both of components
biomass and stem volume equation could significantly upgrade the quality of the model fitting and
performance, and it was found to be helpful in explaining the potential limitation of intra-species
divergence [23,29,37,38]. Thus, many studies preferred to use H as the second predictor to develop
biomass or stem volume models [38,39]. In addition, depending on the research orientations, the tree
crown (e.g., crown width [CW] and crown length [CL]) is also considered as prospective additional
independent variables to develop an individual tree biomass model [38,40].

When establishing models to predict the total biomass and that of several primary tree tissues,
two definite attributes are widely known as an outcome of employing several different approaches in
the model’s fitting process, namely: non-additive and additive models [22]. The non-additive model
individually fits the data of each tree tissue and total biomass, neglecting the inherent correlation
between the tissues measured on the same sample trees. On the contrary, the additive models require
the tree tissues and total biomass data to be simultaneously fitted, reckoning the intrinsic correlation
of the biomass tissues sampled from the same individuals [22,37,41]. Consequently, the total tree
biomass estimation will be equal to the sum of the prediction of biomass tissues. Over an extended
period, researchers have been proposing several methods of biomass model systems in order to deal
with the naturally existing additivity property [37,42]. Between these techniques, nonlinear seemingly
unrelated regression (NSUR) is acknowledged as one of the most commonly used compared to others,
due to its generality and flexibility in application [22].

There are more than 100 poplar species worldwide, and roughly half of them are native to
China [11]. Numerous studies about poplar biomass and carbon storage in China were conducted over
the last 30 years, but only a few studies reported on biomass and carbon estimations of Populus × xiaohei.
Fan et al. [43] and Song et al. [44] studied the biomass allometric relationship of Populus × xiaohei and
established the equations to predict the tree components and total biomass. Nevertheless, these two
studies only utilized a relatively small biomass dataset, and unfortunately, the compatibility property
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was absent in the equations developed by Fan et al. [43]. Furthermore, a carbon concentration was
usually used to calculate tree carbon. Generally, researchers employ either 50% or 45% as generic
carbon concentration values for different tree components [45,46].

However, a range of 43%–60% on tree carbon concentration was reported by several previous
studies varying across the tree species and tissues [47,48]. Thus, the usage of the 50% carbon conversion
factor might generate a 15% bias in estimating the carbon stock of an individual tree. Considering the
potential of Populus × xiaohei tree in global climate change, carbon cycle, carbon storage, and emission
reduction, this work intends to consider allometric equations as supplementary instruments for
biomass and volumes estimation of this particular species. The specific purposes of the current study
were to: (1) construct three additive biomass model systems with weighted NSUR and eight stem
volume models based on different combination of predictors; (2) examine the performance of the
newly developed biomass and stem volume models; (3) compare the current study’s newly developed
biomass and stem volume equations against the previously established biomass and stem volume
models for Populus × xiaohei by Fan et al. [43], Song et al. [44], and Yang et al. [49].

2. Materials and Methods

2.1. Site Description

The dataset was obtained from the Songnen Plain of Heilongjiang Province (HSP) (121–128◦ E,
42–51◦ N, Figure 1), the largest part amongst the Northeastern Plain region in the People’s Republic of
China. It has an area of 12 × 104 km2 and is connected with the Xiaoxing’an Mountains in the north,
bordered by the Eastern Mountains and the Daxing’an Mountains in the east and west, respectively
(Figure 1). The elevation ranges between 120 and 300 m above sea level. The HSP has a semi-humid
continental monsoon climate and is located in a warm temperate zone. The mean daily air temperature
in January and July is −20 ◦C and +25 ◦C, respectively. The mean temperature and annual rainfall
are around 2–6 ◦C and about 500 mm, respectively. The soil types in the HSP are mostly Chernozem
(Pachic Haploboroll) and black soil (Pachic Udic Argiboroll), according to the Chinese Taxonomic
System. The HSP is dominated by herbaceous vegetation with a small number of trees and shrubs.
The tree layer is mainly covered by planted forest with Populus × xiaohei as the dominant tree species
and considered to be the best choice for windbreaks.
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2.2. Data Collection

2.2.1. Tree Measurements

The selected sample trees in this study were required to meet several basic prerequisites:
undamaged, healthy, with reasonably straight, single stems, and neither border trees nor dying
trees. A total of 128 trees were collected using the destructive sampling method from artificial
plantations spread across nine sites in HSP (Figure 1), where Populus × xiaohei is broadly distributed.
The tree biomass and stem volume measurements were deliberately organized either in July or August.
All of the sample trees were felled at the ground level point. The total tree height (H) and the length
of the live crown (CL) of the selected sample trees were recorded directly after felling, while the
measurement of crown width (CW) and diameter at breast height (D) had already been done in advance
to tree felling. After the tree felling process was conducted successfully, the tree stem and live crown
component were cut at the first live branch position. The characteristics of the sample trees in this
study are listed in Table 1.

Table 1. Summary statistics of tree variables, tree biomass, stem volume and biomass conversion and
expansion factors for the sampled Populus × xiaohei trees.

Variables N Min Max Mean SD

D (cm) 128 2.0 38.0 14.3 8.5
H (m) 128 2.5 25.3 11.8 5.0
CL (m) 128 0.5 19.7 7.2 3.8

CW (m) 128 0.3 4.0 1.5 0.7
Age (year) 128 2.0 35.0 17.8 8.0

Total biomass (kg) 128 0.62 630.52 93.78 134.01
Root biomass (kg) 128 0.11 108.13 15.49 20.19
Stem biomass (kg) 128 0.34 420.27 60.74 90.42

Branch biomass (kg) 128 0.06 102.15 13.65 21.13
Foliage biomass (kg) 128 0.01 29.07 3.90 5.48

Stem volume (m3) 128 0.0009 0.9740 0.1555 0.2145
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2.2.2. Biomass Measurements

For stem biomass measurements, the stems were partitioned into 1 m length approximate cylinders,
and each of them was weighed using a dynamometer. Further, a 2–3 cm disc subsampled from the base
and the top of each approximate cylinder was weighed and transmitted to the laboratory for analyzing
the dry/fresh weight ratio (DFWR). For branch and foliage biomass measurements, the total fresh
weight of all live tree branches (unseparated branches and foliage) within the canopy was weighed.
The branch and foliage biomass were measured by sampling approximately 9–15 branches, which were
equally distributed throughout the canopy. Then, the branch and foliage from each sample were
separated, weighed, and subsampled for determining the DFWR. The tree roots were excavated by
using both manual digging and lifting machines within the 3 m radius of the excavation zone. Due to
the high difficulty level and time limitation, in this study, the fine roots (diameter < 5 mm) were
intentionally left out. All roots were sorted into three different categories, i.e., small (diameter < 2 cm),
medium (diameter 2–5 cm), and large (diameter > 5 cm), and weighed. The fresh weight from each root
class was sampled and transmitted to the laboratory for determining the DFWR. The DFWR was then
used to determine the dry weight value of each tree component by multiplying with its respective fresh
weight. The total tree biomass was acquired by summing the stem, root, branch, and foliage dry weight.
The descriptive statistics of all sampled trees used in this study are listed in Table 1. The relationships
between the dependent (components biomass) and independent variables are presented in Figure 2.
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Figure 2. Relationships between the four primary biomass tissues and stem volume with the diameter
at breast height (D), tree height (H), crown length (CL), and crown width (CW).

2.2.3. Stem Volume and Biomass Conversion and Expansion Factor (BCEF) Measurements

The stem volume (V) was calculated by aggregating each stem’s section volume, based on a 1 m
length of stem cylinders’ volume and a treetop for each sampled tree. The Smallian’s formula [50] was
used to compute the stem volumes:

V =
[1
2
(g0 + gn) +

∑n−1

i=1
gi

]
l +

1
3

gnl′ (1)

where g0 is the basal area at the stem base (tree felling point); gn is the basal area at the topmost of
the tree stem (excluding treetop); gi is the basal area at the upper side of each stem section; l is the
length of stem section, which is 1 m in this study; l′ is the length of the treetop; n is the number of
stem sections in each sampled tree. After the stem volume of each tree was obtained, we measured the
BCEFs value of the four primary biomass components using the following equation:
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BCEFi =
Wi
V

(2)

where BCEFi represents the biomass conversion factor for each component in kg/m3 (i = r for root, s for
stem, b for branch, and f for foliage); Wi represents the dry biomass of each respective component
in kg; and V is the volume of the stem component in m3.

2.2.4. Carbon Concentration Measurements

Carbon concentrations of root, stem, branch, and foliage were measured using oven-dried
samples. Due to the time limitation and absence of samples, in this study, only 140 samples of
stem, root, branch, and foliage from 35 trees were used to determine the carbon concentration of
Populus × xiaohei. All samples were then burned entirely at a temperature of 1200 ◦C in a vial containing
pure oxygen, and the emitted carbon in the form of CO2 was measured with a non-dispersion infrared
ray (NDIR) analyzer (Multi N/C 3000 analyzer with 1500 Solids Module, Analytik Jena AG, Germany).
Hence, the carbon content (kg) of each tree component can be calculated by simply multiplying its
biomass and carbon concentration.

2.3. Statistical Analysis

2.3.1. Variable Selection of Biomass and Volume Models

It is well-known that the power-law function is usually used to predict the biomass and volume
of an individual tree. In this study, the relationships between the tree biomass components and
several available predictors were screened through visual inspection to ascertain that the component
biomass and volume models can be developed as a multivariate power-law function (Figure 2).
Further, the power-law functions with an additive error term were determined to develop the biomass
and volume models for Populus × xiaohei. The function form is as follows:

Yi = eβi0Xβi1
1 Xβi2

2 · · ·X
βik
k + εi (3)

where Yi represents the tree components’ biomass in kilograms (i = r for root, s for stem, b for branch,
and f for foliage) or stem volume in cubic meters; Xk is several tree predictors (j = 1, . . . , k), i.e., D, H,
CW, and CL; βik are the equations’ coefficients to be predicted; εi is the model error term.

Eight power-law functions in Table 2 are used to estimate the tree components’ biomass and
stem volume based on one predictor (D), two predictors (D + H/CL/CW), three predictors (D + H +

CL/CW), and four predictors (D + H + CL + CW). All of the equations were tested to select the “best
model” for each component biomass and stem volume equation by relying on the three indicators, i.e.,
Akaike information criterion (AIC), root mean squared error (RMSE), and coefficient of determination
(R2). The models with the bigger R2 and smaller RMSE and AIC have better fitting performance. If the
difference of the AIC between the two models is too small, there is no real distinction between them.
Finally, the combinations of one, two, and the best predictors are determined as the primary structures
for developing the three additive biomass model systems and the stem volume equation.
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Table 2. Fit statistics of the eight biomass models based on several combinations of different predictors
for each tree component of Populus × xiaohei.

Components Equations R2 RMSE AIC

Root

Wr = eβr0 Dβr1 0.9361 5.0829 783.48
Wr = eβr0 Dβr1 Hβr2 0.9369 5.0526 783.94

Wr = eβr0 Dβr1 CWβr2 0.9446 4.7349 767.32
Wr = eβr0 Dβr1 CLβr2 0.9360 5.0873 785.70

Wr = eβr0 Dβr1 Hβr2 CWβr3 0.9460 4.6723 765.91
Wr = eβr0 Dβr1 Hβr2 CLβr3 0.9369 5.0507 785.85

Wr = eβr0 Dβr1 CLβr2 CWβr3 0.9446 4.7338 769.26
Wr = eβr0 Dβr1 Hβr2 CLβr3 CWβr4 0.9463 4.6608 767.28

Stem

Ws = eβs0 Dβs1 0.9323 23.443 1174.82
Ws = eβs0 Dβs1 Hβs2 0.9686 15.9484 1078.20

Ws = eβs0 Dβs1 CWβs2 0.9349 22.9881 1171.80
Ws = eβs0 Dβs1 CLβs2 0.9448 21.1674 1150.68

Ws = eβs0 Dβs1 Hβs2 CWβs3 0.9743 14.4471 1054.89
Ws = eβs0 Dβs1 Hβs2 CLβs3 0.9696 15.7087 1076.33

Ws = eβs0 Dβs1 CLβs2 CWβs3 0.9482 20.4911 1144.37
Ws = eβs0 Dβs1 Hβs2 CLβs3 CWβs4 0.9753 14.1656 1051.86

Branch

Wb = eβb0 Dβb1 0.8640 7.7596 891.78
Wb = eβb0 Dβb1 Hβb2 0.8672 7.6678 890.73

Wb = eβb0 Dβb1 CWβb2 0.8711 7.5563 886.98
Wb = eβb0 Dβb1 CLβb2 0.8678 7.6515 890.18

Wb = eβb0 Dβb1 Hβb2 CWβb3 0.8732 7.4942 886.86
Wb = eβr0 Dβb1 Hβb2 CLβb3 0.8672 7.6674 892.71

Wb = eβb0 Dβb1 CLβb2 CWβb3 0.8732 7.494 886.86
Wb = eβb0 Dβb1 Hβb2 CLβb3 CWβb4 0.8725 7.5151 889.58

Foliage

W f = eβ f 0 Dβ f 1 0.8346 2.2203 571.44
W f = eβ f 0 Dβ f 1 Hβ f 2 0.8629 2.0212 549.39

W f = eβ f 0 Dβ f 1 CWβ f 2 0.8321 2.2369 575.35
W f = eβ f 0 Dβ f 1 CLβ f 2 0.8407 2.1788 568.62

W f = eβ f 0 Dβ f 1 Hβ f 2 CWβ f 3 0.8603 2.0406 553.84
W f = eβ f 0 Dβ f 1 Hβ f 2 CLβ f 3 0.8629 2.0213 551.41

W f = eβ f 0 Dβ f 1 CLβ f 2 CWβ f 3 0.8385 2.1941 572.41
W f = eβ f 0 Dβ f 1 Hβ f 2 CLβ f 3 CWβ f 4 0.8598 2.0441 556.27

2.3.2. Additive Biomass Model System

Referring to the additive model configuration proposed by Affleck and Diéguez-Aranda [51],
the additive system of four functions without applying any parameter restriction on the structural
parameters can be written as follows:

Wr = eβr0Xβr1
1 Xβr2

2 · · ·X
βrk
k + εr

Ws = eβs0Xβs1
1 Xβs2

2 · · ·X
βsk
k + εs

Wb = eβb0 Xβb1
1 Xβb2

2 · · ·X
βbk
k + εb

W f = eβ f 0X
β f 1

1 X
β f 2

2 · · ·X
β f k

k + ε f

(4)

where r, s, b and f represent roots, stems, branches, and foliage, respectively. The other abbreviations
were the same as it written in Equation (2).

2.3.3. Weighting Function for Heteroscedasticity

The residuals of tree biomass and volume equations often increase with the increasing tree sizes’
(D), which is commonly known as heteroscedasticity. In terms of nonlinear regression, each biomass
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equation should have its own specialized weighting function to neutralize the heteroscedasticity
problem effectively. Generally, a functional correlation occurred between the model’s independent
variables and the model residuals of the ith observation. Thus, the equation of var(εi) = σ2Ŷ2φ

i was
specified to model the power variance function for further application in the tree biomass and stem
volume equations, where εi represents the unweighted model residual, φ is a coefficient to be predicted,
Ŷi is the predicted biomass of each component and stem volume for the ith sample tree, and σ2 is a
scaling factor for the error dispersion.

2.3.4. Model Fitting and Evaluation

The model parameters in the stem volumes were estimated by utilizing the nonlinear ordinary least
squares (OLS) as the fundamental method, while the additive biomass model system (ABMS) employed
the nonlinear seemingly unrelated regression (NSUR) to estimate the coefficients. Further information
about the algorithm and theory of NSUR may be found in each of the previously mentioned
publications [22,52]. All the above model fittings were carried out using different available procedures
in SAS 9.3 software such as PROC NLIN and PROC MODEL [53].

Further, the three ABMS and stem volume models’ performance based on different combinations
of predictors were evaluated and compared using both statistical and graphical analyses. Two statistical
indicators obtained from the model residuals and predicted values were used to assess and compare
the performance of the model fitting: the coefficient of determination (R2) and root mean square error
(RMSE). Moreover, three statistical indicators of the leave-one-out method were utilized to evaluate
the prediction performance: the mean prediction error percent (MPE), mean absolute percent error
(MAPE), and model efficiency (EF) (similar to the coefficient of determination). The mathematical
expressions are as follows:

R2 = 1−

∑n
i=1 (Yi − Ŷi)

2∑n
i=1 (Yi −Y)

2 (5)

RMSE =

√∑n
i=1

(
Yi − Ŷi

)2

n
(6)

MPE =

∑n
i=1

((
Yi − Ŷi,−i

)
/Y

)
n

× 100 (7)

MAPE =

∑n
i=1

∣∣∣(Yi − Ŷi,−i)/Yi
∣∣∣

n
× 100 (8)

EF = 1−

∑n
i=1 (Yi − Ŷi,−i)

2∑n
i=1 (Yi −Y)

2 (9)

where Yi is the observed component biomass or stem volume value, Ŷi is the estimated biomass or
stem volume of the model, which were fitted by using all of the sample trees (n), Y is the mean value
of the observed biomass or stem volume, Ŷi,−i is the predicted value of the leave-one-out method,
which was estimated by using the leave-one-out observation model (n−1); n was the total number of
sampled trees.

In this study, the predictive performance of a biomass model was compared with previously
published models for the particular tree species developed by Fan et al. [43] and Song et al. [44], and a
stem volume model was compared with the published model developed by Yang et al. [49].

2.3.5. Effects of Tree Sizes (D) and Components on Carbon Concentration

To investigate the effect of the tree components on the variation of the carbon concentration,
analysis of variance (ANOVA) with Tukey mean comparison was performed to examine the difference
of the tree components’ carbon concentrations using PROC GLM procedure in SAS 9.3 software [53].
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3. Results

3.1. Biomass Equations

D and H are the most reliable predictors to develop a power-law allometric equation in the vast
majority of the tree components and total biomass estimations. However, depending on the availability
of the tree biomass data and research goals, CL and CW may become potential predictors to improve
the model fitting performance of biomass models. In the present research, the four predictors (D, H,
CW, and CL) were separately fitted to each component biomass equation. Table 3 displays the result
statistics of the model fitting, including R2, RMSE, and AIC. H, CW, and CL were found to give a
significant improvement as the predictors for the stem biomass equation. The integration of CW into
the root and branch biomass models gave a significant enhancement into the model fitting quality.
Meanwhile, both H and CL were found to be insignificant for the branch and root biomass equations
since they yielded a similar R2, RMSE, and AIC compared to the biomass model developed with the
combination of D and CW. Thus, they were excluded from the root equation. Similarly, CW and CL
were also excluded for foliage biomass equations. Hence, several predictors were determined as the
best variable combinations to develop the power-law function for each component biomass equations:
D and CW were selected for root and branch biomass equations; D, H, CL, and CW were chosen for
stem biomass equations; D and H were preferred for foliage biomass equations. Furthermore, we fitted
the three additive biomass model systems based on D as the sole predictor (namely MS1, Equation (10)),
D and H or CW as two predictors (namely MS2, Equation (11)), and best predictors (namely MS3,
Equation (12)). 

Wr = eβr0 Dβr1 + εr

Ws = eβs0Dβs1 + εs

Wb = eβb0Dβb1 + εb
W f = eβ f 0Dβ f 1 + ε f

(10)


Wr = eβr0Dβr1CWβr2 + εr

Ws = eβs0Dβs1Hβs2 + εs

Wb = eβb0Dβb1 CWβb2 + εb
W f = eβ f 0Dβ f 1Hβ f 2 + ε f

(11)


Wr = eβr0Dβr1CWβr2 + εr

Ws = eβs0Dβs1Hβs2CLβs3CWβs4 + εs

Wb = eβb0Dβb1Hβb2CWβb3 + εb
W f = eβ f 0Dβ f 1Hβ f 2 + ε f

(12)

The coefficient estimates, standard errors (SEs), and goodness of fit of the three additive biomass
equation systems based on several different predictors are presented in Table 4. The results suggested
that all of the estimated parameters in the three additive biomass model systems were statistically
significant at the significance level p < 0.05; The R2 values for all component biomass equations in MS1
are 0.9363, 0.9316, 0.8640, and 0.8321 for the root, stem, branch, and foliage, respectively. Then, all of
the component biomass equations were summed, and the R2 value for the total biomass estimation
was calculated, which was 0.9633. Compared to the MS1, MS2 owned a smaller RMSE and greater R2

for total and component biomass equations. An apparent increase in the R2 value along with a notable
decrease in RMSE was shown for stem and foliage biomass models, which were approximately 4.0%
and 3.1% for R2, respectively, and about 32.4% and 9.1% for RMSE, respectively. A slight increase in R2

and decrease in RMSE were exhibited for the branch and root biomass models, which was around
0.8% and 0.7% for R2, respectively, and about 6.8% and 2.8% for RMSE, respectively. The model fitting
result based on the best combination of predictors, MS3, yielded a lower error estimation than MS1
and MS2, especially for the stem biomass model, which was indicated by having a more than 10%
decrease in RMSE compared to the D-only equation.
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Table 3. Parameter estimates, standard errors (in parenthesis), goodness-of-fit statistics, jackknifing validations, and the parameter of weight functions (φ) for three
additive biomass model systems based on different predictor variables.

Model Systems Components βi0 βi1 βi2 βi3 βi4 R2 RMSE φ MPE MAPE EF

MS1

Root −3.0963 **
(0.1163)

2.0676 **
(0.0378) 0.9363 5.0361 0.5500 0.38 29.04 0.9283

Stem −2.7171 **
(0.1324)

2.3758 **
(0.0418) 0.9316 23.3782 0.5040 2.35 18.28 0.9209

Branch −4.1284 **
(0.2534)

2.3560 **
(0.0768) 0.8640 7.6981 0.3500 0.46 37.51 0.8434

Foliage −4.4739 **
(0.2364)

2.0621 **
(0.0773) 0.8321 2.2194 0.5650 2.07 53.17 0.8168

Total — — 0.9633 25.5756 1.74 13.86 0.9578

MS2

Root −2.7455 **
(0.1447)

1.8924 **
(0.0599)

0.2784 **
(0.0775) 0.9442 4.6942 0.5356 −0.01 27.96 0.9324

Stem −3.6308 **
(0.1238)

1.8585 **
(0.0537)

0.9137 **
(0.0779) 0.9685 15.8047 0.4968 −0.02 14.25 0.9627

Branch −3.8488 **
(0.3012)

2.2030 **
(0.1144)

0.2750 *
(0.1361) 0.8702 7.4923 0.3375 0.52 35.46 0.8419

Foliage −4.0767 **
(0.2724)

2.4441 **
(0.1387)

−0.5718 *
(0.1894) 0.8578 2.0182 0.5503 1.42 53.92 0.8459

Total — — — 0.9781 19.7545 0.12 10.08 0.9748

MS3

Root −2.7445 **
(0.1447)

1.8919 **
(0.0599)

0.2794 **
(0.0775) 0.9442 4.6938 0.5356 −0.02 27.95 0.9321

Stem −4.0585 **
(0.1600)

2.0416 **
(0.0700)

1.0536 **
(0.0955)

−0.1871 **
(0.0557)

−0.1709 *
(0.0733) 0.9741 14.2158 0.4965 0.04 12.60 0.9664

Branch −3.8541 **
(0.3011)

2.2050 **
(0.1144)

0.2745 *
(0.1359) 0.8701 7.4940 0.3375 0.46 35.43 0.8413

Foliage −4.0972 **
(0.2722)

2.4532 **
(0.1383)

−0.5734 *
(0.1888) 0.8603 2.0165 0.5503 1.09 53.68 0.8459

Total — — — — — 0.9800 18.8546 0.14 11.10 0.9755

**: Statistically significant parameters at the significance level p < 0.001; *: Statistically significant parameters at the significance level p < 0.05; ns: non-significant (p > 0.05).



Forests 2020, 11, 780 12 of 23

Table 4. Parameter estimates, standard errors (in parenthesis), goodness-of-fit statistics, jackknifing validations, and the parameter of weight functions (φ) for eight
stem volume equations based on different predictor variables for Populus × xiaohei trees.

Equations β0 β1 β2 β3 β4 R2 RMSE AIC φ MPE MAPE EF

V = eβ0 Dβ1
−8.1001 **
(0.1434)

2.1995 **
(0.0432) 0.9498 0.0479 −410.70 0.6010 −0.63 26.7245 0.9416

V = eβ0 Dβ1 Hβ2
−9.1235 **
(0.1155)

1.7252 **
(0.0432)

0.8949 **
(0.0629) 0.9845 0.0266 −559.46 0.6441 −0.26 14.9243 0.9807

V = eβ0 Dβ1 CLβ2
−8.0681 **
(0.1267)

1.8657 **
(0.0724)

0.4289 **
(0.0782) 0.9605 0.0425 −439.56 0.6575 −0.35 24.9401 0.9526

V = eβ0 Dβ1 CWβ2
−8.2324 **
(0.1781)

2.2634 **
(0.0678)

−0.0955 ns

(0.0806) 0.9498 0.0479 −408.73 0.6214 −0.49 26.9817 0.9390

V = eβ0 Dβ1 Hβ2 CLβ3
−9.2455 **
(0.1341)

1.7788 **
(0.0514)

0.9813 **
(0.0838)

−0.1222 ns

(0.0699) 0.9853 0.0259 −564.04 0.7114 −0.18 14.3864 0.9813

V = eβ0 Dβ1 Hβ2 CWβ3
−9.3333 **
(0.1314)

1.8184 **
(0.0516)

0.9024 **
(0.0606)

−0.1489 **
(0.0486) 0.9860 0.0253 −570.38 0.6508 −0.23 15.3972 0.9823

V = eβ0 Dβ1 CLβ2 CWβ3
−8.2102 **
(0.1577)

1.9390 **
(0.0862)

0.4209 **
(0.0774)

−0.0966 ns

(0.0718) 0.9609 0.0423 −438.72 0.6926 −0.24 25.1799 0.9523

V = eβ0 Dβ1 Hβ2 CLβ3 CWβ4
−9.4847 **
(0.1487)

1.8789 **
(0.0582)

1.0105 **
(0.0797)

−0.1409 *
(0.0663)

−0.1564 **
(0.0485) 0.9869 0.0245 −576.36 0.6633 −0.29 14.9778 0.9826

**: Statistically significant parameters at the significance level p < 0.001; *: Statistically significant parameters at the significance level p < 0.05; ns: non-significant (p > 0.05).
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Figure 3 presents the scatter diagram between the observed and predicted biomass results for the
three additive biomass models’ total and components biomass. Figure 3 also indicated that both MS2
and MS3 yielded higher fitting performance than MS1. Overall, adding H or CW could improve the
accuracy of the root, stem, branch, and foliage biomass estimations. The poorest model fittings were
obtained in branch and foliage biomass models with relatively larger RMSE and lower R2, while the
best fittings were found in the root, stem, and total biomass models.
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Figure 3. The observed and predicted values for the root, stem, branch, foliage, and total biomass of
the three additive biomass model systems (MS1, MS2, and MS3).

Moreover, three constants of the 4 × 4 matrices were expected for cross-correlations of residuals
amongst all four components’ equations for MS1, MS2, and MS3. Apparently, specific correlations
existed between the root and branch biomass models, between the foliage and branch biomass equations
across the entire model systems (MS1, MS2, and MS3), and between the stem and foliage biomass
models in MS2 and MS3, as shown in the following three correlation matrices:

MS1 Root Stem Branch Foliage
Root
Stem

Branch
Foliage


1.0000 −0.0684 −0.2540 0.0273
−0.0684 1.0000 0.0735 0.0285
−0.2540 0.0735 1.0000 0.3296
0.0273 0.0285 0.3296 1.0000


MS2 Root Stem Branch Foliage
Root
Stem

Branch
Foliage


1.0000 −0.0169 −0.3285 −0.0354
−0.0169 1.0000 0.1016 0.3403
−0.3285 −0.3315 1.0000 0.3308
−0.0354 0.3403 0.3308 1.0000
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MS3 Root Stem Branch Foliage
Root
Stem

Branch
Foliage


1.0000 −0.0055 −0.3284 −0.0356
−0.0055 1.0000 0.1367 0.4308
−0.3284 0.1367 1.0000 0.3308
−0.0356 0.4308 0.3308 1.0000


The model validations (i.e., MPE, MAPE, and EF) of the three additive biomass model systems

are presented in Table 3. The results showed that the MPE values were relatively close to 0 for
the entire three model systems. For the stem and total biomass, a relatively small prediction error
(MAPE% < 20%) was found within the three additive systems. MS2 and MS3 yielded smaller MPE
and MAPE and larger EF than MS1, but there was no discernible difference between MS2 and MS3.
Contrarily, the biomass models for the other three components gave less precise predictions, especially
for foliage components, than those for the stem and total biomass.

Furthermore, Figure 4 presents the biomass partitioning formed by using biomass models
developed in this study for each primary component, such as root, stem, branch, and foliage. It showed
that the trend was inconsistent between each component. Stem biomass relative contribution to total
biomass increased as D increased, while root biomass relative contribution decreased as D increased.
Nevertheless, branch and foliage biomass had slight alterations with D increased. Overall, the average
biomass proportion was approximately 19.7% for the root, 61.2% for the stem, 14.2% for the branch,
and 4.9% for the foliage.Forests 2020, 11, x FOR PEER REVIEW 14 of 22 
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Figure 4. The relative proportion of biomass components estimated by the additive biomass model
system developed in this study.

3.2. Stem Volume Equations

Similar to the biomass models above, eight power-law functions based on different combinations of
predictors are also presented to estimate the stem volume. The best model was determined by R2, RMSE,
and AIC. As expected, D presents a strong relationship with stem volume (R2 = 0.95), and adding H
into the model can significantly improve the model reliability (R2 = 0.98). The combination of CW and
CL slightly improved the fitting performance. In addition, MPE, MAPE, and EF were used to validate
the prediction performance. The results showed that the MPE were close to 0, and the magnitudes of
prediction errors were relatively small (MAPE < 30%) for all models. Two stem volume equations
with different combinations of predictors (D + H) and (D + H + CL + CW) have better prediction
performance compared to the other six equations (Table 4 and Figure 5).
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Figure 5. The observed and predicted values of the stem volume. The three stem volume models used
were M1, M2, and M3 based on D only; D and H; and D, H, CL, and CW, respectively.

It is worth recalling that the tree biomass could be estimated by multiplying the stem volume
estimates by BCEFs. Unfortunately, we were unsuccessful in attempting to develop the biomass
conversion factor models. The main reasons behind this nonfulfillment are (1) there were no significant
correlations detected between the BCEFs of each of the biomass components and tree variables;
and (2) each biomass component had a linear relationship with the stem volume, especially for the
stem component itself. In this study, BCEFs of different components at the tree level were calculated
in order to provide a constant value for each component of the tree, which were 118.2 kg/m3 for the
root, 380.2 kg/m3 for the stem, 90.7 kg/m3 for the branch, and 31.2 kg/m3 for the foliage (Table 5).
The BCEFs results from this study may be used as a constant to estimate biomass or carbon stock for
Populus × xiaohei since the values indicated were already stabilized; henceforth, the biomass or carbon
stock estimation errors may be minimized.

Table 5. Constant (average value) of BCEFs calculated for Populus × xiaohei trees (kg/m3).

Components N Min Max Mean SD

Root 128 28.8 296.7 118.2 41.1
Stem 128 199.1 616.0 380.2 67.3

Branch 128 28.9 266.7 90.7 44.6
Foliage 128 4.7 89.1 31.2 16.9

3.3. Comparison with Other Biomass and Stem Volume Models

The new biomass model system based on D-only (MS1) developed in this study was compared
with the previously developed biomass models based on D-only from Fan et al. [41] and Song et al. [42].
The relationship between the predicted and observed value was scrutinized for each component and
total biomass (Figure 6). The results showed that the new biomass model system predicted all biomass
components better than the previous models, which was evaluated by the mean absolute prediction
error (MAPE) and the coefficient of determination (R2). Specifically, Fan et al.’s models may have
serious errors in the total, root, stem, and branch biomass estimations, in which the MAPE was 30.9%,
49.0%, 20.6%, and 64.3% for total, root, and foliage, respectively, while Song et al.’s models had a
relatively large error in the total, root, and stem biomass estimations, in which the MAPE was 15.6%,
37.0%, and 20.2% for the total, root, and stem, respectively (Figure 6). Meanwhile, the MAPE values
of our newly developed biomass equations (MS1) were consistently smaller than both of these two
previous equations throughout all categories: 29.0% for the root, 18.3% for the stem, 37.5% for the
branch, 53% for the foliage, and 14% for the total biomass equation (Table 3). Furthermore, a relatively
similar pattern was also shown for the R2. This study consistently delivered the highest R2 values for
the root, stem, branch, foliage, and total biomass equations, as much as 0.94, 0.93, 0.86, 0.83, and 0.96,



Forests 2020, 11, 780 16 of 23

respectively (Table 3). The equations developed by Fan et al., [41] gave the lowest R2 values for both
branch (0.41) and total biomass (0.91), while Song et al.’s [42] models gave the lowest R2 for the root
(0.82), stem (0.86), and foliage (0.75) biomass components.Forests 2020, 11, x FOR PEER REVIEW 16 of 22 
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Figure 6. The predictions of each component and total biomass from this study (MS2) compared
to biomass equations based on D and combination of D and H developed by Fan et al. [41] and
Song et al. [42], respectively.

We also compared the newly developed stem volume model based on D and H with the previously
developed stem volume model based on D and H from Yang et al. [50] (Figure 7). The results showed
that Yang et al.’s model produced similar predictions in estimating the stem volume, in which the
MAPE is 1.5% smaller compared to the model developed in this study (Figure 7). However, the R2 of
the stem volume model of this study (0.9845) is slightly higher than Yang et al.’s (0.9807).
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Figure 7. Comparison between our two-predictors stem volume model (M2) with the stem volume
equation based on D and H developed by Yang et al. [50].

3.4. Variations of Carbon Concentration

Each component had different carbon concentrations; thus, acquiring the tree components’ carbon
concentrations is of great importance to estimate the carbon stock accurately. After each component’s
carbon stock value was acquired, they were summed to yield the total carbon stock value. The summary
statistics of the carbon concentration values for each component and mean carbon concentration
values by weighting biomass (WMCC) are given in Table 6. The tree components were confirmed
to significantly affect the carbon concentration (at the 5% threshold, F value = 15.92, and p < 0.001).
The foliage had the largest carbon concentration among the tree components, while the root had the
lowest carbon concentration. The multiple comparisons based on Tukey mean comparison indicated
that there is a clear distinction between root and stem, branch, and foliage carbon concentrations,
while there is no real distinction between the stem, branch, and foliage carbon concentrations.

Table 6. Carbon concentration (%) by components along with the weighted mean carbon concentration
(WMCC) statistics for Populus × xiaohei trees.

Components Min Max Mean SD

Root 42.31 50.00 45.98a 2.31
Stem 41.88 50.65 47.74b 1.84

Branch 43.29 51.61 48.32b 1.95
Foliage 45.56 52.18 48.46b 1.90
WMCC 44.38 49.64 47.43 1.51

4. Discussion

Biomass additivity is an essential property of biomass equations that generally need to be
considered to predict the components and total biomass estimations accurately. However, countless
biomass equations found in the literature did not consider the additivity property and were separately
developed to predict the total and components biomass [54,55]. There are many available procedures
to achieve the additivity property of nonlinear biomass models; the most successful ones are those
including contemporaneous correlations to force additivity, which is widely known as nonlinear
seemingly unrelated regression (NSUR) [22,38]. In general, NSUR parameter estimates are always at
least as efficient as nonlinear ordinary least square (OLS) for large sample sizes. However, in small
sample sizes, the need to estimate the covariance matrix from the OLS residuals increases the
sampling variability of the SUR estimates, or when there is no contemporaneous correlation of errors
across equations, NSUR parameter estimates are the same or less efficient than those produced by
OLS [41,53,56]. In addition, if the same or different predictors are considered in nonlinear biomass
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models, the heteroscedasticity needs to be corrected by different weights for each component biomass
equation [22,38,56]. At this juncture, NSUR is found to be the most appropriate parameter estimation
method. In the present study, we used one, two, and the best predictors as the primary structures
to construct the three additive biomass model systems for Populus × xiaohei, in which each equation
has a different weighting function. Furthermore, the cross-correlations matrix of residuals among all
four equations showed that certain correlations existed between biomass components measured on
the same individuals. These findings suggest that NSUR would result in a more efficient estimation
than OLS. To date, several model specifications have been proposed for forcing the additivity of
nonlinear equations [39,52]. The additive model structure proposed by Parresol [41] has become a
standard for developing biomass equations, in which the total biomass model was set up as the sum
of the component models. Many studies found that the additive model structure without the total
biomass model, as proposed by Affleck and Diéguez-Aranda [51], was better to predict the total and
components biomass than the initial Parresol’s model system [39,52,57]. Thus, the total biomass model
was not present as a constraint in the additive model systems developed in the present study. In simple
terms, the model systems of this study only fitted the four component biomass models.

Biomass models based on D developed in the current study showed an excellent predictive
ability for the total and components biomass, which explains 83% to 96% variations on the foliage and
total biomass, respectively. Thus, D is considered an irreplaceable independent variable in biomass
modeling and usually acts as one of the most elementary measurement factors in forest inventory,
which has been significantly recognized by other studies for various tree species [24,31,35]. For a given
D, there is usually some variation among biomass components. In that case, H and crown attributes
(CW and CL) were added to the models to enhance the biomass components models’ predictive ability.
The additive biomass model systems with additional predictors (H, CW, or CL) have generated a
significant improvement in the model fitting and prediction performance. This finding is in accordance
with those reported in the literature [38,40]. In addition, biomass equations with the involvement
of some supportive predictors such as H, CW, and CL are advantageous to increase the biomass
predictions accuracy in response to the alterations in stand conditions (i.e., thinning) and is widely
appropriate to be used in many ecological and forest management studies [38]. However, H, CW,
and CL are generally difficult to obtain in practice, and also unfeasible to be implemented in China’s
forest inventory. Thus, in most cases, only MS1 (based on D equation system) can be used to provide
accurate biomass predictions. To utilize MS2 and MS3 in estimating the total and components biomass,
we need to measure the values of H, CW, and CL, or develop some models to firstly estimate H, CW,
and CL from easily measurable predictors such as D in future work.

To date, few biomass equations are available in the literature for Populus × xiaohei. The new
biomass model based on D-only was compared with the previous biomass models developed by
Fan et al. [43] and Song et al. [44]. The additive biomass model systems in this study were developed
using a dataset from a wide geographical area; thus, they may be used in relatively wide coverage.
Meanwhile, Fan et al. [43] used 18 Populus × xiaohei trees, of which the information about the range
of D is not given, and Song et al. [44] used 36 Populus × xiaohei trees, of which the range of D is from
4.4 cm to 20 cm. Generally, the larger the sample size can reduce the parameter estimation’s uncertainty.
Moreover, the biomass models developed by Fan et al. [43] lacked an additivity property and ignored
the cross-correlations of residuals among all biomass equations. Compared to the two previous studies,
both MAPE and R2 obtained from the biomass models developed in this study (MS1) were found to be
lower and higher across all components’ and total equations, respectively, indicating that the biomass
models in the present study provide more accurate predictions than those developed by Fan et al. [43]
and Song et al. [44], as simulated in Figure 6. The possible reasons are that the three studies’ data came
from different sampling sites, and differences in the sample number, sample size ranges, and biomass
measurement methods. These reasons could also lead to differences in soil conditions and growth
processes [58].
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In this study, power-law functions were used to develop the stem volume model for
Populus × xiaohei trees. As used for our biomass models, D was also preferred as the main predictor
since it has the ability to explain 95% of the stem volume variation. In addition, measuring D is easier
in practice and needs lower cost than other tree variables (i.e., H, CW, and CL). However, to improve
the model precision, the combination of D with other tree variables, e.g., H, CW, and CL, are proven to
increase the precision of stem volume equations. Hence, we decided to consider three stem volume
models based on D, D + H, and D + H + CL + CW since these could be applied to the prediction of
the stem volume. Compared with the previous stem volume equations developed by Yang et al. [50],
both the new and the previous stem volume models provide almost the same prediction accuracy,
as is expected. The potential explanation may be that the stem volume measurement method is
uniform across different studies, in which only the dimeters at the base and the top of each stem section
were measured.

Generally, biomass equations and BCEFs are categorized as one of the most important methods
to estimate the biomass of an individual tree [23,59]. Tree stem volume is the only observed value
required to estimate the tree biomass by utilizing the constant BCEFs. However, many studies show
that using the constant BCEFs values may induce serious errors in biomass estimation, and only
provide satisfactory results in relation to stem biomass because they depend on some variables such
as age, D, H, etc. [23,59–62]. As the values of BCEFs in this study were near-constant, and there were
no significant correlations between BCEFs of different components and tree variables, the biomass
conversion factor models failed to be developed. Although we knew that the constant BCEFs would
produce the least accurate result for biomass estimation, we intentionally provided a constant value
for each component of the tree if only the volume data existed (without knowing any D distribution).
Furthermore, to predict the biomass of a large-size tree (D > 38 cm), which laid outside the size range
of the current study’s data, our biomass models may have uncertain errors. Perhaps using the constant
BCEFs multiplied with the stem volume data may solve this problem since the constant BCFs value in
this study was already stabilized.

The effects of various tree components on the carbon concentrations of Populus × xiaohei were
also analyzed. A range from 45.98% in root to 48.46% in foliage component was found in this study,
proving the carbon concentrations were significantly varied among the types of the tree components.
This result is in line with those that were reported by several previous studies, which stated the carbon
concentration was significantly different among each tree component [47,48]. So far, there are no reports
on carbon concentrations for Populus × xiaohei. Overall, the weighted mean carbon concentration
(WMCC) of Populus × xiaohei across all components was 47.43%. The constant carbon concentration of
50% was recognized as an acceptable average to be used. However, compared to the obtained values
of the carbon concentration from this study, the 50% constant carbon concentration value gave an
approximately 1.5–4.0% overestimated prediction in estimating the carbon stock of the root, stem,
branch, and foliage. The results are also corroborated with the previous findings [63,64]. For tree
carbon quantification, we recommend that the carbon of each component should be calculated by
multiplying biomass estimates with the carbon concentration of each component. The root, stem,
branch, and foliage carbon were then aggregated to produce the total tree carbon stock.

5. Conclusions

High precision of biomass equation is much needed to precisely and efficiently estimate the
individual tree biomass to foster the development of both bioenergy- and carbon sink-oriented
short-rotation plantations. Hence, in this study, three additive biomass model systems and the stem
volume equations were developed based on three and eight different combinations of predictors,
respectively, for Populus × xiaohei occupying the Songnen Plain in Northeast China. As expected,
each biomass component models’ prediction quality varied among the three additive biomass model
systems (increased as the numbers of predictors increased), in which the mean R2 was 0.90, 0.92,
and 0.93 for MS1, MS2, and MS3, respectively. Similar patterns were found in the prediction accuracy
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of stem volume models, in which the R2 was 0.95 for M1, 0.98 for M3, and 0.99 for M3. The additional
predictors (H, CW, or CL) showed an apparent improvement to the model fitting and performance
for all biomass and stem volume models. Thus, we confirm that the newly developed biomass and
stem volume models have higher prediction accuracy than the previously established equations by
Fan et al. [43], Song et al. [44], and Yang et al. [49]. In addition, the biomass partitioning of the tree
components was also analyzed in this study. Our results were consistent with previous research,
which stated that the largest proportion of total biomass was found in stem biomass (61.2%), while the
smallest proportion was located in foliage biomass (4.9%).

The carbon concentrations of Populus × xiaohei differed significantly among the tree components.
The result indicated that the foliage (45.98%) has the largest carbon concentration among the tree
components, while the root (48.46%) has the lowest carbon concentration, and the respective carbon
concentration of each component should be used to quantify the carbon stock. BCEFs were shown
to be constant for root, stem, branch, and foliage of the tree, which were 118.2 kg/m3, 380.2 kg/m3,
90.7 kg/m3, and 31.2 kg/m3, respectively, and can be used as generic BCEFs values to estimate biomass
and carbon stock for Populus × xiaohei. However, the BCEFs models were unable to be developed in the
present study since they had already been stabilized prior to the BCEFs model’s development. All of
the newly developed biomass and volume equations in this study are best used for the specific species
(Populus× xiaohei) within the current study sites since different environmental conditions might generate
a significant variation on the relationship between biomass and stem volume with several independent
variables (i.e., D, H, CW, and CL). Overall, the current research provides various alternatives of
biomass and volume equations (according to the combinations of predictors), which might be essential
as the tools for estimating tree biomass and volume of the Populus × xiaohei in the Chinese National
Forest Inventory.
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