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Abstract: Cryptomeria fortunei Hooibrenk (Chinese cedar) is a coniferous tree from southern China that
has an important function in landscaping and timber production. Lignin is one of the key components
of secondary cell walls, which have a crucial role in conducting water and providing mechanical
support for the upward growth of plants. It is mainly biosynthesized via the phenylpropanoid
metabolic pathway, of which the molecular mechanism remains so far unresolved in C. fortunei.
In order to obtain further insight into this pathway, we performed transcriptome sequencing of
the C. fortunei cambial zone at 5 successive growth stages. We generated 78,673 unigenes from
transcriptome data, of which 45,214 (57.47%) were successfully annotated in the non-redundant
protein database (NR). A total of 8975 unigenes were identified to be significantly differentially
expressed between Sample_B and Sample_A after analyzing their expression profiles. Of the
differentially expressed genes (DEGs), 6817 (75.96%) and 2158 (24.04%) were up- and down-regulated,
respectively. 83 DEGs were involved in phenylpropanoid metabolism, 37 DEGs that encoded v-Myb
avian myeloblastosis viral oncogene homolog (MYB) transcription factor (TF), and many candidates
that encoded lignin synthesizing enzymes. These findings contribute to understanding the expression
pattern of C. fortunei cambial zone transcriptome. Furthermore, our results provide additional insight
towards understanding the molecular mechanisms of wood formation in C. fortunei.

Keywords: C. fortunei; transcriptome; differentially expressed genes; phenylpropanoid metabolism;
candidate genes

1. Introduction

The Cryptomeria genus consists of the species Cryptomeria fortunei Hooibrenk and
Cryptomeria japonica (L.f.) D.Don (Japanese cedar). Cryptomeria fortunei Hooibrenk is an important
coniferous timber species native to China. This species is a monoecious coniferous species which is
widely planted in southern China due to its strong adaptability. C. fortunei has excellent properties that
allow for efficient timber production, including a straight bole, soft texture, rapid growth, and ease of
processing. Thus, its wood is widely used to construct wooden houses, barrels, and a large number
of industrial materials. Additionally, as a photosynthesizing plant, C. fortunei is an important plant
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species in carbon storage and ecological restoration and is also a suitable landscaping tree due to its
attractive appearance [1].

A transcriptome is a collection of all transcripts of a certain tissue or organ at a specific period or
stage, including coding RNA and non-coding RNA. Based on transcriptome analysis, the molecular
mechanisms of secondary growth have been elucidated in model plant [2]. In recent years, with rapid
advances in RNA sequencing, it has been applied to non-model plants, for example, to develop simple
sequence repeat (SSR) markers [3].

Lateral growth of tree stems occurs through cell divisions in the vascular cambium. Towards the
inside, the cambium forms the secondary xylem, also called wood, while towards the outside, secondary
phloem cells appear in the growing stem through the proliferation and differentiation. Wood formation
is a complex biological process, including cambium cell division, cell extension, secondary cell wall
formation, lignification, and finally, programmed cell death [4]. The formation of secondary cell
walls is an important event during wood formation. Secondary cell walls are mainly composed of
three polymers, lignin is one of the most important compounds that determine the properties of
wood [5]. The main pathway of lignin biosynthesis is phenylpropanoid metabolism, which has been
well described in Populus trichocarpa Torr. & A.Gray ex. Hook. [6] and Norway spruce [7]. However,
the molecular mechanisms underlying this biosynthetic pathway are still uncertain in C. fortunei.

In plants, the phenylpropanoid metabolic pathway synthesizes a number of key components,
including flavonoids, lignin, and others, all of which have been crucial for plants. Lignins
contain 3 different components, all of which are synthesized into 3 monomers, including S-lignin,
G-lignin, and H-lignin, respectively [8]. Lignins are mainly composed of G-H-lignin in conifers [9].
As a complex synthesis process, lignin biosynthesis can be roughly divided into 3 steps. Firstly,
the synthesis of aromatic amino phenylalanine from photosynthetic assimilation products. Secondly,
called phenylpropanoid metabolism, phenylalanine is synthesized into separate components,
including phenylalanine ammonia-lyase (PAL), p-coumarate 3-hydroxylase (C3H), caffeoyl CoA
O-methyltransferase (CCoAOMT), 4-(hydroxy) cinnamoyl CoA ligase (4CL). Thirdly, a specific
metabolic pathway which contributes to lignin monomers biosynthesis, including enzymes such as
cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) [10,11]. Lignins are
polymerized from 3 monomers through laccase and peroxidase [9].

Previous reports have used transcriptomics to identify lignin biosynthetic genes in other woody
plant species [7,12]. In this study, we conducted transcriptome sequencing of the C. fortunei cambial
zone at 5 successive growth stages. Differentially expressed genes (DEGs) were identified and analyzed
through analyzing the transcriptome data. Subsequently, we aimed to screen DEGs involved in
phenylpropanoid metabolism and see how their expression levels would correlate to lignin deposition
activity in C. fortunei. Our work lays the foundation for functionally elucidating the gene-regulated
phenylpropanoid biosynthesis and molecular regulation of lignin biosynthesis in C. fortunei.

2. Materials and Methods

2.1. Plant Materials

We acquired the samples from C. fortunei trees, aged around 60 years, with no obvious presence of
insect pests or disease, in the arboretum of Nanjing Forestry University, Nanjing City, Jiangsu Province,
China. The exact dates of sampling were 4 April, 18 May, 10 July, 15 September, and 12 November
in 2018, corresponding to 5 different growth stages. The letters A, B, C, D, and E represent these
5 successive stages, respectively. For each growth stage, three samples were taken as biological
replicates, labeled as A–1, A–2, and A–3. We obtained the cambium region through scratching the stem
by a sharp knife, then collected samples and immediately stored them in liquid nitrogen at −80 ◦C
until use.
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2.2. RNA Extraction and Transcriptome Sequencing

Total RNA was isolated from the samples of C. fortunei vascular cambium by a RNeasy Plant
Mini Kit (Qiagen, Hilden, Germany). The integrity and concentration of total RNA were assessed by
an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and a Thermo Scientific
NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, USA). Library preparation and sequencing
experiments were performed in accordance with the standard procedure provided by Illumina.
Sequencing was then performed using an Illumina HiSeq™ 2500 system by OE biotech Co., Ltd.
(Shanghai, China), generating 150 bp paired-end reads. The accession number of this project is
PRJNA 644276.

2.3. Assembly and Functional Annotation

We obtained millions of clean reads after removing adaptor and low-quality sequences. Clean
reads were then assembled into expressed sequence tag clusters (contigs), which were then de novo
assembled into transcripts using Trinity and the paired-end method [13]. Subsequently, we described
the longest transcript as a unigene using CD-HIT [14]. Unigene was chosen for subsequent analysis.
Unigenes were aligned by diamond [15] and HMMER [16] to public databases NR, KOG, GO, Swiss-Prot,
eggNOG, KEGG, and Pfam with the highest sequence similarity for protein functional annotation
and classification.

2.4. Differential Expression Analysis

Unigene expression was quantified according to the fragments per kb per million reads (FPKM)
method [17], using bowtie2 [18] and eXpress [19]. Through pairwise comparisons, DEGs of different
stages were identified by DESeq [20]. A threshold of p < 0.05 and a greater than two-fold change
were set [21]. To explore expression patterns, we performed a sample to sample distances cluster
analysis [22]. GO and KEGG enrichment analysis of DEGs were performed using R based on the
hypergeometric distribution [21].

2.5. Verification of Gene Expression Using qRT-PCR

8 unigenes were chosen for validation through qRT-PCR. RNA was extracted from the cambium
region then reverse-transcribed using a HiScript III RT SuperMix (Vazyme Biotech Co., Ltd., Nanjing,
China). We designed the primers using Primer Premier 5.0 software (Premier Biosoft International,
Palo Alto, CA, USA) (Supplementary Table S1). Three biological replicates were run at a final volume
of 20 µL, which consisted of 6 µL of ddH2O, 1 µL of primers, 2 µL of cDNA, and 10 µL of 2×
ChamQ SYBR qPCR Master Mix (Vazyme Biotech Co., Ltd., Nanjing, China). The C. fortunei β-actin
gene was used as reference [11]. The primers used were F: GCCATCTTTGATTGGAATGG and R:
GGTGCCACAACCTTGACTT. The qRT-PCR reaction was performed on an ABI 7500 Step One Plus
Real-time PCR System (Applied Biosystems, Foster City, CA, USA). Reactions were performed at 95 ◦C
for 30 s, followed by 40 cycles of 95 ◦C for 10 s, and 60 ◦C for 30 s. The delta-delta-Ct method was used
to assess the amplification results [23].

2.6. Determination of Lignin Content

The lignin content of stems of the same year was determined according to Reference [24].
We acquired the data by a GeneQuant pro ultraviolet spectrophotometer (Biochrom Ltd., England, UK).

3. Results

3.1. Statistics of Transcriptome Sequencing Results and De Novo Assembly

In order to obtain candidate genes involved in phenylpropanoid metabolism, in this study,
we performed transcriptome sequencing of the C. fortunei cambial zone at 5 successive growth stages.
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As a result, we obtained a total of 724,452,816 raw reads from C. fortunei cambium total RNA across
all of our samples. From these, we assembled five complete transcriptomes, one for each growth
stage (Table 1). The percentage of raw reads with a Q-value > 30 ranged from 92.33% to 94.89% for
all samples, and the average GC content (the percentage of the total number of G’s and C’s in clean
bases) was 44.01%. After removing low-quality reads and adaptor sequences, a total of 706,935,392
clean reads were obtained, which were used for de novo assembly. We obtained 78,673 unigenes using
Trinity software, and found the average unigene length to be 957 bp, with an N50 length of 1576 bp.
The sequence length distribution is shown in Supplementary Figure S1.

Table 1. Statistics of sequencing quality.

Sample Raw_Reads Clean_Reads Clean_Bases Valid_Bases (%) Q30 1 (%) GC 2 (%)

A_1 46,571,826 45,283,706 6,697,931,982 95.88 93.64 43.53
A_2 53,925,378 52,724,482 7,839,827,405 96.92 93.96 43.81
A_3 53,242,134 51,808,658 7,669,074,710 96.03 93.55 43.83
B_1 46,927,200 45,482,626 6,725,348,970 95.54 93.11 44.00
B_2 52,320,204 50,588,050 7,464,083,436 95.11 92.91 43.84
B_3 47,901,258 46,465,580 6,850,549,711 95.34 92.33 44.10
C_1 48,353,956 47,494,412 7,067,068,800 97.44 94.45 44.15
C_2 49,948,000 49,090,122 7,312,542,131 97.60 94.33 44.56
C_3 48,035,404 47,186,328 7,004,509,885 97.21 94.30 44.44
D_1 46,718,046 45,434,522 6,720,860,268 95.91 93.01 44.09
D_2 48,454,586 47,792,530 7,068,774,362 97.26 94.85 44.03
D_3 43,553,002 42,426,072 6,280,307,490 96.13 92.99 43.71
E_1 47,230,764 46,004,016 6,795,292,538 95.92 93.20 44.04
E_2 47,250,800 45,758,216 6,745,283,335 95.17 92.51 44.04
E_3 44,020,258 43,396,072 6,443,702,336 97.59 94.89 44.03

1 Q30 represents the percentage of bases whose phred number is greater than 30 in raw bases. 2 GC represents the
percentage of the total number of G’s and C’s in clean bases.

3.2. Functional Annotation and Classification of All Unigenes

We next annotated all 78,673 unigenes using diamond software and HMMER software against
seven public databases: NR, KOG, GO, Swiss-Prot, eggNOG, KEGG, and Pfam (Figure 1, Supplementary
Table S2). Using these databases, 45,214 (57.47%), 26,866 (34.15%), 28,589 (36.34%), and 46,674 (59.33%)
unigenes could be annotated in NR, Swiss-Prot, KOG, and eggNOG, respectively. Only 114 (0.14%)
unigenes could be aligned to the Pfam database. We successfully annotated 24,312 (30.90%) unigenes
into separate GO categories, including three functional categories: cellular component (CC), molecular
function (MF), and biological process (BP), as well as 52 GO terms (Figure 2). In the ‘cellular
component’ category, the most highly represented GO terms were ‘cell’ (20,396) and ‘cell part’ (20,364),
while ‘binding’ (15,131) and ‘catalytic activity’ (13,131) were the two top GO terms in the ‘molecular
function’ category. Additionally, regarding the ‘biological process’ category, these unigenes were
clustered into 22 GO terms, with the three top terms being ‘cellular process’ (17,152), ‘metabolic process’
(14,158), and ‘biological regulation’ (6913). In total, 15,354 (19.52%) unigenes were assigned to 24
metabolic pathways (Figure 3). ‘Translation’ (1591), ‘Signal transduction’ (1515), and ‘Carbohydrate
metabolism’ (1411) were the top three metabolic pathways.

Following this functional categorization, we continued analyzing transcription factor (TF)
categorization across the different known plant TF families. As a result, we identified a total of
1401 TFs, which could be further classified into 66 TF families, such as WRKY, NAC, bZIP, and others
(Supplementary Figure S2). We found the C2H2 family to be most abundant, with 233 unigenes,
followed by AP2/ERF-ERF (115) and bHLH (100). We also found 71 and 34 unigenes encoding MYB
and NAC TFs in this study.
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3.3. Identification of DEGs and the GO and KEGG Enrichment Analysis

In our study, we calculated unigene expression levels using the FPKM method and conducted
annotation and enrichment analysis of DEGs. Firstly, we performed sample clustering analysis to
obtain gene expression patterns of C. fortunei vascular cambium. The gene expression patterns of
samples collected in September and November clustered together, while those from April and July
did as well, making the samples collected in May their own cluster (Figure 4). These results indicate
a higher sample similarity between these samples. In addition, the three biological replicates were
clustered together, indicating the reliability of our transcriptome data.
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We then identified all C. fortunei vascular cambium DEGs through pairwise comparisons.
The amount of DEGs for each pairwise comparison is shown in Supplementary Figure S3. With A as a
reference, we compared B vs. A, C vs. A, D vs. A, and E vs. A: 8975, 4432, 11,683, and 17,774 unigenes
were differentially expressed in all four pairwise comparisons, respectively.

In a previous study, we observed the development of C. fortunei vascular cambium by studying
their morphology using paraffin sections [25]. We found that cellular growth and development
were most vigorous in May. Here, we chose B vs. A (May vs. April) as an example to explain the
DEGs’ functionality. A total of 4165 DEGs were found through GO enrichment analysis in B vs. A,
of which 3230 and 935 were up- and down-regulated, respectively (Figure 5A). To describe our GO
annotation results, we constructed a directed acyclic graph (DAG) using topGO [26] (Figure 5B).
The most significant enrichment in the ‘biological process’ category is ‘secondary metabolic process’
(GO: 0019748) and ‘phenylpropanoid metabolic process’ (GO: 0009698).
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Figure 5. Gene Ontology (GO) functional classification of Differentially Expressed Genes (DEGs).
(A) The x-axis represents the enriched GO terms. The y-axis represents the number and percentage of
up- and down-regulated DEGs. (B) Directed acyclic graphs (DAGs) of Biological Process (BP), Cellular
Component (CC), and Molecular Function (MF). The nodes are colored based on the q-value, and red
indicates a high confidence level. The GO terms are presented at the horizontal node position. The red
arrows represent ‘secondary metabolic process’ (GO: 0019748) and ‘phenylpropanoid metabolic process’
(GO: 0009698), respectively.
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To further explore DEGs biological function, we performed a KEGG enrichment analysis:
2628 DEGs were successfully annotated into 24 pathways in B vs. A (Figure 6). We found 146 DEGs,
of which 134 and 12 were up- and down-regulated, annotated to the secondary metabolism pathway,
which indicates that these DEGs are involved in secondary metabolism.
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3.4. Identification of Candidate Genes Involved in Phenylpropanoid Metabolism

In order to understand how gene activity changes between growth stages, we continued by
comparing KEGG pathway enrichment of DEGs (Figure 7). One of the main KEGG pathways
undergoing enrichment dynamics was phenylpropanoid metabolism (ko00940). We identified 83 DEGs
involved in this pathway in B vs. A, of which 76 DEGs were upregulated.

Lignin is mainly synthesized through the phenylpropanoid metabolic pathway (Figure 8),
phenylalanines are converted to monolignols by the enzymes phenylalanine ammonia-lyase (PAL)
(4.3.1.24), shikimate O-hydroxycinnamoyl transferase (HCT) (2.3.1.133), p-coumarate 3-hydroxylase
(C3H) (1.14.13.36), 4-(hydroxy) cinnamoyl CoA ligase (4CL) (6.2.1.12), caffeoyl CoA O-methyltransferase
(CCoAOMT) (2.1.1.104), cinnamoyl CoA reductase (CCR) (1.2.1.44), and cinnamyl alcohol
dehydrogenase (CAD) (1.1.1.195). In B vs. A, we identified 8, 5, 2, 9, 4, and 4 unigenes encoding PAL,
HCT, C3H, 4CL, CCoAOMT, and CCR respectively, most of which were upregulated.
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Figure 8. Pathway assignments based on the Kyoto Encyclopedia of Genes and Genomes (KEGG).
A schematic representation of the phenylpropanoid biosynthesis pathway. The number in the
rectangle indicates the corresponding enzyme. Red indicates upregulated unigenes, green indicates
downregulated, yellow indicates unigenes that were both up- and down-regulated, and gray indicates
no DEGs. Red arrows indicate H-type lignin, G-type lignin, and S-type lignin, respectively.
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We then analyzed the expression of key enzymes involved in phenylpropanoid biosynthesis
(Figure 9). All of them had different expression patterns at different stages. Five enzymes, including C3H,
CCR, 4CL, PAL, and CCoAOMT, were all present at higher expression levels at stage_May. Two enzymes,
including PAL and HCT, showed higher expression levels at stage_November, which indicates that
these enzymes could play roles in response to cold stress. Most enzymes displayed lower expression
levels at stage_April and November than at other stages, which could be caused by the seasonally
cyclical pattern of dormancy and activity. Furthermore, the expression of these enzymes increased
from July to September and decreased again from September to November. This finding is consistent
with the general trend of lignin content. In the present study, the lignin content increased gradually
from April (10.88%) to September (34.56%) and stabilized from September to November (34.75%)
(Supplementary Figure S4). These phenomena revealed that key enzymes involved in phenylpropanoid
biosynthesis might be responsible for the seasonal change in wood formation activity.Forests 2020, 11, x FOR PEER REVIEW 11 of 15 
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3.5. Quantitative Real-Time PCR Validation of Candidate Genes Involved in Phenylpropanoid Biosynthesis

In this study, we randomly selected eight unigenes involved in phenylpropanoid biosynthesis and
examined their expression levels using qRT-PCR. We firstly performed the melt curve analysis. We found
that all samples (including 3 replicates) have a single peak and the temperature is between 80 and 90 ◦C
(Supplementary Figure S5), which indicates that the data is reliable. The expression profiles of these
candidates are shown in Supplementary Figure S6. Although the exact fold changes between stages of
each unigene varied somewhat between RNA-seq and qRT-PCR data, the trends between the different
stages were overall similar. We could find just one candidate gene (TRINITY_DN57952_c0_g1_i1_3) of
which the expression values were inconsistent with our RNA-seq data. Therefore, these results confirm
the accurate assembly of the transcript sequences and reliability of our RNA-seq data.

4. Discussion

Wood is an important raw material with a rapidly increasing worldwide demand. As a result, more
research is being devoted to analyzing the genetic regulation of wood formation. An important tool for
such research is transcriptome sequencing, which can be used to discover genes that control economic
traits. In a previous study, we identified the different expression pattern of reproductive genes in two
conifer species through transcriptome sequencing [27]. In this study, approximately 72.44 million
paired-end reads were obtained. After assembly, we obtained 78,673 unigenes, with an average length
of 957 bp, significantly longer than has been reported previously for Cunninghamia lanceolata (Lamb.)
Hook (449 bp) [28], Camellia sinensis (L.) O. Ktze. (355 bp) [29], and Porphyra yezoensis (Rhodophyta)
(419 bp) [30], and slightly shorter than C.japonica (1069 bp) [31], and thereby providing more abundant
genetic information to understand the mechanism of lignin biosynthesis.

Lignin is mainly synthesized through the phenylpropanoid metabolic pathway. We aimed to
find DEGs involved in lignin biosynthesis. As a result, we obtained 83, 29, 49, and 74 DEGs in four
pairwise comparisons, of which 76, 22, 43, and 46 DEGs were upregulated, respectively. We found
most DEGs when comparing the growth stages May vs. April and November vs. April, which is most
likely because of the seasonally cyclical pattern of dormancy and activity in wood formation. In this
study, we found 8, 3, 4, and 8, and 9, 2, 1, and 1 DEGs encoding PAL and 4CL respectively, in four
pairwise comparisons, most of which were upregulated. It is consistent with the expression patterns
in Figure 9. Similarly, Mishima et al. [31] found the homologues, PAL4 and 4CL3, and showed an
increasing expression pattern during cessation of growth. This finding indicates that PAL and 4CL
might be regulated to the cold stress. We also found most DEGs encoding CAD, CCoAOMT, and CCR
to be upregulated. Most enzymes were induced in April, and expression level gradually decreased
from August to October in C. japonica [31]. The expression pattern corresponded to our previous
study about anatomical observation of cambium cells [25]. Previous reports have found that CAD [32],
CCoAOMT [11], and CCR [33] promote lignin synthesis, which is consistent with the expression
patterns of these enzymes (Figure 9) and the associated corresponding changes in lignin content.

Previous studies have found that temperature plays an important role in dormancy
development [34]. During our study, the daily maximum and minimum temperatures increased
from 4 April to 18 May and peaked at 10 July (Supplementary Table S3). Subsequently, temperatures
steadily declined from July to November. Similarly, from our previous work, we found cambium cells
undergoing peri-planar divisions, with the largest number of layers, full cells, cytoplasm, and vigorous
divisions in May, while the number of cell layers decreased in July and September compared to May,
and with the number of cells being the least and division stopping in November [25]. Furthermore,
we found that the expression of most lignin-synthesizing enzymes in C. fortunei vascular cambium
changed in tandem with rising and falling temperatures, consistent with the growth season and
previous studies [31]. Analogously, the growing season of Japanese cedar, another gymnosperm,
runs from March until October, with lignin synthesis activity sharply increasing from March to June,
then declining until dormancy in October [31]. Interestingly, Sato et al. [35] analyzed the diurnal
periodicity of expression of lignin synthesizing genes in C. japonica and found that most enzymes
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showed different expression abundance at different times on the same day. This paper provides a good
research direction for our future study.

Previous reports have found TFs involved in the regulation of lignin biosynthesis [36–38],
response to the abiotic stress [39–43], and regulation of growth and developmental processes [44–48].
MYB TFs could regulate lignin synthesis by binding to the corresponding regulatory elements of
lignin-synthesizing enzyme genes, whereas NAC TFs could regulate the corresponding MYB TFs
to regulate lignin synthesis. During this study, we obtained 37, 16, 33, and 37 DEGs encoding
MYB TFs in all four pairwise comparisons, of which 26, 10, 26, and 20 were upregulated. Similarly,
Mishima et al. [31] found that 34 MYB were upregulated during the peak activity of xylem formation.
These results are consistent with our findings in this paper. In addition, we found that these TFs
regulated some metabolic pathways, including the phenylpropanoid metabolic pathway. We also
analyzed the expression patterns of NAC TFs and obtained 15, 4, 12, and 12 NAC TFs showing
differential expression in all four pairwise comparisons. Similarly, most TFs were upregulated.
Mishima et al. [31] found a VND6 homolog and its expression was moderately decreased during peak
xylem formation. According to the expression patterns of lignin-synthesizing enzymes in this study,
these results imply a potential role of TFs in the regulation of lignin biosynthesis.

5. Conclusions

C. fortunei is a plant tree species that has a large number of excellent qualities, such as rapid
growth, a straight bole, and ease of processing for wood production. In this study, we performed
transcriptome sequencing on C. fortunei vascular cambium for 5 successive growth stages. We identified
candidate genes involved in phenylpropanoid metabolism and analyzed expression patterns of
lignin-synthesizing enzymes. Finally, we found the correlation of enzyme expression with different
growth stages. Thus, our findings contribute to a better understanding of the molecular mechanisms
underlying the phenylpropanoid biosynthesis pathway. Importantly, these results may be useful for
molecular breeding of C. fortunei to improve wood characteristics.
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replicates, Figure S5: The melt curve of qRT-PCR, Figure S6: qPCR validation of RNA-seq data. The x-axis
represents the growth stages, and the y-axis represents the fold change (log2). Table S1: Primers used for qRT-PCR,
Table S2: Functional annotation of unigenes, Table S3: The daily maximum and minimum temperatures at the
sampling date.
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