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Department of Social Geography and Regional Development, Faculty of Science, University of Ostrava,
Chittussiho 10, 710 00 Ostrava, Czech Republic; jan.machacek@osu.cz; Tel.: +420-733-756-592

Received: 4 June 2020; Accepted: 15 July 2020; Published: 16 July 2020
����������
�������

Abstract: Artisanal and small-scale mining is a significant economic sector in Rwanda. Mining
activities often use a watercourse, in which secondary extraction takes place and minerals are washed.
Mining thus greatly affects the geomorphological conditions in the area. The aim of this paper is a digest
of environmental impacts of alluvial artisanal and small-scale mining with a focus on anthropogenic
influences on topography with regard to the methods used in raw material mining. The author
draws on a case study from the mining site of Rutsiro district in Rwanda. Main findings of alluvial
artisanal mining in a riverscape are changes in landscape structure, deforestation, intensification of
geomorphological processes, new relief shapes (suffosion depressions, check dams, gravel benches,
anthropogenic channels) and hydrological river regime, chemical pollution of soil and watercourses.
Artisanal and small-scale mining may lead to a significant change and acceleration of fluvial processes.
This paper covers a broad understanding of environmental impacts of alluvial artisanal and small-scale
mining with a focus on anthropogenic influencing.
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1. Introduction

Artisanal and small-scale mining (ASM) is one of the most important rural non-agricultural
activities in the developing world. It is an important source of employment and income for dozens of
millions of people and brings economic benefits to other millions who are not directly involved in
ASM. According to some estimates, six secondary jobs are created for each job in the ASM sector [1].
The most discussed topics in ASM include socio-economic aspects of mining [2–7], child labor [8,9],
women’s labor [10–15] and the role of minerals in armed conflicts [16,17]. Less attention is then
paid to the actual environmental impacts of mining and their typology [18], with these topics being
only marginally addressed in scientific papers. The environmental impacts of ASM in the Great
Lakes Region (the author uses the geography division similar to Mpangala [19] or Schütte et al. [20],
that includes Uganda, Kenya, Tanzania, Burundi, Rwanda, and the eastern part of the Democratic
Republic of Congo, or the province of North Kivu, South Kivu, and Katanga in the Great Lakes
Region—Figure 1) and Africa are grouped into four categories. The four categories are: (1) Changes
in landscape structure—deforestation (primary and secondary) and land cover change. (2) Influence
of geomorphological processes—weathering, mass movements, fluvial processes, aeolian processes,
creation of new anthropogenic forms. (3) Influence of hydrological regime—water contamination,
sedimentation of water stream. (4) Influence on fertility of soil–Soil contamination, high dustiness,
land use change [18].

ASM in the flood plain has direct negative impacts on the stream’s habitat. The most significant
impact is streambed stability and composition, channel shape, turbidity, velocity, water depth,
the amount of woody material in the channel [21–24]. According to the Communities and Small-scale
Mining Organization, the most visible impact of ASM on the environment is deforestation and
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destruction of vegetation in mining areas [25]. Maponga et al. [26], Kanyamibwa [27], Plumptre [28],
Karamage [29], Beyene [30] also deal with land cover change and vegetation removal in the Great
Lakes Region as a result of ASM.

Figure 1. African Great Lakes Region. Author’s own format [31].

Most papers deal with this in connection with gold mining and mercury contamination in mining
areas. Mercury enters water [32–34], soil [34–36], and air [32,36] during gold mining from ores
through amalgamation [37]. For example, Lacerda [38] notes that more than 24 tons of mercury were
discharged into the atmosphere at the Lake Victoria Goldfields Site in Tanzania. At the same location,
research was carried out by Ikingura et al., who measured extreme mercury concentration in the
soil [39]. According to a number of research works at mining sites, mercury can also enter the human
body, as argued by, for example, Sakoane [40], who links the spread of malaria to higher mercury
concentrations in the soil. The impact of heavy metals (excluding mercury) on the environment
during the extraction of minerals is addressed by Diogo et al. [41] and Pourret et al. [42] who deal
directly with ASM. Lead poisoning, especially in child labor, is the subject of the report by the WHO
entitled Artisanal and Small-Scale Gold Mining and Health [43]. Mossa and James [44], Knox [45],
Wolfenden and Lewin [46], Graf et al. [47] deal with the impact of heavy metals on watercourses in
mining in general. Alluvial ASM has an effect on the watercourse and its immediate surroundings,
while some problems can be eliminated, such as the impact on agricultural activities and subsequent
soil erosion [48–50], which has an impact on vegetation cover [34,51,52] and biogeographic conditions.
Vegetation layers and biogeographical conditions can be studied using several models [53,54], which,
however, is not possible in informal ASM conditions.
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ASM takes place in more remote, mostly poorer areas, and therefore those sites may experience
uncontrollable illegal mining and smuggling of minerals from other areas or countries. In poorer rural
areas, the only source of income apart from agriculture is often the extraction of minerals. Mining in
these areas is more profitable than agricultural activities, which has in particular a self-sufficiency
function. Due to the large population size, high population density of the Great Lakes Region,
and a greater dependence of the population on quality soil and water, environmental aspects play an
important role in the life of the local population. A study conducted in Rwanda by Cook et al. [55]
documents that in mineral-rich areas, mining is the dominant source of income for most workers and
has become increasingly important in the last ten years. Most miners claim that mining offers an
above-standard source of income. They can earn twice as much money by mining than in agriculture,
thus these activities tend to develop, while natural conditions in the affected areas worsen.

Mining of minerals is one of the most important industrial activities in Rwanda, and the
anthropogenic influence on the relief is an integral part of it. ASM plays a significant role in mineral
mining, in which water is used for washing process. Given the presence of minerals in the alluviums,
ASM has an impact on the floodplain. Mining in alluvial sediments leads not only to a change in the
hydrological regime of the river, but also to the deforestation and degradation of arable land near
watercourses. In the context of water resource management, the water used in mining is polluted both
chemically and physically, with large amounts of suspended sediment appearing in the water.

ASM in Rwanda is characterized by hard rock mining and shallow alluvial mining. Hard rock
mining is mining by the extraction of material from mineral veins. Shallow alluvial mining is mining
from alluvial sediments, where material is extracted followed by the “dig and wash” technique [18,56].
By using these two types of mining, miners destabilize the river channel by bedrock mining on the
riverbanks. An ore-bearing rock washing process occurring in the river has an additional effect on
drinking water quality. Mining activities result in the degradation of riverbeds and riverbanks, and
changes in water flow. The result of these activities can be observed, among other things, in the lower
reaches of rivers, where sedimentation of suspended sediments, widening of the watercourse and in
some cases also a reduction in water flow and drying of the riverbed occur. The mining in the alluvium
then significantly contributes to the acceleration of natural geomorphological processes. The primary
objective is to document anthropogenic impacts of the alluvial ASM of mineral raw materials, especially
3T minerals (tin, tantalum, tungsten) on a fluvial landscape in Rwanda. The paper aims to bring to
ASM issues expanding knowledge about alluvial mining. Based on the previously created typology of
environmental impacts in Macháček (2019), alluvial mining will be incorporated in the noted typology
and new relief shapes formed during this type of mining will be defined. Furthermore, the impact of
alluvial ASM on the riverscape will be analyzed in connection with the degradation of arable land,
which is especially in developing countries an important source of livelihood for the local population.

2. Anthropogenic Impacts of ASM On Geomorphological Processes

Unlike industrial mining, whose phases of landscape damage are known, and there are ways to
eliminate these risks, in the field of ASM these ways and procedures are not entirely clear. In the initial
phases of industrial mining, the landscape in the mining areas changes very quickly. When mining
reaches its peak, activities are reduced, and after the deposits are depleted, the mine is closed and
subsequent reclamation takes place. In the case of ASM, in most cases there is no mining plan or
subsequent reclamation plan. This is an unplanned and often informal activity without detailed plans,
and therefore it is not possible to estimate the direction in which both the actual mining and the impact
on the environment will be heading. In areas affected by ASM, as a result of mining, both the rock
environment and soil properties may start changing. If subsequent reclamation is not planned at the
beginning of mining activities, it can happen spontaneously, unfortunately, with the worst results.
In abandoned mines, where no subsequent reclamation has taken place, spontaneous movements can
occur, such as landslides and rock falls. Unsecured mines also pose a major risk to the local population
and livestock.
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ASM can either initiate new or modify (accelerate or slow down) geomorphological processes
that have already occurred naturally. These dynamic processes are influenced by the topography of
the relief, the soil properties and the rock composition. Thus, in these cases, anthropogenic activities
may lead to faster re-degradation or aggradation of the relief landforms.

All types of mineral extraction through either ASM or large-scale mining, involve influencing of
geomorphological and geological structures that directly or indirectly affect geomorphological processes.
According to Jones [57], we can divide this anthropogenic influence into three categories: human-made
relief, human-induced relief, and human-modified relief. Although Jones [57] divided the anthropogenic
influence of relief into several categories, he also did not precisely define geomorphological processes
closely associated with ASM and occurring only in this issue. One of the few studies that strives to
define individual characteristics is the study by Byizigiro et al. [58], who hypothetically describes the
geomorphological processes characterizing ASM. Byizigiro bases his description on the division of
relief according to Jones (2001) and, similar to the author of this paper, deals with the area of Great
Lakes Region, in which he worked between 2012 and 2015.

According to Jones [57], the human-made relief is intentionally created for a specific purpose, e.g.,
to remove overlying rock material, so that in the case of mining, mineralized material could be used.
Other landforms directly related to ASM include partial excavations in various parts of the mining area,
which serve as exploration wells. Another phenomenon is the mining pits located on plains or slopes,
which are artificially created depressions in the ground used mainly for illegal mining. Some mining
sites on the slopes are disturbed by shafts, which may collapse during or after mining, creating surface
depressions. Another important element is the mining wall itself, which is already prone to further
erosion due to natural processes. The upper soil is exposed down to mineralized rock, while the no
longer usable soil is deposited in the form of barren rock near the mining site. These newly created
elements are susceptible to other processes, such as erosion or collapse of the accumulated material.

The human-induced relief is a product of natural processes at a place and time and is completely
dependent on anthropogenic activity. In ASM areas, geomorphological processes take place in setting
pits, mining pits, and barren rock or in their vicinity. These elements were created primarily by human
activity and are features of human-induced relief. The result of such disruption of the relief is wash
and other erosion rills, which later expand, thus resulting in even greater disruption of the already
affected relief. These processes can subsequently result in formation of badlands [58]. One disruption
in a slope where intense ASM takes place can lead to subsequent destabilization of the upper part
of the slope, resulting in cracks. In this way, the strength of the slope is reduced. If the cracks are
filled with water, which occurs in the form of precipitation, weakened rock blocks can collapse and
slide. These weakened zones often provide an area for further mass movements at the top of the
slope. The landslides themselves then often adversely change the slope geometry and lead to further
instability of the rock environment. Less obvious and more hidden are the movements inside the
rock environment. The strength of these deposits is significantly affected by internal displacements,
which can be converted at the points of movement by pressure from relatively loose material to firm
parts on which movement takes place. Byizigiro et al. [58] found that this effect was stronger and more
effective in the walls of mining pits parallel to the shale layers, which are largely eroded by landslides.

We refer to the human-modified relief when the extent or speed of geomorphological processes is
changed by human activity [57]. The main mechanism that triggers the formation of these processes is
the change in hydrological balance. This change can occur due to a change in the soil cover, exploratory
wells or over-extraction, which disrupts the groundwater supply.

Alluvial ASM thus affects all three types of relief defined by Jones [57]. There is a broad consensus
among experts on the extent of geomorphological processes influenced by (accelerated, slowed down)
ASM. The most important is the influence of erosion processes. However, in the areas of ASM,
erosion processes are very poorly monitored and the conditions for reducing the consequences of
process acceleration due to anthropogenic influence have not yet been created. At the same time,
accelerated fluvial erosion fundamentally affects the quality of natural resources, the loss of arable



Forests 2020, 11, 762 5 of 24

land and the environment degradation. Erosion activities are manifested mainly by the loss of topsoil
and the subsequent sedimentation of watercourses in the mining area [49,51,59–61]. This process
can further lead to a change in the riverbed (caused by physical disturbance of the banks and
vegetation) and the destruction of vegetation [62]. According to Li [63], the sites with ongoing ASM
can constitute extremely difficult conditions for subsequent reclamation. The main reasons include
insufficient preparation of reclamation processes before the actual start of mining. Insufficient control
by government authorities is also connected with this fact, as ASM often takes place in remote areas
covering a large area. The major environmental issues related to the minerals mining using ASM
include low-formalized activity, unequal access to ASM and large-scale mining miners, disadvantaging
of ASM miners, insufficient government access to ASM, and little attention to environmental issues
in general. These issues associated with ASM are then insufficiently coordinated with national and
international mining policies, resulting in insufficient regulation of the ASM sector [64]. The problem
is significantly exacerbated in gold mining, where mercury is used. Artisanal and small-scale gold
mining with mercury is mainly carried out in the areas of East and Southeast Asia, South America,
and Sub-Saharan Africa, and many of them are located in floodplains [65]. The exact and complete
impact of ASM on floodplains is not yet known [64].

During ASM, the natural structure of rocks and soils is disrupted, and they become crumbled,
separated, and their composition is changed. As a result of the movement of materials, an anthropogenic
rock weathering crust is formed. This significantly changes the geodynamic, geochemical, geothermal
and gravitational situations. There are also major changes in the chemical-mineral, granulometric and
physical-mechanical properties of rocks and soils, especially in terms of their disintegration. Rarely we
find secondary strengthened materials in anthropogenic rock weathering crusts [66].

The degree of influence of mining on the landscape depends on the type of ASM and the extent
of mining activities. Individual types of ASM can be defined according to technological procedures
and their effect on geomorphological processes. Technological procedures used in ASM are mainly
associated with surface and subsurface mining, which takes place in rock masses on areas with different
slope inclines or in alluvial plains. The methods used to extract the material can be divided into three
categories: shallow alluvial mining, deep alluvial mining, and hard rock mining [18].

Extraction methods and further processing are based on relatively simple methods.
These techniques have been used since the 19th century and are mostly based on rock flushing
and capturing extracted material that is heavier than the original rock [4]. In areas where ASM is
widespread, the three most common approaches toward mineral extraction are assumed. The first
extraction method is simple sluicing, which is the easiest way to separate rock from mineral, then ground
sluicing is a method that is used in mines without the use of advanced technologies and in often illegal
mines, and finally, the third applied method, hydraulic mining, is the extraction of minerals from the
rock supplied with enough water and available technological equipment [18].

The output of 3T mineral extraction is the so-called concentrate, which is obtained by the two
most used techniques in ASM, that is, gravity concentration and comminution [67].

• Gravity concentration is a process used to concentrate a mineral of interest. The technique uses
the physical properties of the minerals and rocks in which the minerals occur. Grains or larger
pieces of mineral are moved by gravity force to the bottom of the vessel, in which this process
occurs. The oldest technique, already known from gold mining in the Middle Ages, is panning.
Circular and retrograde movements of ore and water in a pan cause the ore to stratify, as heavy
minerals settle to the bottom of the pan, allowing lighter pieces of barren rock to sluice from
the upper part. Panning is a basic tool to collect minerals from alluvial deposits and also from
high-quality primary ore [68].

• Comminution is a technical term used to describe mechanical disintegration of a rock, which is
done by crushing (coarse) and grinding (fine) or by simply breaking up of a lump of soil or clay
materials. This is the processing of already extracted material, which is deposited in the form
of barren rock [67]. The barren rock generated by these activities are in many cases commonly
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discharged and moved to the surroundings of the mining area due to insufficient legislative
standards or a lack of storage facilities. Therefore, these technological processes have a great
influence on geomorphological processes and on the environment [69]. Table 1 illustrates the
influence of geomorphological processes by individual material mining and extraction methods.

Table 1. Influence of geomorphological processes based on the chosen mining method and material
extraction [18].
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Mining method

Shallow alluvial
mining x 0 x 0 x alluvial plain, levee

Deep alluvial
mining x 0 x 0 x alluvial plain, levee

Hard rock x x x 0 x
cret, fork, back,

influencing entire
solid rock mass

Extraction method

Simple sluicing x 0 x 0 x alluvial plain, levee

Ground sluicing x 0 x 0 0 cret, fork, back,
alluvial plain, levee

Hydraulic mining x x x 0 x cret, fork, back,
alluvial plain, levee

Gravity
concentration x x x 0 x cret, fork, back

Comminution x x x 0 x cret, fork, back

The relationship between anthropogenic activities and sedimentation can be well illustrated
by mineral material mining. Mining sediment not only provides evidence of fluvial processes,
but also demonstrates the impact of human activities on environmental change. All mining and
processing of minerals produces some waste, which is either separated with help of watercourses, or is
intentionally added to them, or eventually enters watercourses through natural processes. According to
Kondolf et al. [70], we distinguish two types of sediment transfer. Active transformation, where the
fluvial system is affected by the active addition of waste and passive dispersal, where parts of the
sediment in a watercourse are mixed with natural sediments without causing a significant change
in the watercourse morphology [71]. However, the ability to distinguish mining sediment from
common sediments in a river floodplain can be problematic. Extraction is often accompanied by
other territorial and river hydraulic changes, such as agriculture, cultural intensification, deforestation
or the construction of dams. This may indirectly increase sedimentation from other sources [44].
Other factors affecting the landscape near alluviums include the number of miners, mining methods,
degree of mechanization and other factors [72,73]. A significant phenomenon is episodic sedimentation.
As claimed by Kondolf and Piégay [70] episodic sedimentation generated by human land-use change,
such as deforestation, ploughing for agriculture and mining, may be sufficiently severe to cause channel
and floodplain aggradation that is preserved in the alluvial record. Aggradation is often followed by a
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period of recovery in response to relaxation of the causative factors (reforestation, cessation of mining,
etc.) and channel incision that leaves sediment stored on floodplains.

Fluvial processes are associated with running water activities, which is the main erosion
factor. The development of the landscape and the river network is dependent on fluvial processes.
A fundamental factor for influencing fluvial processes is the disturbance of vegetation cover in
the spring sections of watercourses [74]. An important factor associated with fluvial processes is
deforestation. Deforestation can occur as a result of fires, forest clear-cutting aiming at expansion
of arable land, or as a result of mineral raw material mining [18,75,76]. The combination of these
phenomena is a common cause of influencing fluvial processes in developing countries. Vegetation
cover, especially forest stands, plays an important regulatory function, retaining some of the water that
falls in the form of precipitation, thus slowing down evaporation. Soil erosion entails soil degradation,
and this leads to a reduction in its fertility. In addition to fluvial erosion, organic matter loss, salination,
and chemical contamination also contribute to soil degradation. The intensity of fluvial processes
can be expressed numerically by the volume of eroded and transported material by watercourses.
This material is in the form of suspended sediment, which, however, demonstrates the speed of natural
and anthropogenic processes together [74].

Water turbidity and sediment vary according to the level of pollution, which increases with
distance and number of tributaries and activities on the river. The water color also varies according to
the soil type and use type, e.g.,: the water is more or less clear at some distance from its source before
being infused with sediments, dark brown from intensive mining activities, and dark grey or black
due to organic matter being transported from marshland and steep slopes with agricultural activities.
The surface water quality could be improved if serious measures are taken to stop erosion from illegal
mining sites and agriculture lands.

Deforestation is one of the most significant environmental consequences of mining, including
ASM. In most cases, this is the first major intervention into the natural environment after the start
of mining, where deforestation is carried out to prepare land for surface mining [61]. Due to the
population growth, which relocates there for mining, there is a higher demand for wood and charcoal
in the locality resulting in secondary deforestation. Partow et al. [77] note that the majority of the
population is dependent on wood heating and that up to 90% of power produced uses wood and
charcoal as a source. According to the Rwanda government, ASM affects deforestation mainly through
illegal logging in protected forested areas [18]. Nature conservation areas are an important element in
the land conservation efforts [78]. A higher proportion of nature conservation areas is associated with
a higher proportion of forest areas [79].

The research studies show that the structure of land use in the whole territory of Rwanda has
changed very significantly over the last 50 years; specifically, in the period from 1960 to 2007, the original
forest area decreased by 64%. Anthropogenic activities related to mining activities, predominantly
ASM and refugee resettlement, had the greatest impact on this rapid decline. On the other hand,
the government-level initiatives have resulted in reforestation, which, however, replaces the original
forest covers so far to an insufficient extent. Over the last 20 years (more accurate data are from
1990), an average of 2600 ha of forest per year has been reforested in Rwanda [80]. Table 2 shows the
loss of forest areas in a total of 18 areas between 1984 and 2015. Illegal gold mining is carried out
using the ASM method in some of these areas. According to the Rwandan government report Forest
Investment Program for Rwanda, ASM is affecting deforestation mainly through illegal logging in
protected forested areas. Illegal ASM degrades large areas of original forest and quality soil through
unsustainable logging. With legal ASM, deforestation may occur to a lesser extent. Deforestation
usually concerns the felling of trees at the boundaries of the mining area or, secondarily, the illegal
felling of trees for fuel. Mining activities are thus connected with illegal deforestation, water pollution
and soil contamination [79].
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Table 2. Rwanda forest area loss between 1984 and 2015 [18,80].

Location (Forest Area)
Total Area of Forested Areas (in ha) in Forest Area Loss

1984–2015 (in %)1984 2015

Buhanda Natural Forest 1.116 18 98.4
Gishwati Natural Forest 21,213 1.440 93.2

Mashyuza Natural Forest 85 6 92.9
Ibanda-Makera Natural Forest 1.425 169 88.1

Karama Natural Forest 3.235 1.061 67.2
Dutake Natural Forest 31 11 64.5

Karehe-Gatuntu Natural Forest Complex 48 19 60.4
Nyagasenyi Natural Forest 45 19 57.8

Akagera National Park 267,741 112,185 58.1
Mukura Natural Forest 4.376 1.988 54.6
Sanza Natural Forest 49 24 51.0

Mashoza Natural Forest 36 18 50.0
Muvumba Natural Forest 1 286 688 46.5

Ndoha Natural Forest 39 29 25.6
Kibirizi-Muyira Natural Forest 454 352 22.5

Busaga Natural Forest 191 159 16.8
Nyungwe National Park 112,230 101,005 10.0
Volcanoes National Park 16,128 16,004 0.8

Total 429,728 235,195 54.7

3. Materials and Methods

3.1. Methods of Research

The methodology is identical to the author’s published paper in 2019 [19]. The author draws on
the qualitative inquiry, which was carried out in accordance with Gerring’s [81] conceptualization of
qualitative methods as tools for causal inference. At the beginning of the research process, a review of
the scientific literature and scientific databases, including the Web of Science was performed, followed
by the analysis of data sources and formulation of preliminary conclusions. This study does not
consider chemical pollution as an anthropogenic consequence but given the specificity of mining in the
locality of interest, it takes into consideration only the anthropogenic impact on the geomorphological
forms of the relief. The methodology is based on the collection and analysis of data provided by
current authors and research institutions and the research within mining company and field research
in 2012–2015. One of the methods of qualitative research was the interpretation of expert interviews,
the aim of which was to interpret the views of interviewees on the issues associated with alluvial
ASM under investigation [82]. The chosen method was unstructured interviews (according to Hay,
2000) [83] covering key topics in the field of mineral raw material mining with a focus on alluvial ASM.
A total of six experts were included in the qualitative research (results from expert’s interviews are in
Table 3). The technique of their selection was aimed at the maximum possible opinion diversity and
representation of key players. These experts were identified, approached and interviewed through
snowball sampling and the support of assistant in mining company in Rutsiro district. Methodology of
snowball sampling is used in similar research by Bansah et al. [7] in Ghana and McQuilken et al. [84]
in Ghana. During the research, open and unstructured research plans were preferred. The task was to
create a holistic overview of the researched issue, to capture how the process participants interpret
the situation, and to capture the interpretations of these interpretations [18]. Another data collection
method was participant observation (according to Clifford et al., 2016 and Kawulich, 2005) of mining
sites in the region of interest [85,86]. Results are implemented in the case study. The overall research
design draws on the theory-confirming case study by Lijphart, 1971 [87]. The case selection technique
was based on the typical case (Seawright and Gerring 2008; [88] for the most recent discussion see
George 2019 [89]). Rutsiro district represents a typical example of ASM, and empirical findings from
this case study may be generalized for the entire Great Lakes Region.
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Table 3. Key problems according to experts in field of alluvial ASM.

Experts (1–6) Answers Most Mentioned Results from Interviews

Expert 1, 2, 3, 4, 5 Example of Rwanda illustrates that the country is more dependent on arable land or its
natural resources than other countries in the region.

Expert 4, 5, 6 Due to alluvial ASM, it is sometimes necessary to cut down trees (i.e., illegally) in order to
be able to mine in places where miners believe that the mineral vein continues.

Expert 3, 4, 5, 6
The wood obtained due to alluvial ASM is used as a fuel for the food preparation. Due to
the felling of trees at the mining site, landslides occur in places where this phenomenon
had previously never occurred.

Expert 2, 4, 5, 6
The mining of aggregate material from the riverbed degrades and destroys the present
aquatic fauna and flora ecosystems and significantly increases the silt load into the
downstream river system.

Expert 3, 5, 6 Sediments in the lower parts of the riverbed, which come from higher places where the
mineral washing process takes place, lead to loss of shelter and spawning grounds for fish.

Expert 2, 4, 5, 6 High sedimentation load results in the limited penetration of sunlight into the river system,
thereby limiting growth of algae and aquatic plants.

Expert 1, 2, 3, 4, 5, 6 Mining in riverbanks exacerbates erosion, landslides and pollution of water used for
sanitary purposes.

Expert 1, 2, 4, 5, 6 Alluvial ASM leads to unmanaged release of tailings into waterways
Expert 2, 5, 6 Smaller streams can stagnate due to numerous open pits and clogging of springs.

Expert 1, 3, 6 Mining areas are close to agricultural land and residential land. Alluvial mining leads to
endangering agricultural and residential lands.

Expert 3, 5, 6 Alluvial mining directly endangers the health and property of the local population and
damages the environment.

Expert 1, 4, 5, 6 The advantage of mineral extraction is that it is a permanent job, and in the case of a poor
harvest, it is the only source of income for the population.

Expert 1, 2, 5, 6 A major problem in environmental protection is non-compliance with the legislation, or
inconsistent control by state institutions.

Expert 2, 3, 6
Lack of experts and professional institutions. Professional institutions seek to educate
geologists, mining engineers, technicians, and other professionals involved in mining
practices that minimize the negative impact of mining on the environment.

Expert 1, 2, 4, 6
Lack of workshops and seminars for miners in the past. Workshops and seminars for
miners organized by governmental or non-profit organizations can advise miners on how
to approach mining with less undesirable impact.

expert 1—mining specialist (World Bank), expert 2—owner of mining company, expert 3—geologist,
expert 4—government worker (management of national resources), expert 5—academic worker, expert 6—miner.

3.2. Study Area

From a geographical standpoint, Rwanda is located at the watershed of two of the most important
African rivers—the Nile and the Congo. In the Congo Basin, Rwanda shares water resources with the
Democratic Republic of the Congo, through a number of smaller tributaries leading to the free-flowing
Kivu Lake and the Rusizi River. Due to its location, it is also known as the “water tower” of the
countries in the Nile Basin (Burundi, Democratic Republic of Congo, Egypt, Ethiopia, Kenya, Rwanda,
South Sudan, The Sudan, Tanzania, Uganda), which have been cooperating together since 2010 on
water resources management within the Nile Basin Countries network [90]. The main source of water
supply is atmospheric precipitation, which is, however, spatially very uneven and the volume of
which decreases in the direction from west to east The Congo River Basin covers 33% of Rwanda
and drains 10% of the water. The Nile Basin covers 67% of the total territory of the state and drains
90% of water resources. Rwanda is covered by a dense hydrographic network consisting of 101 lakes,
861 rivers and 860 wetlands. Although Rwanda is a mountainous state, wetlands cover a total of 10.6%
of the territory, of which 53% has been converted to agricultural land and 41% remains covered by
natural vegetation and 6% are fallow fields [91]. It is wetlands and swamps that can be endangered by
alluvial ASM. Swamp lowlands in the system of deep valleys are used for growing agricultural crops,
which are irrigated during the dry season with the help of artificial canals. Wetlands are also the most
productive ecosystem in Rwanda and ensure ecological and socio-economic function. They serve not
only as a source of drinking water, but also peat, which is used for a fuel. In drought periods, they
provide a steady source of water and help regulate floods during heavy rains. Wetland ecosystems
help to significantly diversify the landscape and are linked to the habitat of large amount of animal
life, which represent a significant proportion of the livelihood for the local population. Groundwater
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makes up 86% of the total available drinking water. In the southern and eastern provinces, most of the
population is dependent on groundwater, which is transported to the surface by pumps. Although
groundwater is considered to be cleaner and of better quality, there has recently been pollution of
groundwater resources, mainly due to the use of agricultural fertilizers. This trend is reinforced by the
high susceptibility of tropical soils to erosion, with fertilizers penetrating the soil more easily [92].

The Rutsiro district in the Western Province of Rwanda, located 150 km northwest of the capital
Kigali, was chosen by the authors for the case study. The Rutsiro district (1157.3 km2) is one of the
seven administrative units that account for the Western Province and includes 13 administrative
sectors divided into 62 areas and 485 municipalities, which accounts for 3.3% of the total number of
municipalities in Rwanda. The Rutsiro district has a population of more than 300,000, which is more
than 3% of Rwanda’s population. The population density reaches 255 people per one square kilometer.
A characteristic feature is a high proportion of the youngest population, where 50% of the population is
of pre-productive age, and of which more than 60% of the population is under 25 [93]. The main source
of income for the population is agricultural activities and mineral extraction. The agriculture industry
serves primarily to fulfill a self-sufficiency function, so the locals are thus significantly dependent on
the natural conditions that condition these activities.

The Rutsiro district is a mountainous area located at an average altitude of 2400 m. It is
characterized by steep slopes and deeply cut valleys, as deep as 200 m. Due to large total rainfall
(average annual precipitation reaches 1200 mm), loose slopes are prone to erosion. The season known
as “long rains” is from March to April, during which it falls between 40–60% of the total annual
totals. The long rain season alternates with the long dry season, which is between June and September.
This is followed by a season of short rains from September to December. From December to March
there are some shorter dry periods with prevailing days with no rainfall [94] The Rutsiro district has
acquired two mining concessions (Sebeya and Rutsiro) in Rwanda, which are divided between different
mining companies. For the needs of this paper, the Rutsiro concession was selected as a case study
(Figures 2 and 3).

Figure 2. Great Exploration and Exploitation Concessions in Rwanda [95].
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Figure 3. Concessions in the northwest Rwanda in detail [95].

The Rutsiro area is located in the zone known as the Central Tungsten belt of Rwanda.
Mineral deposits are located in concordant and discordant quartz veins arranged in intermediate quartz
and graphitic shale of the Gikoro and Rwandan groups (belonging to the Middle Proterozoic period,
1000–1500 million years ago), which were formed during the Kibaran orogeny. Mineralized structures
are oriented in the NW-SE direction. These layers underwent a very low degree of metamorphosis [96].
The northern and southern sections of the mineralized structures are blocked by tectonic faults in the
NE-SW direction, which predetermine and tectonically condition the main valley. Mineralization is
probably associated with the entry of late Proterozoic to Paleozoic granites (approximately 400 million
years ago). Until now, there is no exact stratigraphy for this area, so it is very difficult to define
individual strata [97]. In the Rutsiro concession area, water from watercourses is used for drinking and
cooking, washing, sanitation, construction and mining industry, and agriculture (irrigation). Drinking
and cooking water is collected from springs, wells, and rainwater collection, while other activities,
such as agriculture and other economic activities, including the extraction of minerals, use surface
water from watercourses and these activities also contribute to their pollution [98]. Artisanal mining
negatively affects water quality at the Rutsiro locality, as documented by chemical analysis of samples
performed by Haidula et al. [99], implemented in order to prepare an environmental impact assessment.
In the mining area, samples were taken from three sites. The collected surface water samples were
compared with the East African Standards and further compared with the standards set by the Rwanda
Bureau of Statistics. The samples contained excessive amounts of tin, zinc, tantalum, lead, and arsenic.

4. Results-Rutsiro District—Case Study

Anthropogenic Landforms Caused by ASM

Mining anthropogenic processes are triggered by the extraction of minerals from the earth’s
crust. The mining landforms can be distinguished into actual and accompanying mining landforms
(anthropogenically conditioned forms). The actual landforms are then defined as landforms produced
by surface and subsurface mining [74].
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Dávid [100] classified the three main groups of landscape damage during mining activities by
actually distinguishing three basic groups of anthropogenic landforms:

• Excavated or negative landforms—the most prominent of which are shafts and trenches;
• Accumulated or positive landforms, represented by landfills, the shape of which is determined by

several factors, including the earth’s surface, the accumulation regime, and the physical properties
of the discharged material;

• Areas destroyed by mining, leading to levelling of the surface.

In other words, they can be defined as concave, convex and flat anthropogenic landforms. In the
locality of interest, landforms associated with artisanal mining were mapped and inventoried in
detail. The emergence of new anthropogenic landforms in connection with the artisanal extraction
method is related to significant volumes of mined raw materials, which are mined and then moved
while part of the waste material is stored. In areas with ASM, new landforms are created, most of
them by anthropogenic activities. The most common landforms include mines, pits, adits, hollows,
and fluviatile placers.

New anthropogenic landforms are formed in the wide riverbed and alluvial plain (in fluvial
sediments), where the next phase of water-transported material extraction takes place. Lighter and
smaller metal minerals, which were not mined in an upper stream, are transported as floating solids
and accumulated in the valley floors of a lower stream.

In a place with a wide riverbed and where the river is not so deep, there is a secondary extraction
of minerals from deposited sediments. Miners extract coarse-grained deposited matters from the
bottom of a riverbed and from banks, which they sluice using mining pans. This process helps to
form fluviatile placers and fluviatile placer fields which are of convex shape. Fluviatile placers are
anthropogenic forms of relief created during panning, i.e., the mechanical method of mining from
alluvium, most often during the mining of gold and other pure metals or gems, or perhaps moldavites
and pyrites. They are small accumulation heaps of gravel and sand, which are an accompanying
landform of the metal panning method. These are mounds usually 1–2 m high, in rare cases higher
than 10 m, often in one locality with very different heights. If they occur on larger areas, they are
referred to as fluviatile placer fields. They frequently occur in the alluvial plain, and in artisanal mining
they can more significantly interfere with a lower part of the slope (Figure 4).

Figure 4. Fluviatile placers and fluviatile placer fields. Photo taken by the author [18].
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Another anthropogenic landform is barren rocks and their influence on the lower part of the slope
of an alluvial plain disturbed by ASM (Figure 5). The barren rock generated by this activity are in many
cases commonly discharged and moved to the surroundings in the mining area due to insufficient
legislative standards or simply due to a lack of storage facilities. Therefore, these technological processes
have a great influence on geomorphological processes and on the environment [69]. The actual
geomorphological processes also take place on heaps, in barren rocks, or in areas where wastewater is
stored. The deposition of barren rock and the consequent instability of slopes leads to the acceleration
of slope processes [101]. Then, the extracted material can enter a watercourse and lead to an increase in
sediments and mud in the landscape, despite the transfer of toxic material downstream and subsequent
deposition elsewhere downstream [39,102–105].

Figure 5. Influence on the lower part of the slope of an alluvial plain disturbed by artisanal and
small-scale mining. Photo taken by the author.

During mining activities in the riverbed, there is an anthropogenic influence of the alluvial plain
by erosion and accumulation processes. During the material transfer and the barren rock formation,
the watercourse branches and gravel benches are formed. The riverbed is affected by lateral erosion,
with stream turns and bank ruptures occurring (Figure 6).

Figure 6. Watercourse branches and gravel benches. Photo taken by the author.
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Lateral erosion is then followed by intense deep erosion in the alluvial plain, which leads to a
deepening of the watercourse bed (Figure 7).

Figure 7. Erosion in watercourse bed. Photo taken by the author.

Fluvial processes create anthropogenically conditioned ravines. The ravines reach a depth of up
to 10 m, are actively modelled by deep erosion and are often formed on deforested areas, meadows,
and pastures (Figure 8).

Figure 8. Ravine. Photo taken by the author.

In the areas with a disturbed surface because of artisanal mining, landslides and rock block slides
occur. For the middle parts of the slopes located directly above the watercourse bed, there are valley
slopes with clear separating surfaces disturbed by the slope processes (Figure 9). Deep erosion causes
the expansion of ravines and the removal of part of the material by subsurface selective removal,
which results in the subsidence of the surface.
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Figure 9. Slope processes. Photo taken by the author.

The water outflow in a mining area itself is fundamentally affected. The new landforms are
artificial canals and dams of small water works, which are built with the aim of provision of a sufficient
water source for sluicing the ore by a panning method. After washing the ore, the water course will
be dammed in a higher position and the water will be diverted to another mining site. Accumulated
minerals are collected at the washing site and mining can continue. Due to the need for the use of
flowing water, many artificial canals with a system of weirs and dams are created in the quarry site,
which are constantly disturbed along their entire length by some mining technology, but also by natural
deep (ravine) erosion during daily heavy rains. As a result, there are areas deeply divided by ravine
erosion with individual ravines merging into very deep fluvial erosion landforms, which subsequently
lead to slope processes.

The anthropogenic landform, which is to prevent erosion and partial deposition of sediments, are
the so-called check dams. Check dams reduce the effective slope and create small pools in swales and
ditches that drain 5 ha or less. Reduced slopes reduce the velocity of storm water flows, thus reducing
erosion of the swale or ditch and promoting sedimentation. The use of check dams for sedimentation
results in the net removal of sediments. Use of a series of check dams will generally increase their
effectiveness. A sediment trap may be placed immediately upstream of the check dam to increase
sediment removal efficiency (Figure 10).

Figure 10. Check dam. Photo taken by the author.
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The convex form is then surface depressions. These are unintended terrain depressions created by
rapid settling, sinking or collapse of mine works. The ground plan of surface depressions is most often
circular in the area (above the intersections of the mine tunnels) or elliptical (created by connecting two
circular surface depressions). Circular surface depressions usually have a diameter of up to 10 m and a
depth of 3 to 5 m. They are sometimes filled with water, but unlike sunken areas, there is usually no
permanent year-round water level in them. Suffosion depressions are formed in the alluvium areas,
when adits are built in bank ruptures, the ceiling of which collapses in soft rock (Figure 11).

Figure 11. Suffosion depression. Photo taken by the author.

Loose banks are more prone to lateral erosion, which is manifested along the entire length of
a river by the formation of bank ruptures and landslides. Thus, fluvial processes in particular are
significantly affected. Slope, rill, sheet and gully erosion processes as well as volume extension of
suspended material, which are conditioned by mining activities, especially slope processes (landslides
and collapse) and land subsidence in undermined areas were also documented in the area of interest.
Artisanal miners disturb unstable exposed ground. Their mining techniques contribute to choke of
lower part of water streams in riverbeds, valley floors and riverine plains (Figure 12).

Figure 12. Artisanal miners disturb unstable exposed ground. Photo taken by the author.
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On the valley slopes, due to deforestation, risky mass movements occur (Figure 13) when the
material from the slope is transported to an alluvial plain by erosion processes and landslides. In the
alluvial plain, in the area of a wider valley floor, there are fluviatile placer hills as a remnant of
secondary mineral mining from deposited sediments. These are small accumulation heaps of gravel
and sand (1–2 m high), which are an accompanying form of a panning method.

Figure 13. Deforestation. Photo taken by the author [18].

Due to lateral and deep erosion during mineral extraction, watercourses are widened at the
expense of agricultural land and forest remnants. Although logging is banned due to limited resources,
deforestation occurs when mining is expanded. It does not concern deforestation of large areas, but
rather the destruction of individual trees along the watercourse and the mining site. If a miner follows
a mineral vein located under trees, he simply either cuts down the tree or, undermines it in the best-case
scenario. These procedures destroy a root system and lead to a loss of channel water. These activities
have a negative impact on both groundwater resources and the entire water cycle.

Alluvial ASM leads to acceleration of natural geomorphological processes and significantly affects
a fluvial landscape. Alluvial ASM, as a specific part of the ASM topic, has several environmental
aspects. According to the created typology [18], the greatest impact of alluvial ASM involves naturally
occurring geomorphological processes, such as weathering, mass movements, fluvial processes and
the creation of new anthropogenic forms. In terms of changes in landscape structures, ASM mostly
affects primary and secondary deforestation and the associated land cover change. Alluvial ASM
significantly affects the hydrological regime by water contamination and sedimentation of water
streams. Alluvial ASM has an effect on soil fertility by contaminating soil that can no longer be
used effectively to grow crops. The mining of aggregate material from the riverbed degrades and
destroys the present aquatic fauna and flora ecosystems and significantly increases the silt load into
the downstream river system. High sedimentation load results in the limited penetration of sunlight
into the river system, thereby limiting growth of algae and aquatic plants. High levels of silt further
suffocate the river systems and impacts on the spawning of fish. The mining of the riverbed further
leads to physical disruption of the hydraulic characteristics of the river itself.

The findings emerged from the interviews with main stakeholders (representatives of the mining
sector, research institutions, municipalities, miners, local inhabitants, etc.) in the Rutsiro District are
shows in Table 3.
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Mining activities in the Great Lakes Region are viewed as an opportunity to raise funds for the
region’s development. Governments are trying to combine two approaches in the use and protection of
the environment. The first approach is to use natural resources as effectively as possible for economic
growth. The second approach, on the other hand, is to protect the region’s natural resources and
not irreversibly damage the environment. Experts use the example of Rwanda to illustrate that the
country is more dependent on arable land or its natural resources than other countries in the region.
The advantage of mineral extraction is that it is a permanent job, and in the case of a poor harvest, it is
the only source of income for the population. Due to ASM, it is sometimes necessary to cut down trees
(i.e., illegally) in order to be able to mine in places where miners believe that the mineral vein continues.
The wood obtained in this way is then used as a fuel for the food preparation. It was further confirmed
that due to the felling of trees at the mining site, landslides occur in places where this phenomenon had
previously never occurred. At the same time, however, they claim that wood is very expensive and is
needed for food preparation, so in the case of tree felling, the wood is divided among other miners.
A major problem is water pollution in the river channel. Mining areas are close to agricultural land
and residential land. Mining in riverbanks exacerbates erosion, landslides and pollution of water used
for sanitary purposes. Mining thus directly endangers the health and property of the local population
and damages the environment. Sediments in the lower parts of the riverbed, which come from higher
places where the mineral washing process takes place, are also a problem. Professional institutions
seek to educate geologists, mining engineers, technicians, and other professionals involved in mining
practices that minimize the negative impact of mining on the environment. However, this process is
slow and the interest in experts is great due to the developing mining industry. The problem is illegal
mining activities that take place in mountainous remote areas. Although there is a local government
in these areas, it is often associated with illegal activities and some officials support illegal mining.
Part of the profit from smugglers or illegal mineral traders then comes from their support or at least
through them turning a blind eye.

5. Conclusions

Primary ASM takes place on the slopes of the mining site and then in the spring sections of
watercourses and their tributaries, where the naturally high flow power is utilized due to gravity.
Minerals are mined in narrow pits and adits, many as deep as several dozens of meters. The ore-bearing
rock is transported to a watercourse, where it is subsequently sluiced by the panning technique. The
mined minerals (coltan, tin, tungsten, tantalum) are heavier than ordinary rocks, and thus sink to the
riverbed, where they are retained. After sluicing the mined rock, the river is dammed and water is
diverted elsewhere. During this method of extraction, only the extraction of minerals of larger sizes is
allowed, and therefore large losses occur. Due to the use of flowing water, many artificial canals with a
system of dams, which are constantly disrupted along their entire length, are created in the mining
area. Disruption occurs as a result of mining techniques and natural deep (ravine) erosion during daily
rainfalls. The next level of mineral extraction is mining in a wide riverbed and in fluvial sediments.
Lighter and smaller metal minerals, which were not mined upstream, are transported as floating solids
and accumulated in the valley floors downstream. In a place where the riverbed is wide and the river
is not so deep, a secondary extraction of minerals from deposited sediments takes place [18].

Coarse-grained alluvium is then taken from the bottom of the riverbed and banks, and sluiced
with a pan. Loose banks tend to be more prone to lateral erosion, which is manifested along the
entire length of the stream by the formation of bank ruptures and landslides. Processes influenced by
mining activities lead to mass movements such as creeping, sliding, run-off, and falling. Landslides
along cylindrical shear surfaces are significant, which occur mainly in unconsolidated or partially
consolidated (in clays and marls, claystones and clay slates) rocks. The separating landslide area then
typically has a concave shape, and the landslide masses accumulate at the lower part of the slope.
Transverse cracks also form on the landslide, with water accumulating in here, which worsens the
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equilibrium conditions of the slope. The collapsed rock is often saturated with water so that the slide
has a character of a ground current [106].

Mining in rivers directly influences the canal geometry and causes diversion of the river away
from the original canal, sediment accumulation and the formation of deep pits [107]. Mining in alluvial
sediments leads to the removal of large coarse-grained materials, stone blocks, and other material that
is carried by the stream from the higher sections of the upper stream (parts of trees, branches, etc.).
Downstream, sediments accumulate, and chemicals, which are used in the processing of minerals,
settle. In addition to the movement and deposition of sediments, mining in the riverbed has an effect
on the flow and direction of the river, which then influences the fauna and flora in the river and its
lower parts. If the riverbed is widened during alluvial mining at the expense of agricultural land,
eutrophication and chemical pollution of areas further downstream occurs.

ASM intensifies lateral and deep erosion. The movement of miners at the mining site, on steep
slopes, the actual mining and the sluicing of minerals disrupt the slopes or riverbanks, which then leads
to erosion. In the case of mineral sluicing, there is mainly deep erosion and deepening and widening
of artificial canals. Deep erosion continues until it reaches a solid subsoil formed by, for example,
rock blocks. Lateral erosion mainly concerns mining in alluvium. Erosion and landslides are also
affected by the movement of miners themselves, who move the rock from shafts to a mineral treatment
site. During this transport, the movement of miners disturbs the unstable rock environment, which in
most cases is located on steep slopes. Together with daily precipitations, geomorphological processes
are intensified. ASM in the alluvium thus has a significant effect on both the near and far surroundings
of the mining area and on the watercourse itself that flows through the site. The author agrees
with Byizigiro [58] and Nelson and Church [68], who, in the typology of environmental impacts,
place emphasis on taking into account the different types of ASM and their specifics.

To mitigate negative impacts of alluvial ASM, it is recommended that the local residents be
encouraged to reprocess the mine’s very low grade rock dumps instead of the sand, cobbles of quartz
and quartzite located in the river, were possible. This will then provide the community with an
environmentally friendly alternative source of rock material and reduce the amount of waste rock
presently retained at the mining sites. However, strict safety controls must be implemented. Sand and
rock extraction in the rivers must continue to be monitored and prevented, where possible.

The most important step to mitigate the environmental impacts of alluvial ASM is strict compliance
with rules and laws and greater control of mining activities on site. At the same time, miners need to
be trained in sustainable mining practices, and reduce illegal mining.

Environmental impacts of alluvial ASM are much more significant in rural areas where the
population is vitally dependent on agricultural land and water resources. Due to the expansion
of mining sites, the share of agricultural land is decreasing, and water quality is deteriorating.
Further population growth, due to its demographic behavior, will lead to higher demands on land,
water, and other natural resources. Without changing the attitude of all stakeholders, environmental
impact will cause deterioration. Good practice in mineral mining is a necessary condition for a
sustainable approach to the management of natural resources and improving the well-being of the
local population.

This study provides readers with an introduction to the environmental impacts of alluvial
ASM in Rwanda. In view of the above facts, the research will help to better understand the need
for sustainability of mining operations and may contribute to better environmental protection and
improving of well-being in local communities. This study may also be interesting for international
journal readers.
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other innovative approaches to urban and regional development.

Acknowledgments: The author gratefully acknowledges helpful comments on earlier drafts from Veronika
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106. Macháček, J.; Smolová, I. Prostorové rozložení ložisek nerostných surovin těžených artisanální těžbou v
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