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Abstract: Predicting habitat for rare species at landscape scales is a common goal of environmental
monitoring, management, and conservation; however, the ability to meet that objective is often
limited by the paucity of location records and availability of spatial predictors that effectively describe
their habitat. To address this challenge, we used an adaptive, model-based iterative sampling
design to direct four years of rare plant surveys within 0.25 ha plots across 602 sites in northeast
Alberta, Canada. We used these location records to model and map rare plant habitats for the
region using a suite of geospatial predictors including airborne light detection and ranging (LiDAR)
vegetation structure metrics, land cover types, soil pH, and a terrain wetness model. Our results
indicated that LiDAR-derived vegetation structural metrics and land cover were the most important
individual factors, but all variables contributed to predicting the occurrence of rare plants. For LiDAR
variables, rarity was negatively related to maximum canopy height, but positively related to canopy
relief ratio. Rarity was therefore more likely in places with shorter canopy heights and greater
structural complexity. This included fens, which overall had the highest rates of rare plant occurrence.
Model-based allocation of sampling led to detections of uncommon species at nearly all sites, while the
rarest species in the region were detected at an average encounter rate of 8%. Landscape predictions
of rare plant habitat can improve our understanding of environmental limits in rarity, guide local
management decisions and monitoring plans, and provide regional tools for assessing impacts from
resource development.

Keywords: boreal forest; vascular plants; rarity; iterative model-based sampling; remote sensing;
LiDAR; species occurrence; oil sands

1. Introduction

A key tool in biodiversity conservation is mapping where species are most likely to occur.
This allows for the understanding of patterns in species occurrence, identification of biodiversity
hotspots, and provides needed visualizations for managers. However, creating these products and
understanding broad patterns in the spatial distribution of taxa require field data that can be difficult
and costly to acquire. Furthermore, spatial models of plant richness, occurrence, or abundance
require environmental predictors that have been collected over broad spatial extents at an adequate
resolution [1]. Sampling and modeling of rare species (i.e., those of high conservation value) is
complicated by the fact that they are often cryptic in nature, associated with uncommon habitats,
or are largely data-deficient [2]. These factors contribute to knowledge gaps on rare species including
information on where they are most likely to occur, how they may respond to disturbances, and where
best to allocate limited conservation resources.
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One approach to tackling this challenge and to increase the probability of locating rare species
during surveys is to use a model-based sampling design rather than the traditional random or
systematic designs that dominate many monitoring and survey efforts [2,3]. In essence, a spatial
model representing empirical relationships between species occurrence and environmental variables
(often derived from remote sensing data) is used to direct sampling and thereby increase the likelihood
of encountering the species of interest [2–4]. This approach has been used successfully for rare or
uncommon taxa [5–7] including for specialists with narrow geographic ranges, which are challenging
to model [5,8]. This design can be applied iteratively when the model used to conduct initial sampling
is updated with new information (e.g., data from additional surveys), as a result, the model and
subsequent predictions are adaptive. In addition to creating efficiencies of up to 70% in cost savings [3],
adaptive designs provide up-to-date products that can be used to guide future sampling and inform
management decisions related to the original monitoring objectives. An iterative modeling and
sampling design follows the approach of Guisan et al. (2006) [3] and has been used successfully in
invasive plant species detection and mapping [9].

Spatial models require accurate predictors of environmental variables, and recent advances in
the resolution, quality, and availability of remote sensing products have been highly advantageous to
landscape ecologists [10]. High resolution remotely sensed products have the capacity to not only allow
for predictive mapping at broad scales, but are also expected to improve model accuracy over those that
do not include such metrics [1]. In particular, the use of airborne light detection and ranging (LiDAR)
has grown rapidly. Airborne LiDAR systems can simultaneously map vegetation vertical structure
and terrain morphology with decimeter accuracies at high spatial resolutions, making LiDAR-derived
datasets ideal for ecological applications [10,11]. Model-based sampling, as described above, can now
be applied across larger areas and a greater number of taxa, thereby improving sampling efficacy [3].
LiDAR metrics have been shown to correlate with rare species occurrence and have been used to
identify suitable habitats for threatened species in a small number of studies [6,12,13]. For example,
LiDAR data were used to identify sheltered topographic depressions that correlated to the occurrence
of six rare plant species in Hawaii; the resulting habitat suitability maps are meaningful tools that
can be used to guide targeted sampling and management activities including reintroduction efforts
for those species [13]. LiDAR metrics were also shown to accurately predict the occurrence of a rare
coastal plant species strongly associated with a specific sand dune type, and moreover, the resulting
model accurately identified unsuitable habitats [12], which has significant value in improving the
efficacy of field surveys for rare species. Broadly, the application of LiDAR to predicting rare plant
habitats remains largely unexplored [1], but may make a meaningful contribution to understanding
patterns in rarity at landscape to regional scales.

Predicting and understanding rare plant occurrence and habitat is of particular importance
in rapidly developing landscapes. Land clearance and anthropogenic-induced factors such as the
introduction of invasive species [14] and altered disturbance regimes threaten rare species persistence,
and thus regional biodiversity [15]. The Lower Athabasca region of northeast Alberta is rich in oil and
gas, with rapid development of these resources in the past few decades; this has resulted in losses
of sensitive peatland habitats as well as upland areas [16]. Although significant efforts have been
made toward the reclamation of oil sands developments and determining the responses of individual
plant species to both disturbance and reclamation treatments [17–20], major knowledge gaps remain in
understanding regional patterns of rarity and the relationships between oil sands disturbances and
rare plants. It is clear that plants and associated habitats are lost directly to oil sands mining [21] and
that fragmentation from smaller-footprint in situ operations affects plants [20], but the extent to which
rare plants are threatened by these landscape changes is currently unknown, and large-scale resource
extraction is ongoing. Therefore, efficient and effective sampling and the development of mapping
tools that represent rare species or rare species habitats are needed for this region. LiDAR data are
available for this region, and derived vegetation structural metrics represent powerful predictors
that can be tested and used toward this goal [22,23]. Our purpose here was to develop and apply an
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adaptive, model-based sampling design that defines rare plant habitat for a suite of rare species in
the Lower Athabasca region of northeast Alberta. Specifically, our objectives were to: (1) identify the
landscape factors that most affect presence of rare vascular plants regionally; and (2) predict (map)
rare plant habitat across the Lower Athabasca region. Understanding habitat relationships and the
development of spatial tools and maps for the area provides an opportunity to improve land use
decision-making, regional monitoring, and stewardship.

2. Materials and Methods

2.1. Background to Initial Model Building, Field Methods, and Data Sources

We adopted a model-based approach to surveying and predicting rare plant habitat within the
Lower Athabasca region (south of Lake Athabasca) in northeast Alberta, Canada (Figure 1) using
the following three steps: (1) creating an initial model of potential rare plant habitat using existing
data on rare plant species occurrences and readily available landscape predictors in the study region,
in particular Ducks Unlimited Enhanced Wetland Classification (DU-EWC) land cover types [24]
and terrain-derived measures from a 50 m digital elevation model (see Section 2.4 for more details);
(2) stratifying field sampling based on model predictions and more heavily weighting visits to sites
that were predicted to have rare plants, while still including predicted non-habitats to ensure widely
distributed sampling and testing of the model; and (3) re-developing the rare plant model using new
field data to improve predictions and the locations of subsequent sampling sites (i.e., we iterated
this process for each year of sampling). Further details of each of these three steps are given below.
The definitions of rare plants followed sub-national status ranks (S-ranks) assigned by the Alberta
Conservation Information Management System (ACIMS), following the globally applied NatureServe
methodology [25]. Specifically, we used any species ranked S1 and S2 as ‘rare’ and those ranked S3 as
‘vulnerable’ or uncommon.

Field sampling took place across a four-year period from 2012 to 2015, and in each year, steps 2
and 3, as described above, were repeated to improve sampling efficiency. A detailed field sampling
methodology is provided elsewhere [26,27]. Briefly, plot size was 0.25 ha (50 × 50 m), which was
selected to align with the plot sized used by a provincial-scale biodiversity monitoring program [28].
Experienced observers (i.e., individuals with multiple years of survey experience, n = 18 across all
years) who underwent region-specific training were asked to survey the plot by walking parallel
lines without time constraints. Surveys were completed during the growing season (mid-June to
mid-August). Observers worked in pairs, but surveyed plots independently. Although the emphasis
was rare plants, observers recorded the presence of all vascular plants within plots to fully describe
assemblages. Given the large plot size, no effort was made to estimate cover or abundance of common
species. Sites were constrained to be within 2.5 km of roads to ensure accessibility, but in one year
of sampling helicopter support was used to access remote sites. Although the geographic extent of
sampling was therefore limited in some areas, this did not appear to affect the environmental space
of what was sampled, which was of primary concern here. In total, 602 sites were sampled over the
four-year period at approximately similar sample sizes per year.

Site selection for field sampling in 2012 was weighted toward places that were predicted to
have rare species based on species distributions predicted using maximum entropy models [20] for
66 regionally rare plants that used regional sources of existing occurrence data (~14,000 ACIMS
records; ~1100 records from other sources). Once initial field data were collected in 2012, we adjusted
our approach to use only our field observations to ensure consistent protocols, a consistent plot
size (0.25 ha), and recent data. We also focused on S1 and S2 ranked species, since nearly all sites
encountered at least one S3 species. Rather than focus on individual species with limited numbers of
observations, we instead coded any plots with at least one S1 or S2 species as ‘present’ (1) and those
sites without a S1 or S2 species as ‘absent’ (0). This emphasized our objective of identifying potential
rare plant habitat and not necessarily numerous models of individual species. Logistic regression [29]
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was then used to model the probability of a site having a rare plant (S1 and/or S2) present using STATA
14 software [30]. Again, the DU-EWC layer was used in all years, with additional terrain variables
included as predictors. A map of potential rare plant habitat was then estimated annually from the best
supported model, determined using Akaike’s information criteria (AIC) comparison [31], and sampling
sites for subsequent years were directed by map predictions (described further in Section 2.2).
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Figure 1. Location of Alberta in western Canada and the study area within North America (a); and terrain,
elevation, major water features, and place names (towns) for the Lower Athabasca region (south of Lake
Athabasca) (b).

2.2. Final Landscape Map of Rare Plant Habitat

The final model predicting rare plant habitat compared all field observations from four years
of sampling (n = 602 plots) to the DU-EWC land cover classification (Figure 2a), a terrain-derived
moisture index (2b), soil characteristics (soil pH) (2c), and LiDAR-derived vegetation structure metrics
(2d). LiDAR-derived metrics represented vertical vegetation structure because initial tests indicated
that these measures were stronger predictors of plant rarity than horizontal measures such as canopy
cover. Climate variables were not considered since the study region is small relative to variations
in climate.

The DU-EWC land cover classification included a number of detailed wetland classes (Table 1),
for example, graminoid rich fen. Separation of wetland types (e.g., treed bog, graminoid poor fen)
was needed given the prevalence and importance of these land cover types in the Lower Athabasca,
where some areas are 60–70% wetland (primarily peatlands and much of it treed peatlands) [32].
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Anthropogenic habitats (clear cuts, agriculture, industry developments) as well as aquatic habitats
dominated by open water were not considered and thus masked in the final model by assuming
absence of terrestrial rare plant species.
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Figure 2. Example landscape variables used to predict locations of rare vascular plants (S1 or S2):
(a) land cover (deciduous forest example; Ducks Unlimited Enhanced Wetland Classification (DU-EWC));
(b) terrain wetness from 50 m digital elevation model (DEM); (c) soil pH; and, (d) airborne light detection
and ranging (LiDAR)-derived canopy height (95th percentile; note that gray areas of hillshade represent
locations without LiDAR data).

Table 1. Ducks Unlimited Enhanced Wetland Classification (DU-EWC) land cover types considered
in models of rare plant habitat (occurrence) in the Lower Athabasca region of northeast Alberta,
Canada (source: Ducks Unlimited). Note that some classes were combined in the analysis given their
similarity and lower sample sizes. Number of plots (n) and percent coverage within study area by land
cover class is provided.

Class Name n (% of Area) Type of Community Soil Moisture Hydro-Dynamics Nutrient Regime

Emergent Marsh 8 (0.6%) Mineral Wetland Very Hydric Very Dynamic Very Rich
Meadow Marsh 1 (0.5%) Mineral Wetland Hydric Very Dynamic Very Rich

Graminoid Rich Fen 28 (0.5%) Peat Wetland Hydric Moving Rich
Graminoid Poor Fen 13 (0.9%) Peat Wetland Hydric Slow Moving Poor

Shrubby Rich Fen 39 (3.8%) Peat Wetland Sub Hydric Moving Rich
Shrubby Poor Fen 28 (0.8%) Peat Wetland Sub Hydric Slow Moving Poor

Treed Rich Fen 44 (7.7%) Peat Wetland Sub Hydric Moving Rich
Treed Poor Fen 58 (9.1%) Peat Wetland Hygric Slow Moving Poor

Open Bog 1 (0.02%) Peat Wetland Sub Hygric Stagnant Very Poor
Shrubby Bog 7 (0.7%) Peat Wetland Sub Hygric Stagnant Very Poor

Treed Bog 25 (6.2%) Peat Wetland Sub Hygric Stagnant Very Poor
Shrub Swamp 18 (2.5%) Mineral Wetland Hydric Dynamic Rich

Hardwood Swamp 3 (0.9%) Mineral Wetland Hygric Dynamic Rich
Mixedwood Swamp 3 (0.7%) Mineral Wetland Hygric Dynamic Rich

Tamarack Swamp 5 (0.6%) Mineral Wetland Hygric Slow Moving Medium
Conifer Swamp 30 (5.0%) Mineral Wetland Sub Hygric Stagnant Medium
Upland Conifer 54 (8.7%) Upland Mesic to Xeric Upland Upland

Upland Deciduous 109 (18.4%) Upland Mesic to Xeric Upland Upland
Upland Mixedwood 3 (0.4%) Upland Mesic to Xeric Upland Upland

Upland Pine 113 (13.0%) Upland Xeric Upland Upland
Burn 4 (5.6%) Other Other Other Other
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Terrain-derived variables included a moisture index estimated from a 50-m digital elevation
model (DEM) [33] using the Compound Topographic Index (CTI) method [34,35]. Although a one
meter LiDAR-based depth-to-water (DTW) metric [36] was available for part of the study region,
comparisons within that area indicated that the 50 m DEM-derived CTI model performed as well or
better than the more detailed DTW predictions, and thus CTI was subsequently used in all models.
Soil characteristics of the region were described by soil pH obtained from Soil Landscapes of Canada
version 3.2 [37]. Although other soil variables were available, they were either highly correlated with
soil pH or did not correlate well with rare plant locations.

LiDAR-derived metrics was available for most, but not all, parts of the study area (see gray
areas in Figure 1d) effectively representing crown lands outside of the Cold Lake Air Weapons Range.
Models using LiDAR data therefore represented a subset of plots (469 sites). We first developed
models that covered the area of LiDAR extent (n = 469) and then applied the same model structure,
minus LiDAR variables, for the full dataset (n = 602), thus allowing us to fill in those areas without
LiDAR data with similar models. LiDAR point cloud metrics were summarized for the region at the
same scale of the plot (50 m raster resolution) using FUSION software [38]. Final LiDAR-derived
variables used for rare plant models included canopy relief ratio (CRR) [39,40] and maximum canopy
height (95th centile, shown in Figure 1b) as the other variables were highly correlated (r > |0.7|)
and/or had little predictive value based on univariate tests. CRR is simply the mean height minus
the minimum height divided by the maximum height minus the minimum height. Final predictor
variables had a 50-m raster cell size to ensure that they corresponded to the plot size and were checked
to ensure low between-variable correlations (r < |0.7|) to minimize problems with multicollinearity.
Non-linear responses for continuous variables such as soil pH were considered and included if initial
univariate tests demonstrated an improved model fit. Finally, AIC was used to compare combinations
of variables as single-factor models (i.e., Soils [S], Terrain wetness [T], Land cover [L], and Vegetation
structure [V]), two-factor models that had combinations of these single factors (note that single factor
models could include more than one variable such as non-linear variables or multiple measures of the
same factor such as vegetation structure), three-factor models that combined three of the four factors,
and finally a single global model that included all four factors.

Models were fit for both datasets (with and without LiDAR). The lowest AIC was considered the
most supported model. We then used the reported coefficients to map predictions using the ArcGIS
(version 10.5, ESRI, 2016) raster calculator. Model performance and the predictive accuracy of final
models were reported as percent deviance explained (pseudo-R2) and Area-Under-the-Curve Receiver
Operating Characteristic (AUC-ROC). Although ecological models often have poor explanatory power
(2–5% R2, [41]), we considered models with pseudo-R2 > 0.2 as being reasonably good in explanatory
power and predictive accuracy assessed by AUC-ROC values based on the criteria of ROC < 0.7 being
poor model accuracy, 0.7–0.9 good model accuracy, and > 0.9 high model accuracy [42,43]. As airborne
LiDAR data describing vegetation structure were not available across the entire study area (Figure 1d),
but we were interested in using the best available information (predictions), the final map of potential
rare plant habitat used the LiDAR-based model where available, with the remaining areas filled in with
predictions from the non-LiDAR model using the Conditional tool in ArcGIS (see the grey hillshade
area in Figure 2d).

3. Results

3.1. General Patterns in Plant Rarity

A total of 59 observations of 17 rare vascular plant species (i.e., those with S1 or S2 status,
Appendix A, Table A1) were detected within 47 of the 602 plots (~8% of sites with at least one S1 or S2
species; 39 plots when limited to the extent of available LiDAR data) (Figure 3a). Vulnerable species
(i.e., those ranked S3) were located at nearly 100% of plots. Encounter (detection) rate of rare plants
(S1 and S2) varied substantially among land cover classes with the highest encounter rates found in
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fens and lowest encounter rates in some of the upland forest types, marshes, and open bogs (Figure 3b),
although some of these classes had lower sample sizes. In particular, graminoid and treed fens had high
encounter rates of rare plants, at >10% of sites, more than 3-fold higher than that of upland deciduous
and upland conifer (non-pine dominated) stands which averaged <3%. Indeed, the highest encounter
rate of rare species (e.g., Carex heleonastes, Malaxis paludosa, and Juncus stygius) was found within
graminoid poor fens at 23% of sites. Interestingly, although upland pine forest is considered to be
species-poor in vascular plant composition, it contains a number of rare species (e.g., Spiranthes lacera,
Carex umbellata, and Carex adusta) that reach presence in nearly 10% of survey sites.
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Figure 3. (a) Distribution of field plots (n = 602) relative to the region terrain and the location (presence)
of detected rare (S1 and/or S2 ranked) vascular plants (shown as yellow locations) within 0.25 ha plots
in the Lower Athabasca region of Alberta, Canada; (b) encounter rate of rare (S1 and/or S2 ranked)
vascular plants by dominant land cover type based on the classification from the DU-EWC.

3.2. Landscape Predictors of Plant Rarity

The most supported model (lowest AIC) predicting rare plant presence for S1 and S2 species
included all individual landscape factors related to soils, terrain wetness, land cover, and vegetation
structure (Table 2). When considering individual (single) factors, LiDAR-derived vertical vegetation
structure, as measured by maximum canopy height (95th centile) and canopy relief ratio, was more
supported (∆AIC > 4) than soils, terrain wetness, or land cover alone. Land cover alone was ranked
second, terrain wetness third, and last, soil pH that was similar to the null model suggesting no support
when considered individually. Although land cover was less supported than vegetation structure,
this could be due to classification errors in the land cover product or simply from greater model
complexity since model accuracy (ROC) was similar between the two and fit was marginally higher for
the more complicated land cover model (Table 2). The most supported two-factor model included
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vegetation structure and land cover and this model was more supported than vegetation structure
alone (single factor model). Interestingly, when considering the three combined landscape factors
(more supported in AIC than the 2-factor model), soil pH was added to vegetation structure and land
cover before that of terrain wetness, despite being initially neutral when alone. The final adjusted
global model contained all four landscape factors, suggesting that the additional model complexity of
including all four factors was important in predicting rare plant presence. Overall, the final (global)
model had good model fit (pseudo-R2 of 0.228) and model accuracy (ROC = 0.841; Table 2).

Table 2. Comparison of candidate models describing the presence of rare plants (S1 or S2 rank) within
0.25 ha plots (n = 469) in the Lower Athabasca region based on soils (S), terrain (T), land cover (L),
and vertical vegetation structure (V). AIC values in bold font represent the most-supported model
(lower AIC) within single, two, three, and four-factor sets. Model complexity is represented by number
of parameters (K). ROC represents predictive accuracy based on Receiver Operating Characteristic,
while model fit (R2) was measured by percent deviance explained.

Model AIC K ROC R2

Single factor models:
S-Soils 270.48 3 0.600 0.016

T-Terrain wetness 266.79 3 0.594 0.029
L-Land cover 254.54 11 0.769 0.134

V-Vegetation structure 250.60 4 0.765 0.097
Null (constant) 270.65 1 0.500 0.000

Two-factor models:
S + T 267.55 5 0.638 0.041
S + L 251.07 13 0.804 0.162
S + V 249.6 6 0.778 0.116
T + L 252.33 13 0.788 0.158
T + V 248.63 6 0.777 0.119
L + V 247.09 14 0.829 0.185

Three-factor models:
S + T + L 249.89 15 0.812 0.182
S + T + V 248.69 8 0.792 0.134
S + L + V 243.70 16 0.837 0.212
T + L + V 244.56 16 0.838 0.209

Four-factor model:
Global (S + T + L + V) 241.45 17 0.841 0.228

When examining model coefficients (β), the ranking of land cover type coefficients was similar
to those illustrated in Figure 3b as raw encounter rates. For example, graminoid poor fens had the
highest adjusted predicted presence of rare plants, being 205-times (odds ratio, exp(β)) more likely to
encounter rare plants in this land cover type than the reference category (most common land cover
type) of deciduous forests (Table 3). Non-linear responses of plant rarity to soil pH and terrain wetness
(CTI) were supported with peak occurrence of rare plants at moderate levels of both variables. Finally,
for vegetation structure, canopy relief ratio (CRR) was positively related to rare plant occurrences,
whereas vegetation height (95th centile) was negatively related to rare plant occurrences (Table 3).
Parameters included in the model without LiDAR metrics were similar to those with LiDAR variables
(Table 3), while still maintaining moderately good model fit (pseudo-R2 = 0.182) and similar overall
model accuracy (ROC = 0.812).
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Predictions of S1 and S2 ranked vascular plant habitat are illustrated as patchy patterns of
habitat throughout the region at both local and meso-scales, reflecting the importance of different land
cover types, vegetation structure, soils, and terrain wetness (Figure 4). Some of the larger blocks of
unsuitable habitat in the center and north of the study area appear to be due to soil limitations (soil pH),
whereas localized variation of low, moderate, and high rare plant habitat appears to be more related to
stand type and history (vegetation structure), land cover, and terrain wetness. Variation in hotspots of
rare plant habitat throughout the area illustrate differential conservation values and threats across the
region. Some notable sites with higher probability rare plant habitat occurrence include the southern
parts of the Birch Mountains, the area around Winfred Lake east of Conklin, and the Marguerite River
Wildland along the Saskatchewan border east of Fort McKay (see Figure 1 for place names).

Table 3. Logistic regression coefficients (β), standard errors (SE), and significance (P) of the most-supported
(AIC) model (with and without LiDAR data) describing the probability of a S1 or S2 vascular plant being
present within 0.25 ha plots in the Lower Athabasca region of Alberta, Canada. Land cover variables are
in comparison to the reference category of deciduous forest.

w/LiDAR Variables (n = 469) w/o LiDAR Variables (n = 602)

Variable β SE p β SE p

S-Soil pH 5.706 2.788 0.041 6.183 2.686 0.021
S-Soil pH2 −0.581 0.298 0.051 −0.641 0.287 0.026

T-CTI (wetness) 41.53 21.53 0.054 39.00 20.64 0.059
T-CTI2 (wetness) −8.679 4.49 0.053 −8.194 4.31 0.057

L-Treed bog 3.161 1.453 0.03 2.556 1.381 0.064
L-Graminoid poor fen 5.324 1.458 <0.001 5.616 1.353 <0.001

L-Shrub poor fen 3.851 1.369 0.005 4.168 1.255 0.001
L-Treed poor fen 3.928 1.212 0.001 3.94 1.142 0.001

L-Graminoid rich fen 3.357 1.551 0.03 3.827 1.528 0.012
L-Shrub rich fen 2.426 1.401 0.083 2.681 1.329 0.044
L-Treed rich fen 4.263 1.197 <0.001 4.098 1.126 <0.001

L-Conifer swamp 3.174 1.474 0.031 3.031 1.466 0.039
L-Upland burn 4.893 1.708 0.004 4.544 1.678 0.007
L-Upland pine 2.520 1.005 0.012 2.808 1.024 0.006

V-Canopy relief ratio (CRR) 5.872 1.799 0.001
V-Canopy height (p95) −0.116 0.053 0.028

Constant (intercept) −69.29 26.19 0.008 −65.77 25 0.009
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Figure 4. Predicted distribution of rare vascular plant (S1 or S2 conservation rank) habitat within
the Lower Athabasca of northeast Alberta, Canada. Prediction classes are based on model sensitivity
(true positive rate), specificity (true negative rate), and optimal threshold classification probability
where sensitivity and specificity are equalized. Both ‘unlikely’ and ‘low’ classes had model probabilities
lower than the optimal threshold; the ‘unlikely’ class had a model specificity ≥0.9, while the ‘low’ class
had model specificity <0.9. In contrast, the ‘moderate’ and ‘high’ classes both had model probabilities
higher than the optimal threshold probability, with the ‘moderate’ class having sensitivity <0.9 and the
‘high’ class having a model sensitivity >0.9 indicating higher confidence in a rare plant being present.
Oil and gas lease boundaries, which represent areas wherein rights have been granted to companies by
the crown for exploration and resource development, current to 2015, are shown.
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4. Discussion

Rare plant habitat in the Lower Athabasca region is best related to land cover type, soil pH, terrain,
and vegetation structure metrics. When considering landscape predictors of rarity, we found that not
only was the DU-EWC effective in predicting the occurrence of rare species, but so were LiDAR-derived
vegetation structure metrics [23], particularly vegetation height (95th percentile) and canopy relief
ratio (CRR). In fact, when considered individually, the LiDAR-derived vegetation metrics were similar
to or better than land cover in predicting rare plant habitat. This suggests that remote-sensing based
proxies of rare plant habitat may be used to not only predict current habitat, but also potentially
used for monitoring change. The value of model-directed sampling for rare species was also clearly
demonstrated in our study; we encountered “vulnerable” (S3) species at nearly 100% of plots and
encountered rare species, here including “critically imperiled” (S1) and “imperiled” (S2) species at
3.6% and 5.3% of sites, respectively (see Appendix A, Table A1).

For the LiDAR metric CRR, higher values (i.e., more vertically complex vegetation with more
emphasis of structure above mean height) correlated with increasing probability of rare plant occurrence.
This may relate to forest age, where older stands may have more variation in their canopy height,
or canopy patchiness may be reflective of variable stand history due to processes such as fire. Vegetation
height had an inverse relationship with rare plant occurrence, where shorter canopies were more
related to the occurrence of rare plants. This is logical given that fens were found to support more
rare species occurrences, and these land-cover types have shorter canopy heights, with either stunted
trees due to saturated growing conditions or shrubs and graminoids as the dominant vegetation layer.
Rare plant occurrence was highest at intermediate values of both terrain wetness and pH. This is
interesting given that some notable rare species in the region occur in ‘extreme’ habitats such as
fens (e.g., Malaxis paludosa, Carex heleonastes, and Juncus stygius), where pH and wetness are high,
or in jack pine forests (e.g., Spiranthes lacera and the Athabasca sand-plain endemic Lechea intermedia
var. depauperata) where pH is high and wetness is very low, although many species included in
modeling occurred at more mesic sites. Undoubtedly, models developed for individual species would
demonstrate such idiosyncrasies in niche space.

Previous work that used remotely sensed data to predict rare plant habitat had similar predictive
success to what was observed here, but more often focused on single species or very small groups [6,12],
and very rarely on suites of rare species in a specific landcover type [6]. For example, de Queiroz et al.
(2012) found that LANDSAT data in combination with LiDAR had stronger predictive ability for locating
gyposphytes given the presence of gypsum mounds. Working also in Alberta, Nijland et al. (2015)
combined a LiDARr-derived wetness index (DTW) and a Landsat-derived vegetation index to model
site productivity [44]. In Brazil, da Silveira et al. (2018) combined Sentinel-2 and LiDAR metrics to better
understand relationships between soils and vegetation [45]. In Florida, a LiDAR-derived digital terrain
model was used in combination with other remote sensing products to map plant communities, with the
management goal of monitoring change in a community strongly associated with an endangered
plant species [46]. Our results further demonstrate the value of LiDAR, in combination with other
variables representing important aspects of species niches, in both detecting new rare plant occurrences
through field surveys and identifying important habitat associations. In addition, we note that rare
plant species may respond at even more local scales than what was considered here (0.25 ha), as shown
in previous examples that have linked rare plant occurrence to microtopographic features at scales
<10 m [6,12]. Data obtained at an even finer resolution therefore could improve model predictions.
However, at our scale of analysis, clear patterns between land cover types (e.g., fens, pine forests) and
vegetation structure were observed and these relationships provide a basis for understanding regional
patterns in rarity and conserving rare species.

Further to this, recent work has demonstrated that some rare plant species in our study area
occur in species-poor sites like pine forests and poor fens, and thus approaches to conserving the most
diverse communities will not satisfy the conservation of rare species and principles of complementary
need to be considered [47]. Moreover, these habitats are scattered across the region, and mapping areas
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that are likely to contain rare plants shows a highly patchy distribution, particularly over areas that are
leased to oil and gas companies for oil and natural gas extraction. This overlap is of concern given
the known effects of oil and gas development on habitats, and in particular, the challenges associated
with reclaiming peatlands [16,20], which were highlighted as important habitats for rare species in this
study. This demonstrates the real-world applicability of regional mapping tools in species conservation
and management; models employing spatial data such as LiDAR can guide management at regional
to local scales and potentially aid in minimizing impacts to important rare plant habitats. Here, we
show an overlap of areas where the probability of rare plant occurrence is high with oil and gas lease
boundaries (i.e., areas where resource extraction and resulting land alternation are actively occurring).
At the lease level, our rare plant model could be used to guide pre-development surveys, avoid areas
of high rare plant habitat value, and plan for mitigation strategies.

Finally, in late 2015, as part of an effort to update the conservation status (ranks) of species in
Canada, ACIMS published updated conservation status ranks for all species known to occur in the
province based on observations and data collected since the time of their last assessment including
data from this project. This resulted in a change in species status for some rare species in our study
region. Given that our goal was to demonstrate the applicability and efficacy of employing remotely
sensed variables in adaptive, model-based sampling, and that all field sampling and models were
based on conservation status ranks published prior to 2015, we do not discuss how this change in
status may change model predictions. However, this raises an important point that rarity status is in
large part a product of our present understanding of species occurrence, distribution, and population
trends, and thus are not static for any species over long-time frames, particularly for regions that lack
significant sampling and thus knowledge gaps about rarity. Future applications of this method should
consider the best available data of conservation status at the time of model building and sampling, as
we have done here.

5. Conclusions

Although the majority of applications mapping rare plant habitat create landscape predictions
for single species [3,4,6], we modeled the occurrence of any rare species (S1 & S1) within our study
region, and demonstrated that environmental factors and LiDAR metrics can successfully predict the
occurrence of a suite of species. Specifically, we found rare plant habitat to be associated with short
and varied canopies, certain land cover types, especially fens, and areas with intermediate pH and
terrain wetness. Although single species applications are valuable for modeling the realized niche of
a species across space [3,12], multi-species approaches such as this allow for regional conservation
planning and identification of landscape patterns in rarity by highlighting habitats that are most
likely to house rare species [3]. We consider the application of an adaptive, model-based sampling
method to be an efficient and effective approach to identifying rare elements and the availability and
use of LiDAR products provide a unique opportunity to monitor rare plant habitat. Our success in
detecting rare and vulnerable species using this approach may create a feedback loop wherein as
more detections of rare species are made, we better understand niche associations, allowing for more
accurate predictions, or conversely better understand that some species are less rare than originally
perceived, particularly in poorly sampled landscapes. Therefore, use of this approach for sampling
rare species and the use of its final products (landscape predictions of rarity) should be considered in
regional environmental assessments and lease-level management, particularly since spatially explicit
information on conservation values for plants is often lacking, especially when compared to wildlife.
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Appendix A

Table A1. Rare (S1 and S2-ranked) vascular plant species encountered across 602 field plots (0.25 ha) in
northeastern Alberta, Canada. Rare species were encountered at 54 sites. The number of plots where
each species was detected is reported along with the species conservation status rank as of 2014.

Species Sub-National Conservation Status Rank (S-Rank) Number of Observations

Carex adusta S1 7

Carex hystericina S1 1

Lechea intermedia var. depauperata S1 1

Malaxis paludosa S1 9

Spiranthes lacera S1 3

Utricularia cornuta S1 1

Botrychium simplex S2 1

Carex heleonastes S2 8

Carex lacustris S2 2

Carex umbellata S2 2

Diphasiastrum sitchense S2 5

Hypericum majus S2 1

Juncus brevicaudatus S2 5

Juncus stygius S2 6

Lactuca biennis S2 2
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