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Abstract: Carbon sequestration and storage are among the most important ecosystem services
provided by tropical forests. Improving the accuracy of the carbon mapping of tropical forests has
always been a challenge, particularly in countries and regions with limited resources, with limited
funding to provide high-resolution and high-quality remote sensing data. This study aimed to
examine the use of land-cover and elevation-based methods of aboveground carbon mapping in a
tropical forest composed of shrubs and trees. We tested a geostatistical method with an ordinary
kriging interpolation using three stratification types: no stratification, stratification based on elevation,
and stratification based on land-cover type, and compared it with a simple mapping technique, i.e.,
a lookup table based on a combination of land cover and elevation. A regression modelling with land
cover and elevation as predictors was also tested in this study. The best performance was shown
by geostatistical interpolation without stratification and geostatistical interpolation based on land
cover, with a coefficient of variation (CV) of the root mean square error (RMSE) of 0.44, better than the
performance of lookup table techniques (with a CV of the RMSE of more than 0.48). The regression
modeling provided a significant model, but with a coefficient of determination (R2) of only 0.29, and a
CV of the RMSE of 0.49. The use of other variables should thus be further investigated. We discuss
improving aboveground carbon mapping in the study area and the implications of our results for
forest management.

Keywords: aboveground biomass; geostatistics; kriging; regression modeling; stratification;
tropical forest

1. Introduction

The concept of ecosystem services has been widely used to analyze the contribution of ecosystems
to society [1]. Tropical forests provide different types of ecosystem services, prominent among them
being climate regulation, particularly in the form of carbon sequestration and storage [2,3]. Currently,
there is global concern regarding this service because of increasing carbon accumulation in the
atmosphere, particularly of carbon dioxide (CO2) [4], which is one of the main greenhouse gases [5].

Mapping carbon storage in tropical forests is an effective way of elucidating how much carbon is
stored in forests and its spatial distribution. This information is particularly important for protected
forests, where optimizing ecosystem function is an important management objective [6], including
optimizing carbon sequestration and storage. Different methods have been developed to map carbon
storage in tropical forests, which, in general, can be classified as non-remote and remote sensing
methods. Non-remote sensing methods only use ground measurement data as the basis for mapping,
with the application of various interpolation techniques as the common mapping method (e.g., [7]).
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Remote sensing methods are more advanced and combine ground measurement data with a wide
range of both optical and microwave remote sensing data (e.g., [8,9]). The latter methods include a
simple lookup table method that links ground measurement data to a land-cover map that is generated
from satellite image classification (e.g., [10]), regression model development using different spectral
variables and indices derived from satellite image data as predictors (e.g., [11,12]), a combination of
regression modeling and kriging interpolation (e.g., [13]), and the application of LiDAR (light detection
and ranging) (e.g., [14,15]) and RADAR (radio detection and ranging) (e.g., [16]) data. Developing
an efficient method with an acceptable level of accuracy is a considerable challenge, particularly in
countries and regions with limited resources, with limited access to high-resolution and high-quality
remote sensing data.

There is a common trade-off between mapping accuracy and feasibility. Achieving a good mapping
accuracy is often constrained by several limitations, including budget, in regard to the implementation
of a mapping technique [17]. The use of some remote sensing data such as LiDAR and high-resolution
optical and RADAR data, despite their capability in well mapping the aboveground carbon of
forest [18,19], are too expensive for a periodic mapping of the aboveground carbon of forest in many
regions in developing countries. In regard to this issue, the potential use of some free remote sensing
data for the aboveground carbon mapping of forest needs to be further investigated. This includes the
wide possibility of the use of land-cover and elevation data generated from freely accessible remote
sensing data, such as Google Earth and Shuttle Radar Topography Mission (SRTM) data.

This study aimed to examine the use of some land-cover and elevation-based mapping techniques
to map aboveground carbon in a tropical mixed-shrub forest area, with a case study in the Mount
Geulis forest, Indonesia. The tropical forest on Mount Geulis is composed of plantations and natural
vegetation. The area has been designated as a protected forest, with an additional function as an
educational forest. As a protected forest, Geulis Mountain is managed to optimize the provision of
different types of ecosystem services. To this end, the diversity of the ecosystem services provided by the
forest should be properly identified, quantified, and mapped, including for the carbon storage service.

This study concerns testing the performance of some relatively low-cost methods of aboveground
carbon mapping that are potentially applied for tropical forest with an area of less than 500 hectares.
We integrated field measurement to obtain carbon data and the use of free remote sensing data to generate
land-cover and elevation data. We used the land cover and elevation as the basis for aboveground
carbon mapping with three different techniques, i.e., geostatistical interpolation, regression modeling,
and the lookup table. The three mapping techniques have different characteristics in terms of
spatial modeling and in terms of the way land cover and elevation are integrated in the modeling.
The geostatistical interpolation uses the spatial autocorrelation among sampled aboveground carbon
data as the basis for prediction, which in this study was performed in three different stratifications,
i.e., no stratification, stratification based on land cover, and stratification based on elevation classes.
The regression modeling directly models the relationship between sampled aboveground carbon data
(as response variables) and land cover and elevation (as predictors), and applies the model to predict
the aboveground carbon in unsampled locations. The lookup table simply calculates the average
values of above ground carbon in each land cover and elevation class, and uses the values to map the
aboveground carbon in the study area. This study analyzes the performance of the three mapping
techniques, as an attempt to find an effective method of aboveground carbon mapping that could
potentially be applied across a wider region.
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2. Materials and Methods

2.1. Study Area

The Geulis Mountain forest is a protected forest in the middle of West Java province, Indonesia
(107.794–107.814 E and 6.922–6.947 S). The Geulis Mountain forest covers 338 hectares with elevation
that ranges from 800 to 1250 m above sea level. The land-cover map of the area (Figure 1) was generated
based on the classification of Google Map images 2017, by combining visual interpretation and the
ground survey data of land-cover types. The image consists of three bands (red, green, and blue),
with a spatial resolution of 1.2 m. There is no spectral information of the image. However, with the
mentioned spatial resolution, objects are clearly identified, and it allows visual interpretation for the
land cover classification. The classification was performed by on-screen digitizing, using 95 samples of
ground data of land cover as the inputs.
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Figure 1. Geographical location and land-cover types of the Geulis Mountain forest.

2.2. Sampling Method

In total, 95 plots were sampled in a systematic way by considering the variation in elevation
(Figure 2). The plots consisted of three squares, i.e., 20 × 20 m for tree measurement, 10 × 10 m for pole
measurement, and 5 × 5 m for sapling measurement. The main data collected in each plot were the tree
species and diameter at breast height (DBH), which were used to estimate the aboveground carbon
using an allometric equation. The field data collection was performed in August–September 2017.
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2.3. Aboveground Carbon Estimation

The aboveground carbon in each plot was calculated using four types of allometric equation
(Table 1), based on the tree species. The equations converted tree dbh into aboveground biomass.
Pine (Pinus merkusii) and mahogany (Swietenia macrophylla) are the dominant tree species on the lower
part of the mountain, while Calliandra calothyrsus covers about 49% of the area. Allometric equations
were available for the three species. For other tree species, an equation from Ketterings et al. [20]
for tropical trees in general was used. We realize that the use of allometric equations, particularly
a general allometric equation, becomes a source of error in aboveground carbon estimation, which,
subsequently, will potentially propagate in aboveground mapping. We further discuss this aspect
in the Discussion section. We used a ratio of 0.47 for the conversion of aboveground biomass into
aboveground carbon [21].

Table 1. Allometric equations used for converting the diameter at breast height into
aboveground biomass.

Tree Species Allometric Equations Sources

Pine (Pinus merkusii) B = 0.066 D2.51 Sya’bani [22].
Mahogany (Swietenia macrophylla) B = 0.048 D2.68 Adinugroho and Sidiyasa [23].

Calliandra calothyrsus B = 0.047 D2.493 Alhamd and Rahajoe [24].
Other tree species B = 0.066 D2.59 Ketterings et al. [20].

B: aboveground biomass (kg); D: diameter at breast height (cm).

2.4. Mapping Methods and Validation

We applied three mapping techniques for aboveground carbon mapping, i.e., geostatistical
interpolation, regression modeling, and the lookup table, using land cover and elevation as key factors.
The elevation data was generated from the Digital Elevation Model (DEM) of the SRTM. From the
95 sampled data, we randomly selected 80% of the data for the inputs of modeling and mapping,
and allocated the rest (20% of the data) for validation. In this way, the performance of the three mapping
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techniques was validated in the same way using independent validation data. The accuracy of the
mapping techniques was checked by calculating the overall coefficient of variation (CV) of the root
mean square error (RMSE) [25] using the independent validation data. This coefficient represents the
deviation of the prediction error from the mean of the validation data. The lowest value is 0, where a
CV of the RMSE of 0 indicates perfect accuracy. The procedures of the three mapping techniques are
described in Sections 2.4.1–2.4.3.

2.4.1. Lookup Table

The lookup table can be considered as the simplest technique to map aboveground carbon.
This technique assumes a uniform distribution of aboveground carbon in all areas (pixels) within the
same class. We used land-cover type and a combination of land-cover type and elevation as the basis
for classification. The estimate of aboveground carbon in each class was the mean amount of carbon
in that class, selected from the training sample data. Hence, we have five variations of aboveground
carbon values in mapping using a lookup table based on land cover, and 10 variations in mapping
using a lookup table based on a combination of land-cover and elevation classes.

2.4.2. Regression Modeling

We used linear regression modeling to map aboveground carbon using information on land
cover and elevation as the explanatory variables. We extracted the type of land cover and the
value of elevation in all training sampled points of aboveground biomass measurement and ran a
linear regression modeling in the “R” statistical software [26]. We then analyzed the significance of
the explanatory variables in determining the values of aboveground carbon. In order to map the
distribution of the aboveground carbon, we applied the regression model in a spatial analysis using a
raster calculator tool of ArcGIS 10.5. In addition to calculating the CV of the RMSE, the accuracy of the
regression model was also analyzed by the coefficient of determination (R2).

2.4.3. Geostatistical Interpolation

We applied the geostatistical method to model the spatial structure of the training aboveground
carbon data using variogram analysis in the “R” statistical software. This analysis requires that the data
are normally distributed; hence, at the first step we checked the distribution of the aboveground carbon
data. Since the data were not normally distributed, we converted the data into log data, and found that
the log data had a more normal distribution. We then used the log data for further variogram analysis.
This analysis investigated the spatial autocorrelation among the log of the aboveground carbon data.
Ideally, when spatial autocorrelations among data are significant, nearby locations tend to have similar
values (low variance).

A gstat library [27] was used for variogram analysis, which selected the best variogram model.
The parameters of the best variogram model (partial sill, range, and nugget) were then used in an
ordinary kriging interpolation. Since we used the log of aboveground carbon data in variogram
modeling, this required us to revert back the predicted values into aboveground carbon, and we
presented them in an aboveground carbon map.

To see the possibility to enhance the accuracy of the geostatistical interpolation, we did a
stratified geostatistical analysis, using land cover and elevation as the basis for stratification. Hence,
the geostatistical analysis in this study was applied for three stratification types: no stratification,
stratification based on elevation, and stratification based on land-cover type. We used two elevation
classes (>1025 m and <1025 m) and five land-cover types: pine-dominated forest, mahogany dominated
forest, Calliandra-dominated shrubs, mixed forest, and other types.



Forests 2020, 11, 636 6 of 16

3. Results

From field observations in 95 sampled plots, this study identified 52 different tree species,
including a woody shrub dominating the study area, i.e., Calliandra calothyrsus. Other dominant trees
include Swietenia macrophylla, Pinus merkusii, Toona sinensis, Maesopsis eminii, Paraserianthes falcataria,
and Hibiscus macrophyllus. By using the available allometric equations, the aboveground carbon of
each stand was calculated, and subsequently, the aboveground carbon of all stands in a plot was
combined to estimate the aboveground carbon of each plot. We found a large variation in the amount
of aboveground carbon in the different land cover types (Table 2). The aboveground carbon ranged
from 1.3 ton C/ha to 165.1 ton C/ha, with an average of 33.5 ton C/ha. The original data of aboveground
carbon in all 95 sampled plots, together with the related information on elevation and land cover,
is presented in Appendix A.

Table 2. Range, mean, and standard deviation of aboveground carbon in different land cover types in
the Geulis Mountain forest.

Land Cover Types Number of
Plots

Range (ton
C/ha)

Mean (ton
C/ha)

Standard Deviation
(ton C/ha)

Standard Error
(ton C/ha)

Relative Standard
Error (%)

Pine-dominated
forest 11 3.8–101.5 42.5 29.0 8.7 21

Mahogany-dominated
forest 17 11.1–165.1 72.5 36.3 8.8 12

Calliandra-dominated
shrubs 43 3.8–142.1 26.5 25.9 4.0 15

Mixed forest 13 16.8–107.2 59.5 29.5 8.2 14

Others 11 1.3–98.0 25.0 27.7 8.4 33

To find an efficient way to map the distribution of the aboveground carbon with an appropriate
accuracy, we tested six mapping techniques, involving geostatistical interpolation, regression modeling,
and a lookup table, using land cover and elevation as the basis for stratification and prediction.
The performance of each mapping technique is described in Sections 3.1–3.6.

3.1. Lookup Table Based on Land Cover

Figure 3a shows an aboveground carbon map resulting from the lookup table technique based
on land-cover type. This mapping technique ignores variation in the aboveground carbon data from
locations with the same type of land cover. The map only shows variation in the aboveground carbon
between different land-cover types, using the means of the training data as predicted values for each
land-cover type, as listed in Table 3. The result of validation showed that this technique provided a
moderate accuracy with a CV of the RMSE of 0.48.

Table 3. Mean values of above ground carbon used for the lookup table mapping.

Types of Lookup Table Classes Mean Aboveground Carbon (ton
C/ha)

Based on land-cover types

Pine-dominated forest 44.4

Mahogany-dominated forest 72.8

Calliandra-dominated shrubs 27.3

Mixed forest 57.4

Others 27.3
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Table 3. Cont.

Types of Lookup Table Classes Mean Aboveground Carbon (ton
C/ha)

Based on a combination of
elevation and land-cover types

Pine-dominated forest, high elevation 16.6

Pine-dominated forest, low elevation 47.5

Mahogany-dominated forest, high elevation 61.1

Mahogany-dominated forest, low elevation 93.1

Calliandra-dominated shrubs, high elevation 23.4

Calliandra-dominated shrubs, low elevation 32.9

Mixed forest, high elevation 59.4

Mixed forest, low elevation 56.6

Others, high elevation 35.3

Others, low elevation 26.4
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Figure 3. Maps of aboveground carbon in the Geulis Mountain forest generated from the following.
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elevation; (c) Regression modeling; (d) Geostatistical interpolation without stratification; (e) Stratified
geostatistical interpolation based on land-cover type; (f) Stratified geostatistical interpolation based
on elevation.
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3.2. Lookup Table Based on a Combination of Land Cover and Elevation

Figure 3b shows an aboveground carbon map resulting from a lookup table technique based on
a combination of land-cover type and elevation. The mean values of aboveground carbon in each
combination used in this mapping are listed in Table 3. Combining elevation classes with land-cover
types makes a more detailed unit for mapping, so it was expected that this technique would have a
lower mapping error. However, the result of validation showed that this technique did not perform
better than the lookup table technique that only considered land-cover type, with a CV of the RMSE
of 0.49.

3.3. Regression Modeling

Table 4 summarizes the results of the regression modeling of the aboveground carbon using
land cover and elevation as predictors. Both land cover and elevation are significant in explaining
the variation of the aboveground carbon in the Geulis Mountain forest. Elevation has a negative
relationship with aboveground carbon, where higher elevation tends to have a smaller amount of
aboveground carbon. In terms of land cover, the regression took Calliandra-dominated shrubs as the
baseline. Compared to the baseline land cover, only one land cover type was shown to present a
significantly higher amount of aboveground carbon, i.e., mahogany dominated forest (p value less than
0.01). The coefficient of determination (R2) of the regression model is 0.29, indicating that about 71% of
the variation of the aboveground carbon in the Geulis Mountain forest could not be explained by the
model. Figure 3c presents the map of aboveground carbon in the Geulis Mountain forest generated
from the regression model. Based on validation using independent data, this technique provided a
moderate accuracy, with a CV of the RMSE of 0.49.

Table 4. Summary of the results of regression modeling.

Variables Coefficients p Values

Intercept 120,329.49 0.0108 *
Elevation −88.59 0.0452 *

Land cover (mahogany-dominated forest) 40,906.18 0.0003 **
Land cover (mix forest) 21,717.33 0.0583

Land cover (pine-dominated forest) 9397.80 0.4181
Land cover (others) −10,497.10 0.3867

Note: the unit of aboveground carbon is in kg/ha; * significant at an α of 0.05; ** significant at an α of 0.01.

3.4. Geostatistical Interpolation without Stratification

Table 5 presents the accuracy measure (CV of the RMSE) from the validation of the geostatistical
interpolation of aboveground carbon data using three stratification types: no stratification, stratification
based on land cover, and stratification based on elevation. With a CV of the RMSE of 0.44,
the geostatistical interpolation without stratification can be considered to have a moderate accuracy.
Figure 3d shows the aboveground carbon map of the Geulis Mountain forest generated from
geostatistical interpolation without stratification.
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Table 5. Coefficients of variation (CVs) of the root mean square error (RMSE) of the geostatistical
interpolation of aboveground carbon in the Geulis Mountain forest.

Geostatistical Interpolation Technique Strata CV of RMSE Overall CV of RMSE

Geostatistical interpolation without
stratification No strata 0.44 0.44

Geostatistical interpolation based on land
cover

Pine-dominated forest 0.26

0.44
Mahogany-dominated forest 0.35
Calliandra-dominated shrubs 0.52

Mixed forest 0.48
Other types 0.34

Geostatistical interpolation based on
elevation

High elevation (>1025 m) 0.46
0.56Low elevation (<1025 m) 0.57

3.5. Stratified Geostatistical Interpolation Based on Land Cover

The purpose of stratification is to reduce variation among sampling data, because areas on the
same stratum usually provide similar data. Figure 3e shows an aboveground carbon map of the
Geulis Mountain forest generated from stratified geostatistical interpolation, with land-cover type as
the basis for stratification. Validation showed that a better accuracy of interpolation was achieved
in pine-dominated areas, mahogany-dominated areas, and other types areas. However, overall,
this technique was not capable of improving the accuracy of mapping compared to the geostatistical
interpolation without stratification, with the same value of CV of the RMSE (from five land-cover
types) of 0.44.

3.6. Stratified Geostatistical Interpolation Based on Elevation

Classifying aboveground carbon data based on elevation is another method of reducing variation
in the data. However, the results of validation showed that this technique even provided worse accuracy
in mapping aboveground carbon compared to the geostatistical interpolation without stratification,
indicated by an overall CV of the RMSE of 0.56 (Table 2). The map of aboveground carbon resulting
from geostatistical interpolation based on land cover is presented in Figure 3f.

4. Discussion

This study has shown the application of several land cover and elevation-based mapping methods,
with relatively low implementation costs. Among the six mapping techniques examined, this study
found that two geostatistical interpolations, i.e., geostatistical interpolation without stratification and
geostatistical interpolation based on land cover, provided the lowest error in mapping aboveground
carbon in the Geulis Mountain forest, with a CV of the RMSE of 0.44. Previous studies have found
that some geostatistical applications for mapping aboveground forest biomass (or carbon) performed
well. For example, Scolforo et al. [7] examined three geostatistical interpolation techniques to map the
carbon stock of arboreal vegetation in the Brazilian biomes of the Atlantic Forest and Savanna: ordinary
kriging, co-kriging, and regression kriging, and found that regression kriging performed best, with an
agreement index (Willmott index) of 0.67. Li et al. [28] applied geostatistical modeling by integrating
airborne LiDAR and SPOT−6 data to map aboveground biomass in a temperate forest in northeast
China, and reported that two geostatistical interpolation methods performed well, i.e., ordinary kriging
and regression kriging, with R2 values of 0.6 and 0.67, respectively. This study suggests the application
of this technique for aboveground carbon mapping in wider regions with roughly similar conditions,
i.e., in tropical forests with areas of less than 500 hectares in developing countries, particularly in areas
managed as protected forest with similar land cover composition.

This study also identified the potential application of regression modeling for aboveground carbon
mapping using land cover and elevation as predictor variables, although more efforts are required.
Elevation and one land cover type (mahogany-dominated forest) are significant in explaining the
variation of aboveground carbon, but their contribution is only about 29%. This means that about 71%
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of the variation of the aboveground carbon can be explained by other variables, which are unknown
in the context of this study. Hence, this study suggests to examine the use of other variables that
are potentially capable of improving the accuracy of mapping. With the development of low-cost
methods for aboveground carbon mapping still the main concern, we suggest to further examine
several variables that can be generated from free DEM and satellite images such as slope, aspect,
and vegetation indices. Incorporating the non-remote sensing-based variables, particularly the ones
that are critical for plant growth such as soil and geology, will also be a potential option for the accuracy
improvement. Of course, this requires the availability of spatial data of the variables to allow the use
of the variables in the regression modeling and aboveground carbon mapping.

We also refer another potential way of improving the accuracy of carbon mapping, i.e., developing
allometric equations for more tree species. The aboveground biomass of most of the trees in the study
area was calculated using a general allometric equation, which probably produced a high estimation
error. This relates to the fact that different tree species commonly have different characteristics of wood
density, hence each species ideally should have its own model that relates its DBH to aboveground
biomass. Since the estimated values of the aboveground carbon in the sampled locations were then
used as the basis for modeling, this implies the further distribution of the error in estimating the
aboveground carbon in unsampled locations. For certain, we cannot ensure that this error was
directly related to the high mapping error. Hence, whether improving the accuracy of aboveground
carbon estimation is capable of improving the accuracy of aboveground carbon mapping should be
further investigated.

Many studies have reported that protected areas are characterized by high variability and a
large number of ecosystem services [29,30], which can be used as indicators of the success of forest
management. In this context, this study has made an important contribution in providing data on
ecosystem services, because carbon storage is one of the key forest ecosystem services. Based on the
best mapping technique examined in this study, the estimate of the total aboveground carbon in the
study area is about 10,410 tons, with an average value of 30.8 ton C/ha. This value is comparable
to the aboveground carbon of several plantation forests in West Java Province, e.g., Acacia mangium
forest (28 ton C/ha) and Anthocephalus cadamba forest (31.5 ton C/ha) [31]. However, the value is much
lower compared to the aboveground carbon of Indonesian natural dryland forest, both the primary
forest (about 234 ton C/ha [32]) and the secondary forest with a low degradation level (about 148 ton
C/ha [33] or 150 ton C/ha [34]). This is related to the vegetation types of the Geulis Mountain forest,
which is composed of plantation trees and naturally growing shrubs. Please note that in terms of
providing information on carbon storage, the total carbon storage of a forest is actually composed of
aboveground carbon, belowground carbon (carbon stored in roots), soil carbon, and carbon stored in
deadwood and litter. Since this study focused on mapping aboveground carbon, further analysis is
required to reveal the total carbon stored in the forest. For this purpose, the results of this study can be
used as a basis for estimating another part of carbon storage, particularly the belowground carbon,
using, for example, the root to shoot ratio [35] as an approach.

Another potential use of aboveground carbon maps in support of forest management is in
providing input for spatial planning, including for fire risk management. Fires frequently take place
in the Geulis Mountain forest, particularly in the dry season. This disturbance can be related to the
occasional use of fire for agricultural practices around the forest, usually for land clearance, as in
2018. This is quite common in the context of Indonesian forest fires, which can be strongly linked to
human activity [36,37]. The availability of an aboveground carbon map, combined with burn severity
information, can be useful to estimate the loss of aboveground carbon from forest fires [38], and further
to identify high-priority sites for fire prevention. In a more general applications, many studies have
successfully demonstrated the use of spatial information about multiple ecosystem services, including
carbon sequestration and storage, in the support of land-use planning at different levels of land-use
management [39–41].
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5. Conclusions

The aboveground carbon measured in the tropical forest of the Mount Geulis, in West Java
(Indonesia), ranged from 1.3 ton C/ha to 165.1 ton C/ha, with an average of 33.5 ton C/ha. Among the six
mapping techniques considered, the highest accuracy was achieved using geostatistical interpolation
without stratification and geostatistical interpolation based on land cover, with a CV of the RMSE of
0.44. Aboveground carbon mapping using stratification based on elevation was incapable of improving
the accuracy of geostatistical interpolation. The computed validation statistics showed that this method
was even outperformed by the methods of regression modeling, a lookup table based on land cover,
and a lookup table based on a combination of land cover and elevation. There are several ways of
improving the accuracy of carbon mapping in the study area, including testing the significance of
other variables in regression modeling, developing specific allometric equations for more tree species,
and expanding carbon mapping to other ecosystem components (carbon in the roots, soil, dead wood,
and litter). These methodologies may be tested in regions with limited resources, without high-quality
and expensive remote sensing data.
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Appendix A

Table A1. Aboveground carbon data from 95 sampled plots in the Geulis Mountain forest.

Plot no Aboveground Carbon
(ton C/ha) Land Cover Types Elevation (Meter above Mean

Sea Level)

1 98.0 Others 836

2 87.4 Mix forest 853

3 61.9 Mix forest 810

4 1.3 Others 904

5 15.1 Others 824

6 107.2 Mix forest 815

7 19.2 Mix forest 903

8 31.6 Others 938

9 31.6 Pine-dominated forest 938

10 2.5 Others 907

11 165.1 Mahogany-dominated forest 808

12 75.0 Pine-dominated forest 936

13 3.9 Others 877
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Table A1. Cont.

Plot no Aboveground Carbon
(ton C/ha) Land Cover Types Elevation (Meter above Mean

Sea Level)

14 111.1 Mahogany-dominated forest 803

15 77.7 Mix forest 850

16 3.8 Others 897

17 32.4 Pine-dominated forest 990

18 87.8 Mahogany-dominated forest 853

19 22.2 Pine-dominated forest 890

20 22.5 Others 1010

21 49.3 Mahogany-dominated forest 895

22 7.6 Calliandra-dominated shrub 983

23 32.8 Mix forest 908

24 56.6 Calliandra-dominated shrub 957

25 70.3 Mahogany-dominated forest 956

26 101.5 Pine-dominated forest 907

27 15.5 Calliandra-dominated shrub 1056

28 62.1 Calliandra-dominated shrub 981

29 142.1 Calliandra-dominated shrub 965

30 11.8 Calliandra-dominated shrub 1067

31 40.1 Calliandra-dominated shrub 986

32 35.8 Mix forest 918

33 40.6 Mix forest 998

34 52.1 Mix forest 994

35 64.3 Mix forest 1079

36 29.8 Calliandra-dominated shrub 1024

37 45.4 Calliandra-dominated shrub 1088

38 37.1 Calliandra-dominated shrub 1072

39 35.3 Calliandra-dominated shrub 1092

40 35.3 Others 1092

41 33.9 Calliandra-dominated shrub 1097

42 25.2 Others 1016

43 27.4 Calliandra-dominated shrub 1123

44 17.7 Calliandra-dominated shrub 1045

45 9.9 Calliandra-dominated shrub 1169

46 80.9 Mix forest 992

47 33.1 Calliandra-dominated shrub 1246

48 71.6 Mahogany-dominated forest 1103

49 19.1 Calliandra-dominated shrub 1160

50 16.8 Mix forest 1040

51 56.7 Mahogany-dominated forest 1102

52 107.7 Mahogany-dominated forest 1021

53 3.8 Calliandra-dominated shrub 1196

54 97.2 Mix forest 1145

55 74.5 Mahogany-dominated forest 1090
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Table A1. Cont.

Plot no Aboveground Carbon
(ton C/ha) Land Cover Types Elevation (Meter above Mean

Sea Level)

56 6.2 Calliandra-dominated shrub 1143

57 90.1 Mahogany-dominated forest 1048

58 54.3 Mahogany-dominated forest 1089

59 100.8 Mahogany-dominated forest 1070

60 19.4 Calliandra-dominated shrub 1136

61 57.2 Mahogany-dominated forest 1063

62 45.3 Calliandra-dominated shrub 1078

63 64.0 Pine-dominated forest 1004

64 24.8 Calliandra-dominated shrub 1066

65 57.7 Pine-dominated forest 1015

66 54.8 Mahogany dominated forest 1087

67 4.1 Calliandra-dominated shrub 1069

68 18.5 Calliandra-dominated shrub 1054

69 24.0 Calliandra-dominated shrub 1074

70 25.0 Mahogany dominated forest 1004

71 23.6 Calliandra-dominated shrub 1031

72 4.5 Calliandra-dominated shrub 1067

73 23.5 Pine-dominated forest 910

74 95.5 Calliandra-dominated shrub 1054

75 27.5 Calliandra-dominated shrub 1023

76 6.9 Calliandra-dominated shrub 1015

77 35.8 Calliandra-dominated shrub 964

78 17.9 Calliandra-dominated shrub 978

79 16.6 Pine-dominated forest 1086

80 39.5 Pine-dominated forest 964

81 3.8 Pine-dominated forest 850

82 45.5 Mahogany-dominated forest 954

83 6.3 Calliandra-dominated shrub 1130

84 5.6 Calliandra-dominated shrub 940

85 30.8 Calliandra-dominated shrub 1051

86 36.2 Others 895

87 7.4 Calliandra-dominated shrub 1117

88 16.7 Calliandra-dominated shrub 899

89 14.2 Calliandra-dominated shrub 993

90 12.9 Calliandra-dominated shrub 1147

91 11.1 Calliandra-dominated shrub 1035

92 41.1 Calliandra-dominated shrub 1039

93 5.5 Calliandra-dominated shrub 1094

94 4.5 Calliandra-dominated shrub 998

95 12.5 Calliandra-dominated shrub 954
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