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Abstract: Strands produced from small-diameter timbers of lodgepole and ponderosa pine were
used to fabricate a composite sandwich structure as a replacement for traditional building envelope
materials, such as roofing. It is beneficial to develop models that are verified to predict the behavior of
these sandwich structures under typical service loads. When used for building envelopes, these structural
panels are subjected to bending due to wind, snow, live, and dead loads during their service life.
The objective of this study was to develop a theoretical and a finite element (FE) model to evaluate
the elastic bending behavior of the wood-strand composite sandwich panel with a biaxial corrugated
core. The effect of shear deformation was shown to be negligible by applying two theoretical models,
the Euler–Bernoulli and Timoshenko beam theories. Tensile tests were conducted to obtain the
material properties as inputs into the models. Predicted bending stiffness of the sandwich panels
using Euler-Bernoulli, Timoshenko, and FE models differed from the experimental results by 3.6%,
5.2%, and 6.5%, respectively. Using FE and theoretical models, a sensitivity analysis was conducted
to explore the effect of change in bending stiffness due to intrinsic variation in material properties of
the wood composite material.

Keywords: small-diameter timber; wood-strand composite; sandwich panel; bending stiffness;
finite element model; theoretical model; building envelope

1. Introduction

Increasing world population and limited natural resources require us to rethink how we utilize
our forests more productively to construct effective building products for houses. Forests play a
critical role in sequestering carbon and building products and can further this cause by continuing
to store the carbon for a prolonged period. As an order of magnitude, a tree on an average absorbs
one ton of CO2 and produces 0.7 tons of O2 for every cubic meter of growth [1], and every cubic
meter of wood as a building material can reduce CO2 emissions by an average of 2 tons compared to
other building materials such steel and concrete [2]. A sustainable forest management plan to protect
forests against fire, insects, and disease should consider thinning operations that result in improving
forest health. Often, this requires the removal of small-diameter timber (SDT) at a cost and requires
high-value markets or high-volume usage of these low-quality logs to recover the forest treatment
costs. For example, the average cost for a forest service thinning (approximately $70/dry ton) is usually
more than the market value of the SDT removed (energy and chip markets pay approximately $25 to
$35/dry ton) [3]. Besides existing products such as medium-density fiberboard (MDF) and oriented
strand board (OSB) produced from SDT, it is worth developing new products by converting these
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low-quality SDTs into more robust and versatile building products that would meet the structural
performance as well as energy requirements.

Sandwich structures are widely used in many areas like aerospace, automotive, civil, building
construction, and marine industries because their clever construction reduces their weight while
increasing their mechanical performance [4]. However, those with hollow cores have attracted
interest from researchers because the hollow geometry of the core can be used to improve the thermal
performance when they are filled with appropriate materials, such as closed-cell foam. This idea has
also been used to develop wood-based sandwich panels with different 3D core geometries [5–10]. Some
of the disadvantages of these panels is that they use a wet forming process for panel manufacturing,
have a relatively low structural capacity, and have poor interfacial shear strength at the intersection
between the core and face plies resulting in poor structural performance. Voth et al. [11] designed a 3D
core with biaxial corrugated geometry and used wood strands produced from SDT to fabricate the
panel shown in Figure 1. The bending behavior of wood-strand-based sandwich panels with biaxial
corrugated core geometry was investigated experimentally, and the results showed the stiffness in
both directions along the length and width is higher than that of oriented strand board (OSB) and
5-ply plywood. Additionally, sandwich panels with cavities filled with insulation foam decreased the
thermal conductivity of the panels by over 17% while improving the panel strength and stiffness by 34
and 16 percent [12]. Creep [13] and impact [14] performances of the biaxial corrugated core sandwich
panel were also investigated experimentally.
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For application of these sandwich panels as a structural component in building envelopes (roofs,
floors, and walls) with longer spans, the bending stiffness and the bond area between the core and
the faces need to be increased as they typically limit the load-carrying capacity. Models to predict
their behavior are useful tools to design and engineer the geometry of cores and sandwich panels as
long as they are verified and validated. Additionally, it is critical to accurately determine the material
properties that serve as inputs to these models. The finite element method is an effective way to
simulate complicated geometries under different loading and boundary conditions to predict the
behavior and explore distribution of stress and strain in the structures. It is also useful to develop
theoretical models to derive closed-form solutions to understand the influence of material properties
and geometrical features on the behavior of the structures. These models can then be used to analyze
the behavior of structural components subjected to service loads. In this study, a finite element model
and a theoretical model were developed to evaluate the bending behavior of a wood-strand composite
sandwich panel with a biaxial corrugated core geometry designed by Voth [11]. Elastic constants of the
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wood-strand composite material required to develop both the finite element (FE) and the theoretical
models were evaluated, and the models were verified against the experimental results. Considering
the intrinsic nature of wood, the models were further applied in a sensitivity analysis to understand
the influence of variation in elastic constants on the bending stiffness of the sandwich panel.

2. Materials

Using a disc-strander (manufactured by CAE) operating at a rotational speed of 500 rpm (shown
in Figure 1a), thin wood strands with an average thickness of 0.36 mm were produced from ponderosa
pine (pp) logs ranging in diameter from 191 to 311 mm. Wood strands were then dried to a target
moisture content of 3%–5% and sprayed with an aerosolized liquid phenol formaldehyde (PF) resin
in a drum blender (shown in Figure 1b) to a target resin content of 8% of the oven-dry weight of
the wood strands. Subsequently, wood strands sprayed with resin were oriented and hand-formed
unidirectionally using a forming box (shown in Figure 1c) to fabricate a wood strand mat, or preform,
as shown in Figure 1d. Unidirectional mats were consolidated to a thickness of 6.35 mm into flat panels
for the outer plies or corrugated core panels (shown in Figure 1f) with a matched-die mold (shown in
Figure 1e) in a hot press. For both flat and corrugated panels, the preform was hot-pressed for 6 min at
an operating temperature of 160 ◦C to reach a target thickness of 6.35 mm. Applied pressure by the
press was an uncontrolled variable and was dependent on the density and the target thickness of the
panel. To fabricate the sandwich panels as shown in Figure 1f–h, flat panels were then bonded with a
two-part epoxy resin (Loctite Epoxy by Henkel) to the biaxial corrugated cores. A 400-grit sandpaper
was used for a light sanding of the bonding area of both the flat and corrugated panels. A thin layer of
resin was only applied to both sides of the corrugated core. Flat panels were placed on both sides of
the corrugated core to form a sandwich panel as shown in Figure 1g, and the panels were clamped for
24 h before cutting and trimming.

A unit cell (UC), the simplest repeating element of the biaxial corrugated core geometry, along
with its dimensions, is given in Figure 2a. Directions along the length and width of the panel are
defined as longitudinal and transverse directions. Wood strands were oriented along the longitudinal
direction to make the preform for both the corrugated core and the flat panels.
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L1, L2, and h are the length, width and height of the UC. Core wall thickness was defined as t. Y21,
Y22, and X1 are associated with the dimensions of the bonding area between the flat panels and the
core to fabricate a sandwich panel. The angle of slanted areas is represented by θ1 and θ2 as shown in
Figure 2b.
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3. Experiments

This section is divided into two subsections. The first introduces the experiments conducted to
establish material properties employed in the FE and theoretical models. The second part describes the
experimental bending tests performed to verify the sandwich panel bending stiffness predictions of
the FE and theoretical models.

3.1. Tensile Test

Wood is an orthotropic material and requires nine elastic constants to be fully defined [15].
However, because the fiber orientation in individual strands varies in the width direction with respect
to an idealized orthotropic material axes and the preform is a conglomeration of wood strands oriented
uniaxially, transverse isotropy was assumed to define the material properties of both flat plies and
the core [16]. Therefore, five elastic constants, including E1, E2 = E3, G12 = G23, ν12 = ν13, and ν23,
were required to fully define the sandwich panel. Subscripts 1, 2, and 3 refer to the material axes (local
coordinate system) of the composite material (Figure 2b). The 2–3 plane is the plane of isotropy for
this transversely isotropic material. To determine these representative material properties, tension
specimens shown in Figure 3a were cut from flat panels at different angles (0◦, 15◦, and 90◦) with
respect to the longitudinal axis (x axis in Figure 2) and tested (Figure 3b) as per the standard testing
guidelines in ASTM D1037 [17]. Testing was performed using an 8.8-kN Instron test frame Model 4466,
change in gauge length (elongation) was recorded using a 25-mm Epsilon extensometer, and then
strain measurements were obtained by dividing the elongation by the initial gauge length (25 mm).
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Longitudinal and transverse Young modulus (E1 and E2) were obtained from test results of 0◦ and
90◦ specimens, respectively. These material properties, along with the test results of coupons prepared
at 15◦ angles, were used to determine the shear modulus, G12, using the transformation equation [15].
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where E1, E2, Eθ, υ12, and θ are modulus of elasticity in the longitudinal, transverse, and θ-directions,
Poisson’s ratio, and assumed angle in this study (15◦), respectively. The value for Poisson’s ratio, υ12,



Forests 2020, 11, 624 5 of 16

was assumed to be 0.358, based on a previous study [18] which evaluated the mechanical properties of
a wood strand composite material with similar structure and manufacturing process to the composite
material used in this study. Among commercially produced wood-strand-based materials, structural
composite lumber (SCL) [e.g., parallel strand lumber (PSL), oriented strand lumber (OSL), and laminated
strand lumber (LSL)] are similar to the material in this study. They are manufactured using long veneer
strips or wood strands that are also aligned in a longitudinal direction. Therefore, Poisson’s ratio,
υ23, of PSL as determined by Clouston [19] was assumed for the material of interest in this study.
Considering the transverse isotropy assumption resulting in material isotropy in plane 2–3, G23 was
calculated as:

G23 =
E2

2(1 + υ23)
(2)

Since wood is a natural material influenced by variations in growing conditions, its properties are
influenced by naturally occurring growth characteristics, such as knots, variation in cell wall thickness
between the annual rings, and grain deviations [20]. This inherent variability can significantly influence
the properties of wood strands produced from logs or lumber, and this variation in turn can affect
the properties of the composite material produced using these strands. Furthermore, variations in
the mat architecture can also be expected due to variation in the orientation of the wood strands
with respect to the longitudinal axis as the mat is formed. In addition, mat architecture would also
influence the heat and mass transfer during the hot-pressing process due to variations in moisture and
heat distribution within a mat [21]. Effort was made to reduce these variations by tightly controlling
the processing variables and the press schedule during the production process. Yet, variation in
density within a panel and between the panels after consolidation is inevitable and should be expected.
As mentioned, this variation in density can affect the material properties obtained from tensile test.
To explore the influence of density on the longitudinal modulus, panels with density varying between
600 and 950 kg/m3 were fabricated and submitted to tensile test.

3.2. Flexural Test

To measure the bending stiffness, a four-point bending test was conducted as per ASTM D7249 [22]
on corrugated core and sandwich panel specimens, as shown in Figure 3c,d, respectively. The bending
specimens were cut in the longitudinal direction of the panel with the width of one UC. As per the
standards, five specimens of each panel were tested. The bending stiffness (EI) was determined using
Equation (3) and load-deflection results obtained from the bending test.

EI =
Pa

48∆

(
3L2
− 4a2

) a= L
3 , m= P

∆
→ EI =

23mL3

1296
(3)

where P, ∆, L, and a are bending load, deflection at mid-span, span length, and distance of loading
point from the support, respectively. The configuration of the bending test is shown in Figure 4.
Table 1 summarizes the dimensions of all flexural test specimens. Note that the specimen length in
Table 1 indicates the span length and does not include a 25.5-mm overhang at each end of the flexural
specimens (i.e., total length of these specimens was 51 mm longer than span length). Deflection was
measured using a ±25-mm linear variable differential transformer (LVDT), located at the mid-span of
the test specimens.

Table 1. Dimensions of flexural specimens used in the bending test.

Specimen Length
L (mm)

Width
b (mm)

Thickness
t (mm)

Height
h (mm)
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4. Finite Element Model

To evaluate the bending behavior of both the sandwich panel and the corrugated core within the
elastic region, FE models were developed using Abaqus finite element software (Figure 4). For both
the flat outer layers and the core, shell elements (S4R) with hourglass control and a reduced integration
rule were employed. To easily assign material orientation to the core with complex geometry, a shell
element was chosen. Since this type of element considerably decreases the simulation and running
time of the FE model, a finer mesh was adopted to increase the accuracy. In addition, all elements were
given the capability to undergo finite strains and rotations.

Considering the fabrication process, both the corrugated core and the flat outer plies were assumed
to be transversely isotropic. To simulate a perfect bond between the face-sheets and the 3-D core, rigid
links were modeled between the nodes of these two components using a tie constraint. As for the
boundary conditions, the nodes in the contact area between the specimens and the supports were
constrained in the z direction. Since the supports were free to rotate about the y axis to be consistent
with ASTM D7249 [22], no other boundary condition was applied. However, to avoid instability in the
structure, the centerline of the sandwich panel exactly at the mid-span was fixed to avoid any translation
in the x direction. Loading was applied as prescribed downward deflection of the loading heads.

To determine an acceptable element size, a mesh convergence analysis was performed on the
flexural 3-D core model. In Figure 5, the results of this convergence study are displayed, comparing the
bending load that corresponds to a deflection of 25.4 mm in the center of the specimen to the number of
elements. As the number of elements increased from 4263 to 59,814 (corresponding to an element size
of 5 mm to 1.3 mm), there was a 1.73% change in the resulting bending load. Because of this negligible
change in the bending load and noticeable savings in the computation time, the smallest number of
elements considered, 4263 (element size of 5 mm), was chosen to mesh the specimens.

Forests 2020, 11, x FOR PEER REVIEW 7 of 16 

 

 
Figure 5. Mesh convergence results of the flexural specimen in the longitudinal direction. 

5. Theoretical Model 

Due to the complex geometry of a biaxially corrugated core with cavities caused by three-
dimensional geometry, it is not easy to develop a theoretical model to capture all deformations under 
different types of loading. One method to overcome this difficulty is homogenization. In this section, 
the inhomogeneous sandwich panel with corrugated core geometry is replaced with an equivalent 
homogenous and continuous layer. The effective properties for this homogenous and continuous 
layer consist of effective extensional moduli in the x and y directions, effective Poisson’s ratio, and 
effective shear modulus in the x–y plane. Because it is a common practice to compute these effective 
properties with only consideration of in-plane loading [23–25], they were calculated based on the 
laminate extensional stiffness matrix, generally referred to as the [A] matrix. Besides the assumption 
of neglecting resultant moments to calculate effective properties, in developing the theoretical model, 
all stresses through the thickness were also neglected. Additionally, the [A] matrix components were 
computed by integrating over the UC volume instead of UC height. 

The constitutive equation for a laminate in terms of resultant forces [N], resultant moments [M], 
mid-plane strains {ε0}, and mid-plane curvatures {κ} can be written as 

 �𝑁𝑁𝑀𝑀� = �𝐴𝐴 𝐵𝐵
𝐵𝐵 𝐷𝐷� �

𝜀𝜀0
𝜅𝜅
�  (4) 

where A, B, and D are the extensional stiffness, the bending–extension coupling, and the bending 
stiffness matrices, respectively, and their components are defined as 

 𝐴𝐴𝑖𝑖𝑖𝑖 = ∫ 𝑄𝑄𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
ℎ 2⁄
−ℎ 2⁄ ,   𝐵𝐵𝑖𝑖𝑖𝑖 = ∫ 𝑄𝑄𝑖𝑖𝑖𝑖𝑧𝑧𝑧𝑧𝑧𝑧

ℎ 2⁄
−ℎ 2⁄ ,     𝐷𝐷𝑖𝑖𝑖𝑖 = ∫ 𝑄𝑄𝑖𝑖𝑖𝑖𝑧𝑧2𝑑𝑑𝑑𝑑

ℎ 2⁄
−ℎ 2⁄   (5) 

The symmetric and balanced configuration of the sandwich panel about its mid-plane results in 
a zero bending–extension coupling matrix, [B] (see Appendix). In addition, because the sandwich 
panel was assumed to be a simplified 2-D structure and evaluated like a plate, all stresses through 
the thickness were neglected. Therefore, the constitutive equation for the sandwich panel is defined 
[23] as 

 �
𝑁𝑁𝑥𝑥
𝑁𝑁𝑦𝑦
𝑁𝑁𝑥𝑥𝑥𝑥

� = �
𝐴𝐴11 𝐴𝐴12 0
𝐴𝐴12 𝐴𝐴22 0

0 0 𝐴𝐴66
� �

𝜀𝜀𝑥𝑥0

𝜀𝜀𝑦𝑦0

𝛾𝛾𝑥𝑥𝑥𝑥0
�  (6) 

and the components of the extensional stiffness matrix ([A]) given in Equation (2) expanded over 
three layers can be rewritten as 

  𝐴𝐴𝑖𝑖𝑖𝑖 = ∫ 𝑄𝑄𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
ℎ 2⁄
−ℎ 2⁄ = �∫ 𝑄𝑄𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

ℎ𝑓𝑓/2
−ℎ𝑓𝑓/2 �

𝑇𝑇𝑇𝑇𝑇𝑇
+ �∫ 𝑄𝑄𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

ℎ𝑐𝑐/2
−ℎ𝑐𝑐/2 �

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
+ �∫ 𝑄𝑄𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

ℎ𝑓𝑓/2
−ℎ𝑓𝑓/2 �

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
 (7) 

where Qij are components of the stiffness matrix in the global coordinate system (x–y–z) [26]. 
Additionally, hf is the thickness of the outer layers and hc is the height of the corrugated core. For 

2240

2250

2260

2270

2280

2290

0 10000 20000 30000 40000 50000 60000

Lo
ad

 (N
)

Number of elements

Figure 5. Mesh convergence results of the flexural specimen in the longitudinal direction.



Forests 2020, 11, 624 7 of 16

5. Theoretical Model

Due to the complex geometry of a biaxially corrugated core with cavities caused by
three-dimensional geometry, it is not easy to develop a theoretical model to capture all deformations
under different types of loading. One method to overcome this difficulty is homogenization. In this
section, the inhomogeneous sandwich panel with corrugated core geometry is replaced with an
equivalent homogenous and continuous layer. The effective properties for this homogenous and
continuous layer consist of effective extensional moduli in the x and y directions, effective Poisson’s
ratio, and effective shear modulus in the x–y plane. Because it is a common practice to compute
these effective properties with only consideration of in-plane loading [23–25], they were calculated
based on the laminate extensional stiffness matrix, generally referred to as the [A] matrix. Besides
the assumption of neglecting resultant moments to calculate effective properties, in developing the
theoretical model, all stresses through the thickness were also neglected. Additionally, the [A] matrix
components were computed by integrating over the UC volume instead of UC height.

The constitutive equation for a laminate in terms of resultant forces [N], resultant moments [M],
mid-plane strains {ε0}, and mid-plane curvatures {κ} can be written as{

N
M

}
=

[
A B
B D

]{
ε0

κ

}
(4)

where A, B, and D are the extensional stiffness, the bending–extension coupling, and the bending
stiffness matrices, respectively, and their components are defined as

Ai j =

∫ h/2

−h/2
Qi jdz, Bi j =

∫ h/2

−h/2
Qi jzdz, Di j =

∫ h/2

−h/2
Qi jz2dz (5)

The symmetric and balanced configuration of the sandwich panel about its mid-plane results in a
zero bending–extension coupling matrix, [B] (see Appendix A). In addition, because the sandwich
panel was assumed to be a simplified 2-D structure and evaluated like a plate, all stresses through the
thickness were neglected. Therefore, the constitutive equation for the sandwich panel is defined [23] as

Nx

Ny

Nxy

 =


A11 A12 0
A12 A22 0

0 0 A66



ε0

x
ε0

y
γ0

xy

 (6)

and the components of the extensional stiffness matrix ([A]) given in Equation (2) expanded over three
layers can be rewritten as

Ai j =

∫ h/2

−h/2
Qi jdz =

∫ h f /2

−h f /2
Qi jdz


Top

+

∫ hc/2

−hc/2
Qi jdz


Core

+

∫ h f /2

−h f /2
Qi jdz


Bottom

(7)

where Qij are components of the stiffness matrix in the global coordinate system (x–y–z) [26].
Additionally, hf is the thickness of the outer layers and hc is the height of the corrugated core.
For uniaxial corrugated cores, such as those with sinusoidal or trapezoidal configurations where the
corrugated geometries can be easily specified with a known function, computing these integrals over
the height to calculate the extensional stiffness matrix ([A]) is straightforward [27–29]. However, since
the geometry of the core analyzed in this study is biaxially corrugated and varies along both the x and
y axes, the second term in Equation (7) representing the core layer cannot be easily computed. Unlike
other methods which use a known function describing the core geometry to compute Equations (5) and (7),
a discretization technique was used to simplify the integration in this study. Therefore, one quarter of the
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UC (Figure 2b) was broken down into seven simplified domains as shown in Figure 2b. Subsequently,
integration was carried out over the simplified domains and averaged as

∫ hc/2

−hc/2
Qi jdz =

4
L1L2

∫ L1
2

0

∫ L2
2

0

∫ hc/2

−hc/2
Qi jdzdydx =

4
L1L2

7∑
k=1

(∫
Vk

Qi jdV
)

(8)

where L1 and L2 are dimensions of the unit cell, and Vk is volume of each domain shown in Figure 2b.
It should be noted that the components of the global stiffness matrix (Qij) of the core layer given

in Equations (7) and (8) are obtained by transforming the stiffness matrix in the local coordinate system
(1–2–3) using the transformation matrix, [T]. Considering the global coordinate system (x–y–z) and
local coordinate system (1–2–3) that varies from domain to domain, the transformation matrix for each
domain is expressed as

For domain #1, 3, 5, 7 : T =



1 0 0 0 0 0
0 m2 n2 0 2mn 0
0 n2 m2 0 −2mn 0
0 0 0 m2

− n2 0 0
0 −mn mn 0 m −n
0 0 0 0 n m


,
{

m = cos(0)
n = sin(0)

For domain #4 : T =



m2 0 n2 0 2mn 0
0 1 0 0 0 0
n2 0 m2 0 −2mn 0
0 0 0 m 0 −n
−mn 0 mn 0 m2

− n2 0
0 0 0 n 0 m


,
{

m = cos(30)
n = sin(30)

For #2 and 6 : T =



m2 n2 0 0 0 2mn
n2 m2 0 0 0 −2mn
0 0 1 0 0 0
0 0 0 m −n 0
0 0 0 n m 0
−mn mn 0 0 0 m2

− n2


,
{

m = cos(56)
n = sin(56)

(9)

and inverting the extensional stiffness matrix ([A]) in Equation (6) results in
ε0

x
ε0

y
γ0

xy

 =


A11 A12 0
A12 A22 0

0 0 A66


−1

Nx

Ny

Nxy

 =


a11 a12 0
a12 a22 0
0 0 a66




Nx

Ny

Nxy

. (10)

The stress-strain relation for a homogenous and continuous lamina with the thickness of h is
expressed as

ε0
x

ε0
y

γ0
xy

 =


1/Ex −υxy/Ex 0
−υyx/Ey 1/Ey 0

0 0 1/Gxy



σx

σy

τxy

= 1
h


1/Ex −υxy/Ex 0
−υyx/Ey 1/Ey 0

0 0 1/Gxy




Nx

Ny

Nxy

 (11)

and comparing Equation (10) for the biaxial corrugated core sandwich panel with Equation (11) for a
lamina gives the effective material properties of a lamina that is equivalent to the biaxial corrugated
core sandwich panel. These material properties are summarized [23] as

Ex = 1/ha11 , Ey = 1/ha22, Gxy = 1/ha66, νxy = −a12/a11, νyx = −a12/a22 (12)
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Considering these effective material properties, two different beam models, classical beam theory
(Euler–Bernoulli) and first-order shear deformation beam theory (Timoshenko), were employed to
investigate the bending behavior of the equivalent structure. Using displacement fields of these
beam models, the principle of minimum potential energy, and the variational method, the governing
equations for this sandwich beam [30,31] were derived as

Euler–Bernoulli : Q11I ∂
4w
∂x4 = q(x)

Timoshenko :

 Q11I ∂
2φ
∂x2 − ksQ55A

(
φx +

∂w
∂x

)
= 0

ksQ55A
(
∂2w
∂x2 +

∂φ
∂x

)
+ q(x) = 0

(13)

where beam deflection and rotation of the cross section about the y axis with respect to the thickness
direction are shown with w and φ respectively. Additionally, Q11 and Q55, ks, A, and I, which are
components of the stiffness matrix of the homogenized beam, shear correction factor, cross section area,
and moment of inertia, respectively, are given as

Q11 = Ex/
(
1− νxyνyx

)
and Q55 = G13

I = 1
12 bh3, A = bh, ks =

(
5 + 5νxy

)
/
(
6 + 5νxy

) (14)

As shown in Table 1, b and h are the width and the height of the sandwich panel test specimen
and the material properties are given in Equation (12). It should be noted that effective out-of-plane
shear modulus (G13) is assumed equal to that of in-plane shear modulus (G12) [23]. Since Fourier series
expansions satisfy the boundary conditions [32], they were used to solve the governing equation(s).
Based on Euler–Bernoulli and Timoshenko beam theories, the closed form solution for the deflection of
this sandwich beam with biaxial corrugated geometry under a four-point bending test, as shown in
Figure 4, is obtained as:

Euler–Bernoulli : w(x) =
∑
∞

n=1

pL3
(
sin( nπa

L )+sin
(

nπ(x−a)
L

))
Q11I(nπ)4 sin

(
nπx

L

)
Timoshenko : w(x) =

∑
∞

n=1

[
(Q11I(nπ)2+ksQ55AL2)PL(sin( nπ

3 )+sin( 2nπ
3 ))

ksQ55Q11IA(nπ)4

]
sin

(
nπx

L

) (15)

6. Results and Discussion

Results of tensile testing were used to obtain the elastic constants of the wood composite material.
Using these properties, FE and theoretical models to investigate the bending behavior were applied
and their results were compared with experimental results.

6.1. Elastic Constants

To establish the properties of the wood composite material, 19 coupons were tested at each angle
(0◦, 15◦, and 90◦). A typical stress–strain curve, along with the failure mode, of a tensile coupon
is presented in Figure 6. Since the stress–strain curve is almost linear, as proven by the regression
model (red dotted line) and the coefficient of determination (R2), material nonlinearity for this wood
composite sandwich panel can be ignored. Density plays an important role in affecting stress–strain
curve and load-carrying capacity of this composite material. Therefore, test results of those coupons
with a density of around 640 (kg/m3) were chosen to obtain the material properties. This avoided any
variation caused by the density. All panels were manufactured to a target density of 640 kg/m3 in this
study, since this density has been used for similar wood-strand products [11–14,18] and also is a typical
average density for commercially available OSB [20]. These material properties are summarized in
Table 2 and coefficients of variation in percent are presented in parentheses.
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Figure 6. Typical results of tensile testing: (a) load–strain graph (blue line) along with regression model
(red dotted line), (b) failure mode.

Table 2. Elastic constants of wood strand composite material. Values in parenthesis are COVs in percent.

E1 (GPa) E2 (GPa) G12 (GPa) ρ (kg/m3)

9.80 (9.4%) 1.71 (13.4%) 2.56 (37.8%) 640

Variation in material properties is to be expected in all heterogeneous and anisotropic materials,
as can be seen in coefficient of variation values in Table 2. As explained, this is especially true for
wood. For wood-based products, variation in density can affect the material properties. The influence
of the density on longitudinal Young modulus of the wood strand plies tested in this study is shown
in Figure 7. Results indicate that a 46% change in density caused a 107% change in longitudinal
Young’s modulus.
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Figure 7. Effect of density on longitudinal Young modulus.

Considering the material properties obtained from tensile testing and the assumption of transverse
isotropy, the material properties of the wood strand composite are summarized in Table 3. These elastic
constants served as inputs for the FE model as well as for the theoretical model to compute the stiffness
matrix in Equation (7).
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Table 3. The material properties of specimens.

E1
(GPa)

E2
(GPa)

E3
(GPa) υ12 [18] υ13 υ23 [19] G12

(GPa)
G13

(GPa)
G23

(GPa)

9.80 1.71 1.71 0.358 0.358 0.2 2.56 2.56 0.71

6.2. Bending Behavior

When subjected to a four-point bending load, the corrugated core specimens in the longitudinal
direction failed due to tension, as shown in Figure 8a. Comparison between the average of the
experimental results and FE results for deflection in the middle of the specimens subjected to bending
is shown in Figure 8b. Since the FE simulation was developed to capture the bending behavior within
the linear region, there is a close agreement between these two models in the linear elastic region.
The difference between experimental and FE bending stiffness, calculated using Equation (3), within
the linear elastic region is 1.4%.
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Figure 8. Four-point bending test of the 3-D core layer in the longitudinal (a) failure mode
(b) load–deflection curve.

Sandwich specimens were also subjected to four-point bending, and a typical load–deflection
curve and failure mode are presented in Figure 9. Unlike the corrugated core samples, the initial failure
mode of longitudinal sandwich panels was debonding between the core and face-sheets (Figure 9b)
due to interfacial shear. Bending load versus deflection at the midpoint of these sandwich panels
for theoretical and FE models were compared against the average experimental results in Figure 10a.
Based on the linear region of these load–deflection curves and Equation (3), the bending stiffness of
sandwich beams for different models was calculated and compared in Figure 10b. For experimental
results, the bending stiffness was calculated based on the results between 20%–50% of maximum load
(i.e., the portion of the curve between about 1000 N and 2200 N in Figure 10a).
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Figure 10. Comparison of (a) load–deflection curve and (b) bending stiffness of sandwich beams under
bending load as shown in Figure 3d based on different models.

The difference between experimental and theoretical bending stiffness within the linear elastic
region are 3.6% and 5.2% for sandwich beams based on Euler–Bernoulli and Timoshenko models,
respectively. Assumptions in the theoretical models could be the sources of error when compared
against the experimental results. These assumptions include considering the composite panel as a
beam instead of a plate to develop the theoretical model; this results in neglecting any deformation
in the y direction, and ignoring both shear and normal stresses through the thickness by assuming
the sandwich panel as a simplified 2-D structure to compute the effective properties. The difference
between the Timoshenko beam model, which considers shear deformation, and the Euler–Bernoulli
beam model, which does not consider this deformation, is not noticeable within the elastic region.
Neglecting shear and normal stresses to compute effective properties as explained can be an explanation
for this small difference. However, this difference can be noticeable if these two theories are used
to model non-linear behavior. As the theoretical results obtained from both models are generally
conservative compared to the experimental ones, the theoretical model can be a good predictive model
to use in design of new geometry; however, it is limited to predicting the elastic behavior.

Bending stiffness predicted by the FE model differs by 6.5% compared to the experimental results.
This slightly larger difference compared to the theoretical bending stiffness could be due to the rigid
link used for modeling the bonding area between the core and outer layers. Failure initiation for
sandwich specimens started at the bonding area, which results in the failure mode of delamination in
that area, as shown in Figure 9b. However, this bonding area was not modeled in the FE simulation
and the rigid link, which does not undergo any deformation, was used to bond the core to face-sheets.
Therefore, the FE model experiences less deformation compared to the actual one, and results in
a higher bending stiffness. The deflected shapes of the FE simulation of the corrugated core and
sandwich panel subjected to a four-point bending test, which were used to obtain the results presented
in Figures 8b and 10, are shown in Figure 11.
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Another explanation for the difference between model results and the experimental results could
be the variation in material properties. Material properties shown in Tables 2 and 3, which were used
to develop both the theoretical and FE models, were established considering the tensile test results of
coupons with a density of 640 kg/m3. However, since there is always a variation between the target
density that a panel is pressed to and the actual density, the bending behavior from panel to panel and
even from specimen to specimen within a same panel could vary. Therefore, predictions of bending
stiffness by these two models could be expected to vary from the experimental results, especially in the
case of wood-based materials.

7. Sensitivity Analysis

Intrinsic variation in material properties of wood strands, inconsistencies in the fabrication process,
and variations in density may influence the material properties of the wood strand composite panels,
as shown in the results so far. Even with extreme care during the fabrication process and the testing, there
still will be noticeable variation in the material properties determined (reflected by the coefficient of
variations in Table 2). Such a variation leads to variation in the bending stiffness of the sandwich panel
and its components. In this section, a sensitivity analysis is presented to clarify the extent of variation
in bending stiffness that could be expected due to specified variation in material properties. To this
end, using the FE simulation and theoretical model, one material property was changed while others
were held constant, and then change in the bending stiffness of the sandwich specimen due to change
in the material property was obtained. The coefficient of variation (COV) for each property listed in
Table 2 was used as a guide to vary a material property to perform the sensitivity analysis. Results of the
sensitivity analysis are given in Table 4. Based on COVs listed in Table 2, e.g., the longitudinal Young’s
modulus (E1) was varied by ±9.4%, and the bending stiffness was computed using FE and theoretical
models. A 9.4% increase in E1 indicates an increase of 8.5%, 9.3%, and 9.2% in FE, Euler–Bernoulli,
and Timoshenko bending stiffness, respectively. Meanwhile, a 9.4% reduction in E1 shows a decrease
of 8.7%, 9.2%, and 9.1% in FE, Euler–Bernoulli, and Timoshenko bending stiffness. However, a higher
change in E2, ±13.4%, creates less than ±1% change in both FE and the theoretical bending stiffness.
Theoretical bending stiffness is not as sensitive as that of FE to change in shear modules because
the effects of shear stresses and deformation through the thickness of the panel to calculate effective
properties, which were used to develop the theoretical model, were neglected.

Table 4. Percent variation in the longitudinal bending stiffness of the sandwich panel caused by change
in material properties.

Property % Change in Material Properties
% Change in Bending Stiffness

FE Euler Timoshenko

E1
9.4% increase: E1 = 10.72 GPa 8.8 9.3 9.2
9.4% decrease: E1 = 8.88 GPa −8.7 −9.2 −9.1

E2 = E3
13.4% increase: E2 = 1.94 GPa 0.41 0.89 0.34
13.4% decrease: E2 = 1.48 GPa −0.5 −0.85 −0.25

G12 = G13
37.8% increase: G12 = 3.53 GPa 3.3 0.57 0.97
37.8% decrease: G12 = 1.59 GPa −5.9 −0.47 −1.5

8. Conclusions

Theoretical and finite element models were developed and applied to predict the linear flexural
behavior of the sandwich panel with a complex three-dimensional core geometry manufactured from
small-diameter timber under a four-point bending load. The material properties were measured to
input into the models.

The bending stiffness of just the corrugated core specimens obtained by the FE model showed a
1.4% difference from the average of the experimental results. In case of the sandwich panel, the average
experimental bending stiffness differed from Euler-Bernoulli, Timoshenko, and FE predictions by 3.6%,
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5.2%, and 6.5%, respectively. The results indicated that a 46% increase in material density increases the
longitudinal Young’s modulus by as much as 107%. A sensitivity analysis to understand the effect of
variations in material properties on composite sandwich bending stiffness revealed that the longitudinal
Young’s modulus is the most important property that influences the bending stiffness.

Theoretical and FE models developed for the wood strand sandwich panel were utilized to
conduct a parametric study [33] to understand the influence of the core geometry on the bending
stiffness of the sandwich panel. Based on the results, new core geometry with higher performance was
designed to meet the structural performance requirements of building envelope components, such as
wall, floor, and roof. Theoretical models for the sandwich structure with new core geometry were
developed for beam [34] and plate [35] configurations.
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Appendix A

Components of bending–extension coupling matrix ([B]) given in Equation (5) can be written as

Bi j =

∫ h/2

−h/2
Qi jzdz =

∫ h f /2

−h f /2

(
Qi jz

)
dz


Top

+

∫ hc/2

−hc/2

(
Qi jz

)
dz


Core

+

∫ h f /2

−h f /2

(
Qi jz

)
dz


Bottom

(A1)

where h, hf, and hc are thickness of the sandwich panel, face-sheets, and core, respectively. Top and
bottom subscripts refer to the top and bottom face-sheets. The first and third terms in Equation (A1)
(top and bottom) are zero because of the symmetric and balanced configuration of the face-sheets and
can be written as ∫ h f /2

−h f /2

(
Qi jz

)
dz = Qi j

(
z2

2

)∣∣∣∣∣∣ z = h f /2
z = −h f /2

= 0 (A2)

Based on Figure 2, the second term, representing the corrugated core, can be written as

∫ hc/2
−hc/2 Qi jzdz = 4

L1L2

∫ L1
2

0

∫ L2
2

0

∫ hc/2
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(
Qi jz

)
dzdydx = 4

L1L2

[(∫ ∫ ∫ (
Qi jz

)
dzdydx

)
1
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Qi jz
)
dzdydx

)
2
+
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Qi jz

)
dzdydx

)
3
+

(∫ ∫ ∫ (
Qi jz

)
dzdydx

)
4
+(∫ ∫ ∫ (

Qi jz
)
dzdydx

)
5
+

(∫ ∫ ∫ (
Qi jz

)
dzdydx

)
6
+

(∫ ∫ ∫ (
Qi jz

)
dzdydx

)
7

] (A3)

Subscripts 1 to 7 represent the segmented parts of the corrugated core as shown in Figure 2b,
which are used as the domain for integration. Because of the symmetric and balanced configuration
of UC, parts 1 and 7, parts 2 and 6, and parts 3 and 5 cancel out each other. Part 4 is zero on its own
because of its symmetric geometry about the mid plane. Therefore, the bending–extension coupling
matrix (matrix [B]) for this sandwich panel is zero.
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