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Abstract: Branch chipping machines with low-power engines are distinguished with an intermittent
operation due to a periodical supply of branches. A conventional drive speed control of these
machines is not adapted to adjust the operating mode depending on frequency of material supply for
shredding. This article discusses the issues related to the assessment of the application of adaptive
systems similar in design to start–stop systems used in vehicles, as necessary in the driving of this
type machine. During testing, an impact of a distance between a branch pile from the woodchipper,
a number of operators on frequency of drive unit operating condition changes, and the mass and
volume output (productivity) were considered. A percentage ratio of the active and passive (idle)
operation in selected conditions of use was also determined. A low-power 9.5 kW engine-powered
cylindrical-type woodchipper was used for testing. Material chopped in the chipper was freshly cut
branches of oaks (Quercus L. Sp. Pl. 994. 1753) with a diameter in the largest cross-section ca. 80 mm
and moisture content ca. 25%. Piles of branches were located at three different distances from the
chipper, i.e., 3 m, 9 m and 15 m. Branches to the chipper were fed by one or two operators. It was
demonstrated that the idle run time in tested conditions with one operator could be from 43% to
71% of the entire operating time. Frequency of operating condition changes when only one operator
worked and fluctuated from ca. 6 to 2 times per minute. Increasing the number of operators from one
to two had a slight impact on the frequency of operating condition changes (by ca. 7%) at the shortest
distance from the chipper (3 m). However, at larger distances, the additional operator may increase
the frequency of operating condition changes of the chipper by 77% for 9 m distance and 85% for
15 m distance. The mass and volumetric output of the cylindrical chipper in the most advantageous
case is equal to 0.66 t/h and 3.5 m3/h, respectively. The increase of the branch pile distance from
the chipper causes a drop in mass output by 32%, and volumetric output by 33.5%. The results of
the tests confirmed the necessity for the development of low-power chipping machines designed
for clearing operations rather than industrial production of biomass. A direction for development
could be systems that adapt driving units to operating conditions, depending on a demand for the
chipping process.

Keywords: woodchipper; mass output; volumetric output; frequency of drive unit operating
condition changes; system adapting to operating conditions; small engine

1. Introduction

The output (productivity) of wood chipping machines strongly depends on the raw material
to be chipped, the size of chips, the type of working unit and its settings, wear of knife blades,
the size of sieves and the feeding system [1]. Tests of the material for chipping refer mostly to
parts of a tree (trunk or branches) [2–10], tree species (softwood or hardwood) [2–5,11–16] and
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moisture content in wood (fresh or dry) [2,5,6]. Tests referring to the machine itself focus on
the type of working unit [4,8,10,17,18], the drive unit (high-power industrial types or low-power
types) [4,10,19,20], wear of knives blades [3,4,13–15,17,18,21–23], the size of sieves [3,7,16,20,24] and
average productivity [1,5,8,13,19,25–30]. Setting of sieve sizes translates to the size of chips obtained,
which are also a subject of many studies [2,3,6,8,16,25–27,30,31]. The issue that is the least recognized in
the literature is the impact of branch supply frequency to the chipper on its productivity. Some articles
describe factors which affect the supply rate of branches or trees, e.g., indication of delivery method: a
loader [8,12] or an operator [32], and in some cases the number of loaders and operators. Another
way to describe productivity of chipping machines with consideration of the factors responsible for
the wood supply is to express these results with indication of a percentage delay time ratio [5,19,25].
Furthermore, the topography of the terrain affects the supply of wood to chippers, which may limit
a number of loaders or extend the time of their movement [33]. All these methods allow for the
estimation of the impact of factors associated with the branch supply on productivity of chipping
machines. However, they are not sufficient to analyse productivity of chipping machines equipped
with systems that adapt to operating conditions, similar to start–stop systems used in motorized
vehicles [34]. Such systems are applied mainly in chippers driven by low-power engines. Because the
branches are fed by operators, it is not possible to supply a significant excess quantity of wood to the
chipper (for instance, by feeding systems). This is in contrast with high-power industrial chippers,
where loaders supply quite large amounts of material that are often difficult to be chipped (such as
trunks and logs), thus extending the chipping process time.

The term “small engines” applies only to spark ignition engines when they are used in shredding
machines (due to operating conditions) of power lower than 19 kW [35,36]. Provisions regarding
nonroad mobile equipment with compression-ignition (CI) engines apply to engines without defined
restrictions regarding the power of the power unit. Instead, they introduce a division into different
research cycles depending on the power of the engine [35]. However, in the literature, there are
available research results for woodchippers defined as low power (209 kW) and medium power
(559 kW) [20]. Investigation of factors concerning the impact on branch delivery by operators is
essential due to application of systems that adapt the chipper rotational speed to the demands of the
chipping process [37,38]. Conventional speed control of the woodchipper driven by a spark-ignition
engine equipped with a carburettor (such drives are most often available on the market [39,40]) is
provided by means of a speed control lever. Once the machine is started, a high speed is set that allows
the drive operation within a range of a maximum torque or rating. Such a system responds only to
changes of motor loads through mechanisms of centrifugal controllers and the set points selected by
the operator by means of the lever. Such a solution does not allow one to identify the demand for
the rotational speed essential for proper operation of the working unit. It is beneficial, in terms of
qualitative emission of flue gas and fuel consumption, to make the machine work at a high speed
during the chipping of branches and at a low speed during the waiting time (idle operation).

As it is technically possible to develop adaptative systems for this type of device, evaluation of
operating conditions of these machines is necessary, focused on measurements of factors affecting the
frequency of branch supply to the chipper and their influence on productivity.

Legislative bodies impose obligations to use start–stop systems in motorized vehicles [36], which,
as shown in studies of Cieślik et al., are used in 20% of vehicles while driving in a city cycle [41].
Studies published in Polish, inaccessible for most scientists, indicated that in branch chipping machines,
the idle run time ratio may be much higher [32].

This article presents results of tests for delivery of branches from piles at three different distances
(3 m, 9 m, 15 m), while the machine was operated by one or two operators. During tests, the frequency
(interval) of branch delivery, as well as the mass and volumetric productivity of a cylindrical chipper
were determined. These values will determine if the application of adaptation systems in low-power
chipping machines is justified. Test results of the cylindrical chipper productivity may be used for
economic calculations associated with operating costs of this type of machine.
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2. Materials and Methods

2.1. Raw Material and Subject of Testing

Testing was conducted with a Red Dragon RS-100 woodchipper driven by a German GX 390 OHV
(9.5 kW) four-stroke spark-ignition engine (Figure 1). The cylindrical-type woodchipper is designed to
shred branches with a diameter of up to 80 mm. “Tests were performed with the use of freshly cut
oak branches (Quercus L. Sp. Pl. 994. 1753) with the diameter in the largest cross-section ca. 80 mm,
a length of approximately 3 m and the moisture content ca. 25%. Branches were selected for similar
dimensions to unify the chipper’s working conditions. This gave rise to the impact of other variable
analysis. Branches with such parameters are characterized by a chipping time in a cylindrical chopper
of about 4.5 s [32] and present a similar difficulty when pulling branches from the pile. Branches of
similar diameter and length generated a similar machine load, which translated into a more uniform
length of chipping time. These were branches that should be considered typical. They put a heavy
load on the machine. Shorter and thinner branches will increase idle work time. The same will apply
to branches that due to their shape will tangle or get stuck in the machine’s feed channel. The trees
came from areas that were prepared for building plots. The specimens that underwent the tests were
representative of hard wood species in accordance with Janka classification [42].” The Janka hardness
test measures the resistance of a sample of wood to denting and wear. It measures the force required to
embed an 11.28-millimetre (0.444 in) diameter steel ball halfway into a sample of wood [43,44]. Piles of
branches were arranged at three distances from the chipper 3 m, 9 m and 15 m (Figure 2). The distance
below 1 m is considered by operators to be uncomfortable because it makes it difficult to pull branches
out of the pile. In addition, in this space there are branches subjected to chipping, which protrude
from the chipper’s feed channel. The distance from 1 m to 3 m is the most common distance during
actual works (distances below 3 m were tested by Warguła et al. In 2019 [32]). Topographic and urban
conditions, as well as the exclusion of the possibility of work in selected areas by clients, may increase
the distance that machine operators must travel with the branches.

Piles of branches are not created in some situations. Instead, operators bring the cut branches
straight from under the tree to the chipper. In such cases, the distances may have values closer to
9 m and 15 m. Longer distances allow observing the impact of an additional operator, because at
small distances branches are usually provided by one operator due to the dangerous movements of
the branches in the feed channel. Branches were supplied to the chipper by one or two operators,
depending on the test case. Operators had experience and were characterized by high commitment to
maximize efficiency.
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Figure 1. Woodchipper with measuring instruments; 1—woodchipper with engine drive, 2—sensors of
branch detection system in the feeding chute, 3—recording computer, 4—120 L containers, 5—weighing
scale, 6—weight recording system.
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2.2. Operating Conditions of Chipper

Frequency of changes of operating conditions resulting from the noncontinuous delivery
of branches was recorded by optical detection of branches in the feeding chute (an original
photocell-based optical barrier 120452 SYSTEC). They were connected with a PC-class computer
(Figure 1), which allowed acquisition of values measured. As a result, a signal trend (curve) was
obtained from detectors (a binary signal defining a moment, when the detector was obscured) as a
function of time during the entire experiment. Based on that signal, the percentage ratio of active to
idle run time was determined during operation of the device.

It was assumed that the change in the operating condition is a signal change indicating the
detection of branches in the feed channel. On this basis, the trailing edges of the signal were counted
and then the frequency of idle work signal occurrence was determined. Identification of branches in
the feed channel with an adaptive drive could signal a change in rotational speed of the machine from
low (idle) to high. The high rotational speed allows work with maximum torque, which is necessary
for chipping branches. Lack of branch detection in the feed channel may cause a reduction in rotational
speed. This information is readable in a binary signal.

The total machine work time tm is the sum of the active work time tw and idle work time t j, which
can be expressed as Equation (1):

tm = tw + t j (1)

Idle work time ratio was determined in accordance with Equation (2):

Idle work time ratio =
t j

tm
·100% (2)

Idle work time decrease ratio was determined according to Equation (3):

Idle work time decrease ratio =
(tA − tB)

tA
·100%, (3)

where tA is idle work time ratio for one operator service and tB is idle work time ratio for two
operators service.

Operating conditions frequency changes were determined on the basis of binary signals. The number
of signals trailing edges were counted during 1 min. This can be represented by Expression (4):

Operating conditions frequency changes =
∑

n1·60−1
(
min−1

)
, (4)
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where n1 is number of signals trailing edges.
Operating conditions frequency changes ratio during two operators service was determined

according to Equation (5):

Operating conditions frequency changes ratio during two operators =
( fA − fB)

fA
·100%, (5)

where fA and fB are operating conditions frequency changes for one and two operators
service respectively.

The theoretical time needed to deliver branches to the chipper without additional complications
depends on the time needed to travel the distance between the branch pile and the chipper in both
directions, the time necessary to lift and remove the branch from the pile, and the time spent on inserting
the branch into the feed channel. The described relationship can be presented in the form of Equation (6):

ts = tr1 + tr2 + tl + tc (s). (6)

Individual markings in Equation (6) are as follows: ts—time to deliver branches to the woodchipper,
tr1—time to travel from the chipper to the pile of branches, tr2—time to travel from the pile of branches
to the chipper, tl—time to lift and remove the branches from the pile, tc—time to insert the branches
into the feed channel. If the time of branch delivery to the chipper ts greater than the time of chipping
tcp then it is reasonable to use adaptive systems, which can be represented by the Inequality (7):

tcp < ts (7)

Literature research shows that the average time to process 3 m long branches (i.e., similar in
dimensions to those used in the study) is about 4.5 s [32]. The average human walking speed is
1.34 m s−1 [45]. The remaining times are estimated by the authors on the basis of their own experience
as values 1 s for supplying the branch to the chipper and 3 s for lifting the branch (assuming that it
is not tangled). The characteristics of the theoretical time of branch delivery are shown in Figure 3.
It refers to an almost ideal situation. The presented time values may be longer if the branches are
tangled at the pile or if they become stuck in the chipper’s feed channel. Furthermore, the assumed
time values resulting from the operator’s movement speed may be increased. This value does not take
into account changes in speed that may result from terrain type or its unevenness. Thus, the assumed
time values should be treated as one of the lowest possible in reality—they are a kind of reference
point. Extending these times will further increase the efficiency of using adaptive systems.
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to travel from the chipper to the pile of branches, C—time to lift and remove the branch from the pile,
D—time to travel from the pile of branches to the chipper.

2.3. Productivity of Chipper Operation

During the experiment, the production rate of chips was measured with the use of two methods.
The first method was based on measurement of time t needed to fill a container with volume V = 120 L,
while the other method on the weight measurement m of full containers. The volume was measured
by filling a container made in accordance with the European standard PN-EN 840-1 (Movable waste
containers) where the first part of this standard presents dimensions and construction. Two containers
of the same design were used in the study. The filling of the container was controlled by one of the
researchers. He arranged the chips evenly with the outer edge of the container so that they do not
form a cone. After filling the container, he stopped time measurement and blocked the chippers
output channel, giving a signal to replace the container. After replacement, he opened the chipper’s
output channel. The moment of stopping time measurement was the reference point for the next
measurement, for which chips were already gathering in the output channel. The filled container was
then weighed. Time was measured manually with a stopwatch. The weight was measured using a
portable weighing scale (Radlastplattform up to 1500 kg meeting requirements of ISO 9001). In result,
after calculations were made, the results of volumetric Q and mass Qm productivity of the cylindrical
chipper tested were obtained. Tests were repeated 10 times. A statistical analysis of all measurements
was performed with a significance level established at α = 0.05. An Anderson–Darling test was used to
determine normality distribution of data measured. Then, a two-factor analysis of variance (ANOVA)
was applied to determine the impact of a change of the operator and the distance between the pile
of branches and the chipper on dependent variables, which in the first case was the time to fill the
container, and in the second case the weight of 120 l full container.

Volumetric Q and mass productivity Qm of the chipping process during testing was determined
with the use of the following Relations (8) and (9):

Q =
V
t

[
m3
·h−1

]
, (8)

Qm =
m
t

[
kg·h−1

]
. (9)

Increase ratio of mass flow rate was calculated as follows (10):

Increase ratio =
Q2 −Q1

Q2
·100%, (10)

where: IR is increase ratio, Q2 is mass flow rate for two operators and Q1 is mass flow rate for one
operator. Increase ratio of volumetric flow rate were calculated in the same way (ratio of values before
and after changing the number of operators).

3. Results

3.1. Change in Frequency of Operating Conditions

Test results of frequency in changes of operating conditions, as well as the percentage ratio of
active and idle operation in selected conditions of use, were determined based on signals from the
detection system in the feeding chute. Examples of signal changes curves depending on operating
conditions are shown in Figure 4. Test results of idle run time percentage and frequency of operating
condition changes are shown in Table 1. The change of the idle run percentage in the total operation
time of the cylindrical chipper vs. the number of operators and branch pile distance from the chipper is
presented in Figure 5. Characteristics of the impact of branch pile distance from the chipper on the idle
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run time ratio during chipping are presented in Figure 6. Frequency of operating condition changes
of the cylindrical chipper vs. the number of operators and branch pile distance from the chipper is
presented in Figure 7.Forests 2020, 11, x FOR PEER REVIEW 7 of 14 
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Table 1. Percentage of idle run time during chipping processes and frequency of operating
condition changes.

Title

Distance

3 m 9 m 15 m

Number of Operators

1 2 1 2 1 2

Percentage of Idle Run Time (%)

x 42.80 30.90 55.10 41.00 70.80 45.20
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Table 1. Cont.

Title

Distance

3 m 9 m 15 m

Number of Operators

1 2 1 2 1 2

Percentage of Idle Run Time (%)

Me 44.00 30.50 55.00 40.50 70.00 45.00
σ 3.79 2.55 3.59 2.68 6.06 3.79

Frequency of Operating Condition Changes (min−1)

x 5.71 6.08 2.97 5.28 2.20 4.08
Me 5.70 6.00 2.95 5.25 2.15 4.10
σ 0.33 0.50 0.24 0.37 0.34 0.36

x—arithmetic mean value, Me—median value, σ—standard deviationForests 2020, 11, x FOR PEER REVIEW 8 of 14 
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3.2. Change of Chipper Productivity

Measured values are presented in Table 2. The impact of the number of operators and distances
of branch piles on the container weight and filling time was analysed. Changes in the mass value
measured can be seen in Figure 8, whereas changes in mean time values are shown in Figure 9.

Table 2. Values obtained from measurements.

No G
A B C

D (min) E (kg) D (min) E (kg) D (min) E (kg)

x
1

2.05 22.65 2.93 23.00 3.09 23.20
σ 0.47 2.61 0.58 2.66 0.39 2.20

x
2

1.90 23.20 2.10 23.33 1.94 22.94
σ 0.30 2.50 0.52 2.73 0.38 2.65

x—arithmetic mean value, σ–standard deviation of arithmetic mean, G—operator number, A–C—branch pile
distance from chipper (3, 9, 15 m in sequence), D—time to fill up the container for chips and E—weight of full
container, G—number of operators.Forests 2020, 11, x FOR PEER REVIEW 9 of 14 

 

 
Figure 8. Average weight of full container, error bars are ± standard deviation, rectangles are ± 
standard error; A—for one operator, B—for two operators. 

 
Figure 9. Mean time to fill up the container for chips; error bars are ± standard deviation, rectangles 
are ± standard error; A—for one operator, B—for two operators. 

Results of flow rate calculations are presented on Figure 10 and Figure 11. 

 
Figure 10. Mass productivity of the chipping process; A—for one operator, B—for two operators, C—
increase ratio of mass productivity when the number of operators was increased to two. 

Figure 8. Average weight of full container, error bars are± standard deviation, rectangles are± standard
error; A—for one operator, B—for two operators.

Forests 2020, 11, x FOR PEER REVIEW 9 of 14 

 

 
Figure 8. Average weight of full container, error bars are ± standard deviation, rectangles are ± 
standard error; A—for one operator, B—for two operators. 

 
Figure 9. Mean time to fill up the container for chips; error bars are ± standard deviation, rectangles 
are ± standard error; A—for one operator, B—for two operators. 

Results of flow rate calculations are presented on Figure 10 and Figure 11. 

 
Figure 10. Mass productivity of the chipping process; A—for one operator, B—for two operators, C—
increase ratio of mass productivity when the number of operators was increased to two. 

Figure 9. Mean time to fill up the container for chips; error bars are ± standard deviation, rectangles
are ± standard error; A—for one operator, B—for two operators.

Results of flow rate calculations are presented on Figures 10 and 11.



Forests 2020, 11, 598 10 of 14

Forests 2020, 11, x FOR PEER REVIEW 9 of 14 

 

 
Figure 8. Average weight of full container, error bars are ± standard deviation, rectangles are ± 
standard error; A—for one operator, B—for two operators. 

 
Figure 9. Mean time to fill up the container for chips; error bars are ± standard deviation, rectangles 
are ± standard error; A—for one operator, B—for two operators. 

Results of flow rate calculations are presented on Figure 10 and Figure 11. 

 
Figure 10. Mass productivity of the chipping process; A—for one operator, B—for two operators, C—
increase ratio of mass productivity when the number of operators was increased to two. 
Figure 10. Mass productivity of the chipping process; A—for one operator, B—for two operators,
C—increase ratio of mass productivity when the number of operators was increased to two.Forests 2020, 11, x FOR PEER REVIEW 10 of 14 

 

 
Figure 11. Volume productivity of the chipping process; A—for one operator, B—for two operators, 
C—range increase ratio of volumetric productivity when the number of operators was increased to 
two. 

4. Discussion 

The number of operators and the distance between the pile of branches and the machine affect 
the operating conditions and productivity of mobile chipping devices. If we take the shortest distance 
into account (3 m) and operation provided by only one operator, the idle run time of the chipping 
machine was equal to ca. 43%. This value rose up to ca. 71% when the distance was 15 m (Figure 5). 
Increasing the number of operators from one to two reduced the idle run time by ca. 30% on average 
for the distance from 3 m to 15 m (Figure 5). If we take the results available in literature [32] into 
account, it may be demonstrated that the change of the idle run time value when branches are 
supplied by one operator within a range of 0.5 m to 15 m has an increasing character (Figure 6). 
Studies performed by Mc Ewan in 2019 showed that during works with the use of high-power 
industrial chippers, the average idle run time may be even 40% [25]. In contrast, Spinelli and Visser 
in 2009 in their studies on delays in wood chipping operations with the use of industrial 
woodchippers indicated that the average utilization of the chipper was 73.8%, which may indicate 
that the idle time accounts for 26.3% [46]. Tests show that the idle run time during the low-power 
chipper operation considerably exceeds 20% of the total operating time. In motorized vehicles, the 
20% value of the idle run time gives an impetus to start–stop systems [41].  

In studies described herein, the impact of types of delays were not classified, i.e., mechanical, 
operator-related, organizational and other delays [41]. It results from the fact that the objective of 
studies was not to determine the impact of all delays on the chipper operation. Only those, which 
occur during assumed uninterrupted work of both the machine and operators, were analysed. It is 
reasonable as in the case of most other delay occurrences, that people who operate the device simply 
switch it off. Taking other delays into consideration may only extend the idle work time, which will 
additionally emphasize the reason for the application of adaptation systems.  

The next parameter tested is the frequency of operating condition changes. Tests showed that 
the rate of operation changes for one operator may occur from 6 to 2 times per one minute (Figure 7). 
Frequency of branch supply is significantly reduced along with the distance of the branch pile from 
the chipper. The increase in a number of operators from one to two has a slight impact on the 
frequency of operating condition changes (by ca. 7%) at the shortest distance from the chipper (3 m), 
which is shown in Figure 7, whereas at longer distances, the additional operator may increase the 
frequency of chipper operating condition changes by 77% at 9 m distance and 85% at 15 m distance. 
The change rate at 6 min-1 level is a too high value to stop the engine as in systems used in vehicles. 
Furthermore, low-power chippers often do not have electric motors to support the start–up of the 
combustion engine. The stoppage time assumed for cars is longer and results, inter alia, from traffic 
lights changes [47–49]. Furthermore, the vehicle driving time in the city cycle is longer than the time 
needed to shred one branch. Results of tests suggest that in such operating conditions such as those 

Figure 11. Volume productivity of the chipping process; A—for one operator, B—for two operators,
C—range increase ratio of volumetric productivity when the number of operators was increased to two.

4. Discussion

The number of operators and the distance between the pile of branches and the machine affect the
operating conditions and productivity of mobile chipping devices. If we take the shortest distance into
account (3 m) and operation provided by only one operator, the idle run time of the chipping machine
was equal to ca. 43%. This value rose up to ca. 71% when the distance was 15 m (Figure 5). Increasing
the number of operators from one to two reduced the idle run time by ca. 30% on average for the
distance from 3 m to 15 m (Figure 5). If we take the results available in literature [32] into account,
it may be demonstrated that the change of the idle run time value when branches are supplied by one
operator within a range of 0.5 m to 15 m has an increasing character (Figure 6). Studies performed by
Mc Ewan in 2019 showed that during works with the use of high-power industrial chippers, the average
idle run time may be even 40% [25]. In contrast, Spinelli and Visser in 2009 in their studies on delays
in wood chipping operations with the use of industrial woodchippers indicated that the average
utilization of the chipper was 73.8%, which may indicate that the idle time accounts for 26.3% [46].
Tests show that the idle run time during the low-power chipper operation considerably exceeds 20% of
the total operating time. In motorized vehicles, the 20% value of the idle run time gives an impetus to
start–stop systems [41].

In studies described herein, the impact of types of delays were not classified, i.e., mechanical,
operator-related, organizational and other delays [41]. It results from the fact that the objective of
studies was not to determine the impact of all delays on the chipper operation. Only those, which occur
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during assumed uninterrupted work of both the machine and operators, were analysed. It is reasonable
as in the case of most other delay occurrences, that people who operate the device simply switch it off.
Taking other delays into consideration may only extend the idle work time, which will additionally
emphasize the reason for the application of adaptation systems.

The next parameter tested is the frequency of operating condition changes. Tests showed that
the rate of operation changes for one operator may occur from 6 to 2 times per one minute (Figure 7).
Frequency of branch supply is significantly reduced along with the distance of the branch pile from the
chipper. The increase in a number of operators from one to two has a slight impact on the frequency
of operating condition changes (by ca. 7%) at the shortest distance from the chipper (3 m), which is
shown in Figure 7, whereas at longer distances, the additional operator may increase the frequency of
chipper operating condition changes by 77% at 9 m distance and 85% at 15 m distance. The change
rate at 6 min-1 level is a too high value to stop the engine as in systems used in vehicles. Furthermore,
low-power chippers often do not have electric motors to support the start–up of the combustion engine.
The stoppage time assumed for cars is longer and results, inter alia, from traffic lights changes [47–49].
Furthermore, the vehicle driving time in the city cycle is longer than the time needed to shred one
branch. Results of tests suggest that in such operating conditions such as those that occur in low-power
woodchippers, the adaptation should rather control the speed of the drive unit instead of stopping it.

In further studies the range of time shall be considered, for which the application of speed control
systems of the drive, or as an alternative—its stopping, depend on the idle run to active run ratio.
To achieve this, the following shall be taken into account: start–up time, tribological processes, flue gas
emission, fuel consumption and complexity of the drive unit control.

The mean time and weight of the full container change along with the change of the branch pile
distance from the chipper, whereas results of ANOVA show that no essential statistical differences
occur between weights of full containers as a result of the distance change between the pile and the
chipper, operator, but also their interactions. This means that prepared wood, on average, had very
similar sizes and weight. Changes in mass value measured can be observed in Figure 8.

The mean time value grows as the distance gets longer, which may be observed in Figure 9.
The analysis of variance performed allows for rejecting the null hypothesis. Its results suggest that
both the distance of the branch pile from the chipper, the operator himself, as well as interaction of
both of these factors, have an impact on the time the raw material is delivered for chipping.

The growing character of the mean time value was maintained for all experiment cases; however,
data suggest that that in case of one operator, the delivery of branches always took more time. It is
worth noticing that the mean time values to fill up the container are similar only in cases when two
operators work. If we assume that the wood prepared, on average, had very similar dimensions and
weight, as well as the same distance to be covered by operators, a conclusion arises that the changes
observed could be an effect of their movement at different speeds. Maybe the observed character of
data analysed was just caused by the human factor.

Productivity of the chipping process decreases as the distance between the branch pile and the
chipper grows and as the number of operators decreases. Observed drops of mass output (productivity)
accounted for ca. 32% for one operator and 7.2% for two operators, whereas reduction of volume
output accounted for ca. 33.5% for one operator and 6.1% for two operators. Differences in output
values result from different apparent density of biomass. It is variable as it considers the volume of
empty cavities in the container.

The increases in the process productivity in mass terms, while increasing the number of operators
from one to two, for individual distances 3, 9, 15 m are 9.4%, 33%, 33.6%, respectively. While for the
volume output, the respective values are as follows: 7.2%, 32% and 34.4%. Output increase for the
shortest distance is small. It is most likely due to the fact that with two operators working at such a
section, the chipper works more or less continuously.
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5. Conclusions

Tests of delay characteristics of branch delivery to chippers were analysed for two factors: the
branch pile distance from the chipper and the number of operators. Delays were investigated to
determine operating conditions of low-power chipping machines used mainly for clearing works.
These tests allowed determination of the idle run time, as well as frequency of operating condition
changes. It was demonstrated that the idle run time of the cylindrical chipper might account for 43%
to 71% of the total operating time, and the frequency of the machine operating condition changes
from 6 to 2 times per minute. Such conditions indicate that the application of adaptation systems in
this type of machine is justified [38]. Changing the operating status of the driving unit is due to the
torque demand of the cutting mechanism. Such systems may reduce consumption of fuel and flue gas
emission value in tested machines. However, to confirm the effects of the implementation of adaptation
systems in the chipping machines, the construction of prototypes and testing with the use of PEMS
(portable emission measurement system) are required. Such testing will allow one to measure the flue
gas emission and consumption of fuel in actual operating conditions. In the future, such systems could
be included in recommendations of legislators for nonroad mobile machinery with small engines, as
solutions that limit the impact of periodic-variable operation machinery on the environment. Similar
guidelines are included in regulations on homologation of vehicles, e.g., in the EU area with regard
to start–stop system applications. In addition, the tested mass and volume output of the cylindrical
chipper in the most beneficial case is equal to 0.66 t/h and 3.5 m3/h, respectively. The increase of the
branch pile distance from the chipper causes a drop of the mass output by 32%, and volume output
by 33.5%. The implementation of adaptation systems may also reduce the costs associated with the
processing of branches and production of chips, as well as limit negative effects of delays in wood
chipping processes.
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