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Abstract: Research Highlights: We investigated the variability of vessel diameter distributions within
the liana growth form among liana individuals originating from a single site in Laussat, French Guiana.
Background and Objectives: Lianas (woody vines) are key components of tropical forests. Lianas are
believed to be strong competitors for water, thanks to their presumed efficient vascular systems.
However, unlike tropical trees, lianas are overlooked in field data collection. As a result, lianas are
often referred to as a homogeneous growth form while little is known about the hydraulic architecture
variation among liana individuals. Materials and Methods: We measured several wood hydraulic and
structural traits (e.g., basic specific gravity, vessel area, and vessel diameter distribution) of 22 liana
individuals in a single sandy site in Laussat, French Guiana. We compared the liana variability of
these wood traits and the correlations among them with an existing liana pantropical dataset and two
published datasets of trees originating from different, but species-rich, tropical sites. Results: Liana
vessel diameter distribution and density were heterogeneous among individuals: there were two
orders of magnitude difference between the smallest (4 um) and the largest (494 pm) vessel diameters,
a 50-fold difference existed between extreme vessel densities ranging from 1.8 to 89.3 vessels mm~2,
the mean vessel diameter varied between 26 um and 271 um, and the individual theoretical stem
hydraulic conductivity estimates ranged between 28 and 1041 kg m~! s™! MPa~!. Basic specific
gravity varied between 0.26 and 0.61. Consequently, liana wood trait variability, even within a small
sample, was comparable in magnitude with tree surveys from other tropical sites and the pantropical
liana dataset. Conclusions: This study illustrates that even controlling for site and soil type, liana traits
are heterogeneous and cannot be considered as a homogeneous growth form. Our results show that
the liana hydraulic architecture heterogeneity across and within sites warrants further investigation
in order to categorize lianas into functional groups in the same way as trees

Keywords: liana; wood traits; Laussat (French Guiana); trait variability; vessel diameter distribution

1. Introduction

Lianas (woody vines) are increasing in abundance and biomass across the neotropics [1].
Mechanistic understanding behind the current liana proliferation remains, as of today, unclear
but could find its roots in the efficiency of the liana vascular system in accessing below-ground
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resources [2]. However, lianas remain understudied to this day and generally ignored in plot-scale
studies [3]. In the absence of sufficient data, it remains impossible to validate the hypothesis of the
specific advantage of lianas over trees for acquiring water and below-ground resources. Moreover,
this lack of liana traits information hinders the development of reliable vegetation models which would
allow predictive assessments of liana dynamics under changing climate [4].

It is important to forecast the abundance of lianas and their impact on the ecosystem as they are a
critical component of tropical forests. Lianas indeed act as structural parasites, using the structure of
self-supporting growth forms (e.g., trees) to climb up and reach the open canopy [5]. In disturbed
or water-limited tropical ecosystems, they can represent up to 40% of woody stems [2], and about
one third of the forest leaf biomass [6]. By increasing the competition for resources (water, nutrients,
and light), lianas reduce tree growth, increase tree mortality [7], and decrease ecosystem carbon uptake
capacity [8] and reinforce the general trend of the forest carbon sink decline [9].

In the past, the lianescent growth forms have been correlated with wide [10-12] and long [13]
vessels, responsible for its hydraulic-efficiency, right-skewed vessel diameter distribution [14,15],
and high sapwood-specific hydraulic conductivity [16-19]. Liana wood has also been associated with
larger amounts of axial parenchyma, larger rays, and longer fibers than tree wood [20]. These properties
presumably make liana vascular systems competitive hydraulic architectures and may explain why
lianas exhibit higher transpiration rates, less negative predawn leaf water potentials, and larger
growth rates compared to trees during the dry season [16,21-24]. However, the data supporting these
conclusions were collected from a low number of liana species in a limited number of study sites. All in
all, liana woody trait data remain particularly sparse in the existing literature.

Consequently, unlike trees that are often categorized into functional groups, lianas, when taken
into account, are most of the time considered a homogeneous growth form (e.g., a single plant functional
type in vegetation models or a single category in statistical models [25]) while several studies have
shown that the ranges of variation in liana allometries [26,27] and traits [28] largely overlap those of
trees. The actual heterogeneity of liana woody traits is largely unknown even though seminal studies
have shown that liana hydraulic properties vary pantropically [29], and even locally [30].

To contribute to resolving this lack of data, we sampled 22 individuals, belonging to 10 liana
families within a single tropical forest plot in Laussat, French Guiana. We assessed the vessel diameter
distribution of each liana individual and measured some key wood variables. We investigated the
correlations between wood liana traits related to water transport. Finally, we estimated the liana trait
variability at the local scale and compared this variability with an existing global liana dataset and
data of tree traits from single tropical sites.

2. Materials and Methods

2.1. Study Site

Field work was conducted during a period of three days (23-25 May 2018) in the tropical rainforest
of Laussat, French Guiana (05°28’ N, 053°34” W). The site is located in the north-west of French Guiana,
which is characterized by a tropical rainforest climate. Mean annual precipitation is about 2400 mm,
the mean dry season about 36.8 days long, and the annual mean temperature around 26 °C [31].
The site is located in close vicinity of the national road N1 and comprises a secondary forest with three
types of soils: terra firme, white sands, and lowland soils (from low to high abundance).

2.2. Liana Sampling and Identification

Individuals were sampled along a 100 m long line transect, 50 m away and parallel to the access
trail. The 100 m transect covered a single type of soil (white sands). Stem sections were harvested at
130 cm (where diameter at breast height (DBH) was measured) from the last rooting point, according
to Schnitzer and colleagues [32]. Specimens coming from different rooting points were considered
as distinct individuals. Sample lengths were at least 15 cm. All sampled lianas reached the canopy.
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All samples were stored after collection in individual zip bags. Cotton wool soaked with an ethanol
solution (50% ethanol, 50% water) was attached to each extremity of the stem sample and covered with
aluminum foil to prevent fungal development and drying of the sample. Photographs of the sampled
lianas were taken before sample collection to ease liana identification. Samples were kept in isothermal
bags and stored in the refrigerator (4 °C) after each field session.

Liana identification was conducted post-sampling thanks to the expertise of liana specialists
from the Wood Laboratory of Pariacabo (French Guiana) and the Smithsonian Institute (Washington,
DC, USA). As leaves were not reachable from the forest ground, the identification only relied on
stem anatomy, climbing mechanism, field photographs, bark aspect, and the presence of exudates.
Lianas were identified at the family level, and whenever possible with high level of confidence at the
genus level.

In total, 22 individuals were sampled (minimum stem diameter cut-off of 1 cm), 17 of which
could be identified at the family level post-sampling (10 different identified families). Among these
22 speciments, 6 different genera could be identified for 10 individuals (Table 1). Even without proper
identification, the 22 individuals could be classified into 14 different morpho-species. In Table 1,
and throughout the manuscript, numerical arbitrary identifiers are consistently used to distinguish
individuals from the same morpho-species.

2.3. Basic Specific Gravity Measurements

Thinner discs (1 cm length) were extracted from the initial 15 cm long samples and polished for
stem density measurements, which were achieved on samples including both wood and bark. Mass and
volume measurements were conducted seven days after sampling, and samples were re-hydrated by
immersing lianas in water 24 h prior to measurement. Saturated volume (Vs, cm?®) was measured
by the water displacement method using a Sartorius CP224S balance with a precision of 0.2 mg.
Liana samples were then dried for 48 h in an oven (Memmert Type UNE) at 103 °C, and then weighed
once more to measure their dry mass (Mg, g). Basic specific gravity (Gp, unitless) was calculated as the
ratio of sample dry mass to its saturated volume [33], normalized by the density of water p (1 g cm~3):

Miry L

- - 1
b=y P (1)

2.4. Vessel Diameter Distribution

Transverse section images of polished cross-sections were taken for each individual before and
after oven drying. Cross-section images were acquired at 4800 dpi resolution, using an EPSON V800
flatbed scanner. For each sample, a representative area (i.e., a wedge portion of the cross-section
from pith to bark under the condition that the area contained at least 40 vessels) was selected and
further analyzed. All the vessels contained in this area were counted and the area was measured using
standard annotation tools in Image]J [34].

2.5. Anatomical Traits

From each cross-section image, we identified, located, and scanned all liana vessels included in the
representative area. We counted their total number N and as they were rarely circular, we calculated
for each of them (i varying between 1 and N) the equivalent circular diameter D; (m) as:

4A;
Di=— 2
U
where A; (m?) is the individual vessel area as computed from cross-sections in Image]. From the

vessel diameter distribution of each sample, we further computed the mean vessel diameter D (m),
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the hydraulically weighted mean diameter D), (Equation (3), m), and the theoretical stem conductivity,
K}, derived from the Hagen-Poiseuille equation (Equation (4), kg m~!s7t MPa™l), according to [35]:

1
4

1
D), = NZD;* 3)
i
_ ™ vp.pt
Ky = 135, VDD @)

where p and 1) are the water density and viscosity (respectively 1000 kg m~ and 1.002 x 10~ MPa s),
and VD is the vessel density (as calculated by the ratio of N and the total representative area S, m?).
Finally, the vessel area fraction, VA (%) was calculated as the fraction of the total sample area occupied

by the vessels:
nD?
Zi(Tl)

VA =100x —=— (5)

2.6. Analyses

We measured liana DBH, G, and the vessel diameter distributions for each of the 22 studied
individuals. From the vessel diameter distribution we further computed the hydraulically-weighted
diameter Dy, VD, VA, and specific conductivity K, for each single specimen. Correlations between all
individual variables were assessed through Pearson coefficients and tested for significance. To meet
normality assumptions, VD, Ky, D, and D), were log10-transformed.

To test the bimodal hypothesis of liana vessel diameter distribution, we computed the skewness
of each individual vessel diameter distribution [36] and classified the individual into left-skewed
(skew < —0.5), right-skewed (skew > 0.5), or not skewed (-0.5 < skew < 0.5).

To compare the variability of liana basic specific gravity in our study site with global estimates,
we extracted all measured values corresponding to liana species from the Global Wood Density
Database (GWDDB) [37] merged with a growth form database [38].

To get a sense of how the single-site variability we observed in our liana dataset compared with
liana global estimates and superimposed the Dj,-VD relationship derived from our observations with
the liana pantropical dataset of Rosell and Olson [29]. In doing so, we estimated the ranges of variability
of both vessel diameter distribution and vessel density that were represented in our liana dataset.

In addition, we performed principal component analysis (PCA) to evaluate how plant traits are
associated, after averaging (when possible, i.e., n > 1) the variables for the individuals belonging to the
same morpho-species level.

We also compared wood trait variability to the ones observed for tree species in a semi-evergreen
forest of La Chonta, Bolivia [39], and in seasonally moist lowland forests in Panama [40]. In their
studies, Poorter et al. [39] and Hietz et al. [40] investigated wood trait variability of 42 and 325 tropical
tree species, respectively, spread along the wood economic spectrum and covering a large range of
life strategies in species-rich rainforests (59 and 166 vascular species ha™! in both sites, respectively).
For this analysis, we also used the morpho-species averages of the woody traits. This aggregation at
the morpho-species level was necessary to format our dataset according to the previous studies [39,40].
However, the low number of replications for several liana species limits the quality of the results,
which should therefore be interpreted with caution.

All data (including the cross-section images), analyses, figures, tables, and scripts are publicly
available at GitHub (repertory femeunier/LianaHydroVar, commit b496640). The polished cross-sections
are also contained in the supplementary material of this paper.
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3. Results

In total, we measured the size (diameter) of 1239 vessels from 22 liana individuals. The number of
vessels we measured per individual varied between 42 and 116 (56 on average, see Table 1). Measured
vessel diameter distributions were broad at the individual scales, and therefore over the entire liana
dataset (Table 1 and Figure 1). Minimum and maximum measured vessel diameters of the whole liana
dataset were 4 and 494 pm, respectively (Table 1). On average, the difference between the largest and
the smallest vessel diameter of each liana individual was 248 pum (with a standard deviation of 88 um
between individuals). This difference between extremume-size vessels corresponds to 1.74 times the
whole dataset average vessel diameter (142 um, Table 1). The vessel diameter coefficient of variation
ranged between 22% and 163% (Indet3 and Sapindaceae Paullinia spp1 (1), respectively) with a mean of
54% for all 22 studied individuals, and an inter-individual standard deviation of 32%.

(a)
Indet1 2) N=50 __Aass  —»
Rubiaceae spp1 (2) N=49 A ./ \_
et T vl e —
Sapindaceae Paullinia spp1 (1) _N=108

Bignoniaceae spp1 N=42
Rubiaceae spp1 (1) _N=44 N A; (

Indet2 (2) _N=55

Menispermaceae Abuta spp1 ~ _N.= 50 2N
Bignoniaceae spp2 N =50 Dh (um)

Rubiaceae spp1 (3) N =49

Dilleniaceae Doliocarpus spp1 (2) M l 250

Dilleniaceae Doliocarpus spp1 (1) N =49 )‘/‘/Mﬂ 200

Indet3 N = 50 150

Fabaceae spp1 N =50 AA_A_ 100

Convolvulaceae Maripa spp1 (2) _N=45 J

Malpighiaceae spp1 N =50

Sapindaceae Paullinia spp1 (2) N=53
Gnetaceae Gnetum spp1 N =55
Apocynaceae Odontadenia spp1 N=116
Convolvulaceae Maripa spp1 (1) N =44
Convolvulaceae Maripa spp1 (3) N = 51

LP

Indett (1) _N=54 i Aa . =
1 10 100 1000

(b) Xylem vessel diameter (um)

-~ 12

[ =

Re) 0.9

‘5 o

k)

= 06

0

©

4 0.3

2 o0

3 1 10 100 1000

Xylem vessel diameter (um)

Figure 1. Vessel diameter frequency distribution of the 22 liana individuals (a) and of the whole liana
dataset (b). In (a), lianas were sorted by their hydraulic diameter Dy, (increasing from top to bottom)
and the values of N indicate the number of measured xylem vessel diameters for each individual.
The two most extreme lianas (in terms of Dj,) are illustrated by their cross-sections (scaled by their
respective DBH, see Table 1). The numbers in parentheses are subjective identifiers which distinguish
individuals from the same morpho-species.
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Table 1. Wood anatomical, structural, and hydraulic properties of the 22 liana individuals, alongside with the family and whole dataset aggregated values (bold). The

numbers in parentheses are subjective identifiers which distinguish individuals from the same morpho-species. DBH = diameter at breast height, G;, = basic specific

gravity, N = number of measured vessels, D; = vessel diameter, D = mean vessel diameter, D, = hydraulically weighted mean diameter, VD = vessel density, VA =

vessel area fraction, K, = maximum stem conductivity.

. DBH Gy Vessel N Median D; b D, VD VA K
Family Genus (mm) © © (min-max) (+SD) (um) (mm-2) (%) (kgm1s1
(um) (um) B MPa™1)
Apocynaceae Odontadenia spp1 52 0.38 116 177 (12-494) 194 + 132 280 1.8 8 277.54
Bignoniaceae sppl 15 0.54 42 50 (11-192) 67 + 51 109 9.5 5.2 32.69
spp2 19 0.53 50 80 (15-292) 100 £ 71 154 10.4 12.3 143.71
17 £ 2.8 0.54 + 0.01 46+ 6 65 (11-292) 83 +23 131 + 32 10 £ 0.7 88+5 88.2 + 78.5
Convolvulaceae Maripa sppl (1) 52 0.42 44 248 (50-393) 247 + 85 282 3.3 17.8 510.76
Maripa sppl (2) 41 0.55 45 171 (30-292) 162 + 84 206 7.8 20.3 344.4
Maripa spp1 (3) 41 0.5 51 265 (134-394) 271 £ 65 293 4.1 24.8 734.17
447+ 64  0.49 +0.07 47 +4 248 (30-394) 227 + 57 260 + 47 51+24 20.9 + 3.6 529.78 + 195.58
Dilleniaceae Doliocarpus spp1 (1) 22 0.48 49 144 (36-251) 154 + 55 178 9.4 19.6 229.65
Doliocarpus spp1 (2) 12 0.47 70 126 (14-296) 116 £ 71 162 13.4 19.5 225.45
17+7.1 0.47 £+ 0.01 60 + 15 135 (14-296) 135 + 27 170 £ 11 114 £29 19.5 + 0.1 227.55 + 2.97
Fabaceae sppl 30 0.61 50 158 (36-393) 164 + 68 206 7.7 19.1 342.57
Gnetaceae Gnetum sppl 53 0.33 55 252 (50-379) 218 + 102 267 2.8 12.7 350.19
Malpighiaceae sppl 295 0.34 50 200 (80-272) 189 + 53 207 11 332 495.55
Menispermaceae Abuta sppl 95 0.57 50 116 (62-245) 125 + 49 151 114 16 144.15
Rubiaceae sppl (1) 29 0.58 44 113 (16-175) 113 + 30 123 20.6 22.2 114.79
sppl (2) 37 0.58 49 80 (9-124) 78 +29 89 18.2 9.8 27.88
sppl (3) 35 0.58 49 101 (32-296) 111 + 62 157 30.6 38.6 451.79
33.7+4.2 0.58 =0 47 +3 101 (9-296) 101 + 20 123 + 34 23.1+6.6 23.6+14.5 198.15+ 223.91
Sapindaceae Paullinia spp1 (1) 28 0.58 108 15 (4-245) 26 +43 99 89.3 17.5 206.67
Paullinia spp1 (2) 26 0.58 53 205 (62-344) 199 + 70 228 6.7 23.3 446.41
27+ 14 0.58 =0 80 + 39 110 (4-344) 112 +£ 122 163 + 92 48 + 58.4 204 +4 326.54 + 169.52
Indet1 1 26 0.45 54 300 (36-355) 271+ 80 296 54 34.7 1041.38
2 16 0.47 50 50 (10-134) 56 + 32 77 66 21.4 58.27
21+71 0.46 + 0.02 52+3 175 (10-355) 163 + 152 187 +154 358 +42.8 28.1+9.4 549.82 + 695.16
Indet2 @ 33 0.49 55 29 (6-156) 50 + 48 93 744 28.1 137.39
2 37 0.58 55 50 (13-276) 67 + 57 131 215 13.1 155.28
35+28 0.53 + 0.06 55 40 (6-276) 59 +12 112 + 27 48 +37.4 20.6 + 10.6 146.34 + 12.65
Indet3 30 0.26 50 189 (80-250) 181 + 40 192 42 11.3 138.66
Entire dataset mean + sd 345+17.8 0.49 +0.10 56 + 19 142 + 82 144 £ 72 180 + 71 19.5+245 19.5+8.7 300.43 + 244.14
min-max 12-95 0.26-0.61 42-116 4-494 26-271 77-296 1.8-89.3 5.2-38.6 27.88-1041.38
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More than half of all measured vessels (59%) were larger than 100 um (Figure 1). At the individual
level (Figure 1), the fraction of large vessels (>100 pm) varied between 6% (Sapindaceae Paullinia spp1
(1)) and 100% (Convolvulaceae Maripa spp1 (3)), with a mean of 62% over all individuals. Rubiaceae
sppl (2) was the liana individual with the smallest maximum vessel diameter (124 um), which almost
corresponded to the narrowest vessel (134 pm) of Convolvulaceae Maripa spp1 (3). Only 21% of the
measured vessels were smaller than 50 um and almost half of them were contained in Sapindaceae
Paullinia spp1 (1); see Figure 1. More than a quarter (27%) of all vessel diameters were wider than
200 um. These very large vessels were found in 17 out of the 22 individuals, and when present
represented between 3% and 99% of all vessels (Sapindaceae Paullinia spp1 (1) and Convolvulaceae
Maripa spp1 (3), respectively).

Nine of the 22 liana vessel diameter distributions could be considered as right-skewed (i.e., many
narrow vessels and few wide ones, Figure 1), with a positive skewness >0.5. This implies that more
than half of liana individuals (13) were either not-skewed (9, —0.5 < skew < 0.5) or left-skewed (4,
skew < —0.5, many wide vessels and few narrow ones).

Hydraulically weighted diameter D, was found between 77 and 296 um (Table 1) and was
positively correlated with the mean vessel diameter (r = 0.91, p-value < 1078, Figure 2), and with
the Hagen-Poiseuille stem-derived conductivity K}, (r = 0.82, p-value < 0.001, Figure 2). Individuals
with the two extreme D), originated from the same morphospecies (Indetl) that differed by 10 mm in
DBH (Table 1). Diameter metrics (D and Dj) were negatively correlated with vessel density (Pearson
coefficients of —0.87 and —0.86, respectively and p-values < 107°) and with basic specific gravity
(r = —0.45 and —0.44, p-value = 0.036 and 0.041, respectively).

On average, liana stem conductivity was large (300.43 kg m™ s™! MPa™!) even though it
dramatically varied between the least (28) and the most (1041) conductive individual (Table 1). Due to
the strong negative correlation between VD and Dy, K, and VD were negatively (but marginally)
correlated (r = —0.42, p-value = 0.052, Figure 2), while they exhibited a positive linear relationship
according to Equation (4).

Due to the fourth power in the Hagen-Poiseuille equation (Equation (4)), the largest vessels of
each individual disproportionately contributed to the stem conductivity (Figure 3). The top 5% of the
largest vessels contributed between 12% and 99% to the individual stem conductivity, with a mean of
38%. On average, the diameter above which the vessels contributed to 50% of the conductivity was
equivalent to three times the mean vessel diameter.

Individual vessel area was also extremely variable between samples (Table 1): vessels occupied
between 5.2% (Bignoniaceae spp1) and 38.6% (Rubiaceae sppl (3)) of the analyzed area. VA was a
poor predictor of basic specific gravity but correlated (r = 0.6, p-value = 0.002) with the maximum
stem hydraulic conductivity (Figure 2). Similarly, vessel density varied over a wide range of values:
between 1.8 (Apocynaceae Odontadenia sppl) and 89.3 (Sapindaceae Paullinia sppl (1)) vessels per
square millimeter.

As compared to a much larger study [29] in which 1409 pantropical wood samples (267 non-self-
supporting) from 424 species (84 non-self-supporting) among 159 families (136 non-self-supporting)
were analyzed, the ranges of measured values of both hydraulic diameter Dj, and vessel density VD
were smaller but included a significant fraction of the global observations (Figure 4). More precisely,
in the range of D), we observed that Laussat covered 37% of the range reported in the global dataset of
Rosell and Olson [29]: the minimum Dj, measured in this study in Laussat was larger (77 vs. 20.2 um)
while the maximum Dj, was smaller (296 vs. 609 um) than the respective extremum values of Rosell
and Olson [29]. Observed VD in Laussat comprised 12% of the range observed by Rosell and Olson
pantropically, the maximum vessel density in this study being much smaller than the maximal one of
Rosell and Olson (89.3 vs. 685 vessels mm~2). The slopes of the log-log regression of Dy, and VD in our
study and the one of Rosell and Olson also agreed on the direction of the correlation (Figure 4).
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Figure 2. Correlogram between individual wood sample traits of the whole liana dataset. The main
diagonal shows the frequency distributions of these variables while the other plots represent the
correlation between the corresponding variables alongside with the Pearson’s coefficient and its
significance according to the no-correlation test (*** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05).
Vessel density, mean diameter D, hydraulically-weighted diameter Dy, and maximum stem hydraulic
conductivity K,, were log10-transformed to compute the Pearson correlation coefficients. Some of the
significant correlations are obvious (D and Dy, for instance) and derive from the way we calculated
them from one another (see Section 2). DBH = diameter at breast height, D = mean vessel diameter,
Dy, = hydraulically weighted mean diameter, K, = maximum stem conductivity.
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Figure 3. Contribution to the maximum stem hydraulic conductivity of each xylem vessel according
to its diameter. All 22 studied individuals were ranked, and hence colored according to their
hydraulically-weighted diameter Dj,.
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Figure 4. Relationship between the hydraulic diameter Dj, and the vessel density VD. The data of this
study are the blue solid dots and can be compared with non-self-supporting species (blue open dots)
and self-supporting species (red open dots) published by Rosell and Olson [29]. The right and top
subplots compare the marginal distributions along both axes, and the dashed distributions arising from
the data of this study.

There was more than a factor of two between the lowest (0.26) and the largest (0.61) liana basic
specific gravity measurements. Measured liana wood densities in Laussat were rather on the low
side of both the tree and liana records from the GWDDB: liana mean basic specific gravity (0.52) was
significantly lower (p-value < 0.004) than the global mean of lianas (0.58, N = 153) and of trees (0.61,
N > 27,000). The spread of the liana G;, range (0.26-0.61) represented about 27% of the range generated
by all tree entries (0.11-1.39), and 37% of the range generated by all liana entries (0.17-1.12).

The first two axes of the PCA applied to the morpho-species-aggregated liana wood traits
explained 75% of the variation (Figure 5). The first axis (53.9% of the variation) showed strong positive
loadings for the diameter metrics (D, Dy, and D,y the maximum vessel diameter), individual size and
the maximum stem hydraulic conductivity K, and negative loadings for basic specific gravity and
vessel density. The second axis explained 21.1% of the variation and showed a positive loading for the
vessel cross-sectional area VA and the maximum stem conductivity K,. The 14 liana morpho-species
were almost equally distributed in all four quadrants (Figure 5).
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Figure 5. Principal-component analysis of the 8 wood traits of 22 liana individuals analyzed in this
study (blue arrows) together with the species distribution in the principal component space. DBH =
diameter at breast height, D = mean vessel diameter, D, = hydraulically-weighted diameter, D,y =
largest vessel diameter, K, = maximum stem hydraulic conductivity, VD = vessel density, G, = basic
specific gravity, and VA = vessel area fraction. VD, D, Dy, and K, were log10-transformed before
analysis. Each studied liana individual was identified by its family and its genus whenever it could be
determined with confidence (see Table 1). For comparison, we superimposed the principal component
analysis of the overlapping traits from [39] achieved on 42 tropical tree species (red arrows).

4. Discussion

Just like other growth forms that have variable vessel sizes across their stem due to ontogenetic
shifts and seasonal and interannual changes in meteorological conditions, liana cross-sections were
characterized by broad vessel diameter distributions. Nevertheless, most of the liana individuals that
we investigated were characterized by the presence of large to very large vessels (Table 1 and Figure 1),
as observed in previous liana studies [13,41]. Such large vessels are responsible for previously observed
large conductivity in lianas, and their higher sensitivity to embolism [16-18,23]. All individuals
considered together, the vessel diameter distribution of the whole dataset was more right-skewed than
global vessel distributions of trees and lianas [42] even though only nine liana individuals (out of 22)
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could be considered as right-skewed. This discovery questions the widely shared hypothesis of vessel
diameter bimodal distribution in lianas. This study shows that more than half of liana individuals do
not exhibit such a dimorphic distribution.

On average, liana individuals from this study were characterized by low basic specific gravity and
hydraulically efficient stems as compared to global plant trait distributions, which is consistent with
their ability to structurally parasitize trees and escape the trade-off between stem hydraulic efficiency
and mechanical stability [19]. These findings are also in line with previous studies showing that lianas
have relatively lower wood density and are hydraulically more efficient than trees [43].

The correlations between liana wood trait variables we found in our dataset were close to wood
trait relationships observed in tropical trees [39]: a strong negative correlation between VD and K,
(r = -0.42 and —0.59 in our study and theirs, respectively), and between VD and D (r = —0.87 and -0.9,
respectively), and a strong positive correlation between Dy, and K, (r = 0.82 and 0.85, respectively).
Similarly, liana individual mean vessel diameter D was highly (and negatively) correlated with vessel
density VD when log10-transformed (r?> = 0.76), which is very close to the relationship observed for self
and non-self-supporting species pantropically (r* = 0.74 [29]). We also found no correlation between
the liana vessel area fraction VA and liana basic specific gravity (Pearson correlation r = 0.06), as it was
previously observed for rainforest tree species (r = 0.1 [39]). These results indicate that drivers of trait
covariation in lianas are likely similar to those in trees.

The principal component analysis applied to our dataset (Figure 5, blue axes) yielded very similar
results as the ones found by Poorter et al. [39] (Figure 5, red axes). As for tropical trees, the first
axis of our PCA shows a positive relationship between K, and average vessel diameter, on the one
hand, and a negative relationship between these traits and the vessel density and the basic specific
gravity on the other hand, which reflects the vessel diameter number trade-off. The second axis
represents the trade-off between different tissue type investments and is strongly correlated to vessel
area. These results are consistent across lianas and trees. In contrast to Poorter et al. [39], liana wood
density did not load equally on both axes, and therefore could be a good proxy for liana stem hydraulics
only rather than other stem functions.

This study, however, has some limitations. First, we did not collect wood samples from co-occurring
trees and as a consequence, we cannot compare traits between growth forms from the same site.
Second, while it is known that the theoretical (maximum) stem hydraulic conductivities are significantly
reduced due to intervessel anatomical structures such as pits for both lianas and trees, we did not
directly measure the sapwood-specific conductivities and can therefore only investigated maximum
conductivities. Third, we did not measure the diameter of each single xylem vessel of the 22 liana
individuals. Instead, we selected a restricted, but representative, area of each cross-section (wedge
portion from pith to bark under the condition that the area contained at least 40 vessels) and all the
visible vessels therein were selected and scanned. Nevertheless, the accuracy and the precision of the
vessel size distribution depended on the representativeness of the selected area and on the quality of
the sample preparation and the image acquisition. It is possible that we missed some vessels (especially
the narrow ones, whose size appears to be very similar to the fiber size) during the process analysis,
for example, when dust could have filled them during polishing. Finally, we generated a limited
dataset (22 liana individuals only identified at the family level, with low to no replications for some
species), and without liana inventory and proper identification, we cannot link our results to their
local respective abundance. The variability that we highlighted in our results might be underestimated
if we missed extreme family/species in the sampling or could be exaggerated if a limited number of
species largely dominate liana demography or if adding replications averaged out the differences
between species. While we are aware of these limitations, we still believe that the present dataset is an
added value to the ecological community considering how little is known about liana variability in
general, and liana wood traits in particular. For the aforementioned reasons, the dataset associated
with this study only provides a first estimate of the liana wood traits and within-site variability of
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these traits and should be refined with future data collections focusing on replications for each single
morpho-species and plant inventories.

In total, we scanned and digitized 1239 liana vessels in this study and the most time-consuming
steps (selecting and measuring the vessels) were achieved manually. In the future, taking advantage of
automated software and artificial intelligence could make these tasks faster and the whole process
more efficient. Recognition algorithms should allow us to identify vessels and other wood anatomical
traits in an efficient fashion.

Despite these limitations, the liana individuals described in this study exhibited high heterogeneity
in vessel dimensions, density, and more generally in structural, anatomical, and hydraulic traits.
Such large variability is illustrated by the overlap between wood trait distributions originating from our
study and the global liana dataset (Figure 4), and the wide distribution of the 14 liana morpho-species
along the two axes in the principal component analysis (Figure 5). Furthermore, liana (this study)
ranges of species-aggregated traits were smaller than self-supporting woody plant traits [39,40] but
comparable in magnitude (Table 2). Liana basic specific gravity varied 2.3-fold while trees” varied
2.7/5.11-fold (for [39] and [40], respectively); liana vessel area varied 6.3-fold comparable to the tree
vessel area variability in a study by Poorter et al. [39] (8.6-fold) but lower than in a study by Hietz
and colleagues [40] (27.7-fold). Mean vessel diameter, vessel density, hydraulically weighted mean
diameter, and maximum stem hydraulic conductivity ranges of variation at the species level were also
smaller but comparable in magnitude for lianas than for trees. Interspecies variability was almost
as large for liana species as for tree species, as indicated by the similar standard deviation of the
respective variables (Table 2). Once again, these ranges must be interpreted with caution due to the
limited number of replicates for several liana species in our study, but they seem to indicate that liana
variability is larger than previously expected, even controlling for site and soil type.

Table 2. Comparison between species-aggregated variable statistics from this study and tropical trees
from Poorter et al. [39] and Hietz and colleagues [40]. Differences between the numbers in Tables 1
and 2 originate from the aggregation at the species level. G, = basic specific gravity, D = mean vessel
diameter, D), = hydraulically weighted mean diameter, VD = vessel density, VA = vessel area fraction,
Kp = maximum stem conductivity.

Gy D Dy, VD VA Kp
) (um) (um) (mm~2) (%) (kg m~1s71 MPa~1)
This study mean +sd 048 £0.11 145 £ 54 184 + 56 16.4 +16.0 179+77 278.8 £ 161.3
(14 liana species) min-max 0.26-0.61 59-227 109-280 1.8-48.0 5.2-33.2 32.7-549.8.1
Poorter et al. [39] mean+sd 0.55+0.13 206 + 120 178 + 108 26.2 +52.9 11.1+54 186.1 + 251.9
(42 tree species) min-max 0.28-0.77 40-490 34-462 0.5-269.5 2.7-23.4 1.2-1298.9
Hietz et al. [40] mean +sd 057 +0.14 120 + 52 19.5 £ 28.5 84+45 55.8 +72.7
(325 tree species) min—-max 0.17-0.87 29-310 1.0-274.0 1.1-30.5 2.7-601

While it is not the first time that a within-site variability is observed for lianas [38], data remain
scarce. Consequently, lianas are considered one homogeneous growth form and modeled so by
necessity. However, we showed in this study with a limited dataset that the intra-site range of
variation of liana wood traits represents a significant fraction of the observed variability in liana traits
pantropically [29], and a significant fraction of the observed variability in wood traits of tropical trees
investigated in different, but species-rich, sites [39,40]. This variability is even more remarkable when
we remember that the liana samples all originate from the same water-limited and nutrient poor white
sands soil type. Our findings suggest that liana traits are heterogeneous, and we should invest as
much in documenting growth-form variability in lianas as we do in trees.

5. Conclusions

In a limited number of individual liana wood samples (22) from the rainforest of Laussat (French
Guiana), a large variability in structural (basic specific gravity), anatomical (diameter, vessel density,
vessel area), and hence hydraulic (hydraulically weighted diameter, maximum stem hydraulic



Forests 2020, 11, 523 13 of 15

conductivity) traits was found. The wide range of variation of these properties represented a significant
fraction of the observed pantropical liana variability and was comparable in magnitude with the
observed ranges in tropical rainforest tree species from different, species-rich sites. These findings
indicate that while lianas are on average characterized by large vessels, high stem conductivity,
low basic specific gravity, and dimorphic vessel distribution, they also vary much around these means.
This variability needs to be taken into account for future forest sampling, growth form comparison,
and vegetation modeling.

Supplementary Materials: Cross-section images are available at https://zenodo.org/record/3762770#
XqDQHHVKiV4 and on the GitHub repository associated with this study (github.com/femeunier/LianaHydroVar).
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