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Abstract: Trees are a keystone species in many ecosystems and a critical component of ecological
restoration. Understanding their capacity to respond to climate change is essential for conserving
biodiversity and determining appropriate restoration seed sources. Patterns of local adaptation
to climate between populations within a species can inform such conservation decisions and are
often investigated from either a quantitative trait or molecular genetic basis. Here, we present
findings from a combined analysis of phenotype (quantitative genetic analysis), genotype (single
nucleotide polymorphism (SNP) trait associations), and climate associations. We draw on the
strength of this combined approach to investigate pre-existing climate adaptation and its genetic
basis in Eucalyptus microcarpa (Grey box), an important tree for ecological restoration in south-eastern
Australia. Phenotypic data from a 26-year-old provenance trial demonstrated significant genetic
variation in growth and leaf traits at both the family and provenance levels. Growth traits were only
associated with temperature, whilst leaf traits were associated with temperature, precipitation and
aridity. Genotyping of 40 putatively adaptive SNPs from previous genome-wide analyses identified
9 SNPs associated with these traits. Drawing on previous SNP–climate association results, several
associations were identified between all three comparisons of phenotype, genotype and climate.
By combining phenotypic with genomic analyses, these results corroborate genomic findings and
enhance understanding of climate adaptation in E. microcarpa. We discuss the implication of these
results for conservation management and restoration under climate change.
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1. Introduction

Understanding adaptive variation within species is a major goal for forest tree research, past and
present [1]. Given their keystone role in many terrestrial systems worldwide [2], tree responses to
changes in climate could have significant implications for wider ecosystems. Despite the fact that
trees generally have wide climate tolerances, recent environmental changes have had notable impacts
on tree populations, including canopy die-back and mortality [3–6] and shifts in distribution [7].
Understanding the potential of trees to adapt to climate change will help in the management of forests
through approaches such as assisting gene flow and provenancing across climatic gradients [8,9].

At present, genomic approaches are becoming more commonly used for assessing adaptive
variation in trees ([10–12]; reviewed in [13]) as well as potential genomic vulnerability to projected
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change [14,15]. Genomics provides the advantage of enabling investigations of adaptation in shorter
time frames and without the logistical investments required for common garden experiments [1,16].
Furthermore, genomics can identify genes and genomic regions that have responded to selection [17,18].

Nevertheless, it remains important to understand phenotypic variation to validate genomic results
and provide insight into mechanistic drivers of adaptive variation. Common garden trials have been
extensively used to understand adaptive variation in trees [19], demonstrating significant genetic trait
variation along environmental clines in numerous traits, for example growth [20], leaf morphology [21],
stress tolerance [22], physiology [23], and even plasticity [24]. Whilst trait variation can be influenced
by multiple selection pressures, climate (and especially temperature, precipitation and aridity) has
been identified as a key driver of adaptive variation [23–25].

Evidence for adaptation can be built by combining both genomic and phenotypic approaches,
corroborating evidence of adaptation across all three components of genotype, phenotype and
climate [16,26,27]. Such an approach has been useful for several tree species: for example, relationships
have been established through a combined approach between outlier single nucleotide polymorphisms
(SNPs), temperature and leaf traits in Alnus glutinosa (Black alder) [28], between aridity-associated
adaptive genetic variation and leaf traits in Eucalyptus tricarpa (Red ironbark) [11], and between
candidate genes, temperature and bud cold tolerance in Pseudotsuga menziesii (Douglas fir) [29].
Demonstrating phenotypic variation and linking climate-adapted traits to climate-adaptive genotypes
enables validation of genomic signatures of selection and provides insights into the potential role and
function of genomics in mediating phenotypes under selection [1,26,27].

Eucalypts are the dominant tree in the majority of forests and woodlands in Australia [30].
Furthermore, they are widely used in ecological restoration plantings [31]. For many eucalypt species,
climate change is projected to decrease the extent of climate-suitable habitat [32]. Migration is unlikely
to match rates of climate change, hindered by the long generation times of trees, altered land use and
low topographic relief in Australia, the latter making the physical distances required to track current
climate niches greater than in areas of high topographic relief e.g., mountains with strong elevation
gradients [33,34]. Understanding current climate adaptation will be important for utilising adaptive
variation to enhance evolutionary potential in both natural and restored sites for these keystone species.

Adaptive genetic variation has been identified in eucalypts through both phenotypic and genomic
approaches. There is an extensive history of quantitative trait studies in eucalypts which have
demonstrated genetic variation in many traits related to both abiotic and biotic factors [19], including
growth and morphology [35,36], phenology [37], physiology [38], and plasticity [24,39]. Previous
quantitative trait loci (QTL) mapping has identified genomic regions associated with particular
traits [19]. More recently genomic analyses have revealed potential genes and genomic regions
associated with climate adaptation [11,12,40]. Whilst phenotypic and genomic approaches have
been used to investigate climate adaptation in eucalypts, few studies have combined them (however,
see [11]).

In this study, we combined phenotypic and genomic data to infer evidence of climate adaptation
in Eucalyptus microcarpa (Maiden) Maiden (Grey Box). Eucalyptus microcarpa is an important restoration
species in south-eastern Australia, used to mitigate widespread habitat loss across the species’
distribution due to clearing for agriculture. Previous landscape genomic analyses identified genomic
signatures of climate adaptation in E. microcarpa [12] including genomic variants associated with
temperature, precipitation and aridity. Building on these results, this study aimed to investigate
evidence of variation in quantitative traits to provide a greater understanding of adaptive variation in
this species. It then aimed to further support genomic results by combining genotypic, phenotypic
and climate association analyses. In particular, this study asked the following questions: (1) Is there
evidence of quantitative genetic variation in growth and leaf traits of E. microcarpa? (2) Is variation
in these quantitative traits associated with climate? (3) Are putatively adaptive genomic variants
associated with quantitative traits and do these associations support evidence of climate adaptation?
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2. Materials and Methods

2.1. Trial Design and Trait Measurements

A provenance trial for Eucalyptus microcarpa was established by the Western Australian Department
of Conservation and Land Management in 1988 near Collie, Western Australia (Figure 1). Though
outside the species normal distribution and established for a different purpose, this trial provided
an opportunity to explore trait variation in well-established, mature trees in a common environment.
Temperature at the trial site was mid-range compared to original provenance locations (Table 1). The
site was wetter than original provenance locations, though intrannual variability differed with wetter
winters and drier summers (Table 1). Seedlings were planted using a randomised complete block
design with four replicates, with families nested by provenance within a replicate. Each replicate
contained 10 open-pollinated progeny from 10 mother trees (families) from each provenance, except
for the Benalla provenance which had 11 families.
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Figure 1. Map of Australia showing original provenance locations and the provenance trial site of
Eucalyptus microcarpa (Grey box). Grey dots indicate recorded occurrences of E. microcarpa (dark) and
E. woollsiana (light) respectively (data from [41]), providing an indication of the species’ distribution.
ACT = Australian Capital Territory. Tas. = Tasmania.

For this study, we sampled seven of the 12 planted provenances across three replicates. Provenances
from Victoria and New South Wales (NSW) were sampled, avoiding potentially different species
recognised after the trial was established (Queensland provenances potentially E. woollsiana and a
NSW provenance from Gillgandra marked as E. pilligaensis (Narrow-leaved grey box), now considered
E. woollsiana; [42]) and highly disjunct populations where population structure is likely to confound
association analyses (South Australian provenances, disjunct from general south-eastern Australian
distribution; Figure 1).
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Table 1. Sample and climate data for the seven Eucalyptus microcarpa (Grey box) provenances measured in the provenance trial, including number of trees sampled for
traits, number of trees genotyped, and climate data of original provenance locations. Climate data from [41]. See Table S1 for climate variable definitions.

Number of Samples (n) Aridity Index
(Ratio) 1 Precipitation (mm) Temperature (◦C)

Site State DBH Height Leaf
Traits Genotyped Mean

Annual
Maximum

Month
Annual
(Bio12) Summer Winter

Driest
Period
(Bio14)

Wettest
Period
(Bio13)

Annual
Mean

(Bio01)

Max.
Month

Abs.
Mean
Max.

Warmest
Period
Max.

(Bio05)

Avoca Vic 251 65 62 58 0.740 1.797 529 103 176 6 14 13.7 43 28.8
Benalla Vic 289 69 67 58 0.698 1.745 550 108 174 7 16 15.4 44 30.9
Bendigo Vic 240 75 71 66 0.640 1.613 489 88 154 5 13 14.4 44 29.9

Deniliquin NSW 250 71 64 60 0.394 0.989 374 85 109 5 10 15.6 46 31.5
Forbes NSW 245 69 63 57 0.479 1.017 556 158 134 8 13 16.8 45 33.1

Wagga Wagga NSW 243 73 66 61 0.487 1.189 489 110 133 7 12 16.4 45 33
West Wyalong NSW 226 74 66 62 0.427 1.010 466 124 113 7 12 16.4 45 32.8

Total 1744 496 459 422
Minimum 0.394 0.989 374 85 109 5 10 13.7 43 28.8
Maximum 0.740 1.797 556 158 176 8 16 16.8 46 33.1

Trial site WA 0.796 2.445 587 42 307 2 24 15.2 45 30.6
1 Ratio precipitation to potential evaporation (pan, free-water surface). Vic = Victoria; NSW = New South Wales; WA = Western Australia; DBH = diameter at breast height; Max. =
maximum; Abs. = absolute.
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Growth measurements and leaf samples were taken in October–November 2014. Diameter at
breast height (DBH) and number of stems at breast height were measured on all surviving trees from
the 71 families available across the seven Victorian and NSW provenances. For multi-stem trees,
DBH was calculated based on the total area of all stems at breast height. Leaf samples were collected
from a subset of trees for both trait measurement and genotyping. For Benalla, only 10 of the 11
families were sampled for leaf traits to remain consistent with other provenances. Approximately
two randomly-selected trees per family per replicate were sampled, giving approximately six trees
per family in total or 459 trees across 70 families from seven provenances sampled (Table 1). For trait
measurements, 10 fully expanded, mature leaves were sampled from a single mid-point in the outer
canopy. A single canopy point was used owing to the challenge of sampling from tree canopies >10 m
high. To ensure this did not impact results, a second set of 10 leaves was collected from a different
side of the canopy for 32 trees across families and replicates. Assessment of trait variation between
canopy points for leaf area, length, weight and thickness found little difference in traits between canopy
points and greater variance between individual trees than between canopy points (see Supplementary
Methods, Tables S2 and S3 for more detail). This suggested most trait variation occurred between
rather than within trees and thus the single canopy point was sufficient for the questions of this study.
All leaves for trait measurements were stored at 4 ◦C during fieldwork before later being dried at 40 ◦C.
Several additional leaves were collected and immediately dried on silica gel for later DNA extraction
and genotyping.

Dried leaves for trait measurements were weighed and leaf area and length measured using a Licor
(USA) LI-3000C leaf area meter and leaf thickness measured using a micrometer (Mitutoyo, Japan).
Leaf weight, area, length and thickness measurements were averaged across the 10 leaves to create a
single measurement per tree. Specific leaf area (SLA; area/weight) and density ([weight/area]/thickness)
were calculated from average dry leaf area, weight and thickness measurements. Height was measured
using a clinometer (Suunto, Finland) for the subset of trees with leaf samples and a set of additional
trees (total 496; Table 1)

2.2. Phenotypic Analysis

2.2.1. Genetic Variance

To estimate the proportion of phenotypic variance due to genetic effects, family and provenance
were fitted as random terms in a bivariate linear mixed model framework for each trait as per [43]:

y = Xb + Zu + e (1)

where y is the vector of trait observations, b and u are vectors of fixed and random effect estimates, X
and Z are incidence matrices for fixed and random model terms and e is a vector of random residual
effects. Models were tested with fixed effects of Replicate and ‘Edge’—a binary variable defining a
tree’s location on the outer row or column of a replicate block. ‘Edge’ accounted for potential edge
effects due to inconsistent boundary tree planting and survival around the trial plots. The number
of stems at breast height was included as a fixed effect for growth traits of DBH, height and size
ratio. Provenance, as a random effect, was found to significantly improve models for all traits, based
on likelihood-ratio tests, and was therefore retained in all models. A Wald test was used to test for
significance of fixed effects, with only those fixed effects identified as significant (p < 0.05) retained for
that trait model. Final models per trait (Table S4) were checked for linearity, homoscedasticity and
normality of residuals by plotting fitted vs. residual values and a histogram of residuals.

Narrow-sense heritability (h2) was calculated as:

h2 =
VA
VP

=
2.5σ2

f

σ2
f + σ

2
residual

(2)
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where VA is the additive genetic variance, VP the total phenotypic variance, σ2
f the family-level variance

and σ2
residual the residual variance of the model. A relatedness coefficient of 1/2.5 was used to account

for greater relatedness than the expected 1/4 for halfsibs commonly found within open-pollinated,
half-sib families of eucalypts [44,45]. Within family relatedness estimates from SNP data in this study
(see Section 2.3.1 Genotyping) suggest this is also appropriate for E. microcarpa (average within family
relatedness coefficient = 0.32 ± standard deviation (s.d.) 0.09). This estimate is an approximation of
narrow-sense heritability as it includes potential maternal and dominance effects. Initial model testing
for heritability estimates was performed in R v 3.2.1 [46], using the R package ‘lme4′ v 1.1-12 [47],
before final calculations in ASReml-R (Release 3; [48]) using the pin.R function to estimate standard
errors (SE; [49]).

To estimate genetic differentiation of quantitative traits between provenances, QST was calculated
from estimated variance components as per [50]:

QST =
σ2

p

σ2
p + 2VA

=
σ2

p

σ2
p + 2

(
σ2

f × 2.5
) (3)

where σ2
p is the genetic variance between populations and VA and σ2

f are as defined above. Standard
errors for QST were calculated in ASReml-R using the pin.R function. QST was not estimated for leaf
density due to a lack of additive genetic variance for this trait.

To determine whether provenance-level differentiation was potentially due to selection or neutral
processes, trait QST values were compared to a distribution of neutral FST values. The expected
distribution of QST for neutral traits may be approximated by the distribution of FST for neutral
genomic loci [50]. If QST is significantly greater than the mean neutral FST, a trait may be considered
significantly more differentiated than neutral expectations and potentially under diversifying selection.
The distribution of neutral FST can be well approximated by a χ2 distribution; specifically

(n− 1)F̂ST

FST
≈ χ2 (n− 1) (4)

where F̂ST = per locus FST, FST = mean FST and n = number of demes [51].
Individual QST estimates (as percentages i.e., QST × 100) were deemed significantly greater than

neutral expectation if the lower SE was significant (p < 0.05) when tested against χ2 with df = FST
(as a percentage). Mean FST was calculated from 418 ‘neutral’ SNPs in 157 samples from the seven
original provenance populations [12]; see Supplementary Methods). To avoid limitations associated
with estimating a distribution of FST values from a single mean value [50], QST estimates were also
compared to the empirical FST distribution of the 418 ‘neutral’ SNPs and similar results were obtained
(see Supplementary Methods, Figure S1).

2.2.2. Genetic Trait–Trait Correlations

To explore evidence of a shared genetic basis between traits, trait-trait correlations were performed
in ASReml-R to test genetic correlations between traits at both the family and provenance levels, using
the mixed model framework previously described. Leaf density was not tested as no additive genetic
variance was found. Models included replicate, edge and stem as fixed effects, and covariance between
traits was estimated by fitting random family and provenance terms and residuals across traits in an
unstructured covariance matrix, assuming heterogeneous variance estimates. Genetic correlations (r)
were calculated as:

r1,2 =
cov1,2

2
√
σ2

1 × σ
2
2

(5)
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where cov1,2 is the covariance between trait 1 and trait 2 and σ2
1 and σ2

2 are the variance of traits 1 and 2
respectively. A two-tailed likelihood-ratio test, testing against the null model of covariance = 0 (‘diag’
covariance matrix for random effects), was used to calculate the significance of genetic correlations. To
account for multiple testing, q-values were calculated using the R package ‘qvalue’ v 1.43.0 [52] within
each test level separately.

2.2.3. Climate Associations

To investigate climate as a potential selection pressure driving provenance-level trait genetic
differentiation, climate associations between quantitative traits and climate of the original provenance
location (Table 1) were tested using linear models in R. Ten climate variables previously used in a
genomic assessment of climate adaptation in E. microcarpa were tested [12]; (Table S1). Briefly, climate
variables were selected based on projected future hotter and drier climatic conditions in south-eastern
Australia, increased extreme events, and variable precipitation patterns [53]. Climate variables related
to temperature, precipitation, evaporation, moisture and aridity were reduced to a set of 10 key
representative variables, minimising redundancy and correlations between variables (Table 1). Climate
data for the original provenance locations were downloaded from the Atlas of Living Australia [41] (0.01
degree (~1km) gridded data). Provenance-level Best Linear Unbiased Estimates (BLUEs, equivalent to
least-square means) were calculated for each trait using the R package ‘lsmeans’ v 2.2.3 [54] from trait
specific models (Table S4) with Provenance fitted as a fixed effect.

To reduce correlations between traits, BLUEs for growth traits (DBH, height and size ratio) and
leaf traits (area, length, thickness, weight, density and SLA) were reduced via separate principal
component analyses (PCA) using the R package ‘FactoMineR’ [55]; see Table S5 for trait correlations
and contributions to principal component axes). The first two axes (principal components, PC) for
growth (98.4% of variation) and first three axes for leaf trait (97.9% of variation) were tested for
associations with climate variables using separate linear models (‘lm’ function) in R. An analysis of
variance (ANOVA) was performed in R (‘anova’ function) to calculate the p-value for the environmental
component of the model. Correction for multiple testing was applied to environmental component
p-values using ‘qvalue’ in R. To ensure associations were not due to neutral population structure,
linear models were repeated including latitude and longitude of the original provenance location. This
assumes a population structure pattern of isolation-by-distance, which appears to be the case for E.
microcarpa [12,56].

2.3. Genotype-Phenotype Analysis

2.3.1. Genotyping

To look for links between potentially adaptive genomic variation and quantitative traits, a set
of 40 putatively adaptive candidate SNPs were genotyped in 422 trees for which both growth and
leaf trait data were collected (Table 1). Using data from genome scans, rather than candidate genes
based on known gene function, has the potential to uncover new genomic regions associated with
traits, without the need for a priori selection of potential genes of interest [57]. Candidate adaptive
SNPs were chosen based on previous genomic analyses of climate adaptation in E. microcarpa, using
reduced-representation, DArTseq SNP data [12]. Potential candidate SNPs used in this study were those
identified as an FST outlier in at least one of the four previous analyses—BayeScan [58], hierarchical
FDIST2 [59], FDIST2 [60,61] or Bayenv2 XT X [62], or those identified as having a strong association with
at least one of the 10 climate variables tested (Bayenv2; [62,63]). In the previous analyses, environmental
association analyses were only performed on SNPs identified as FST outliers. To expand the list of
potential candidate SNPs for genotyping in this study, environmental associations were performed
in Bayenv2 for all 4218 SNPs, using the same methodology as the previous analysis [12]. The FST
outlier analyses account for population structure using various demographic models to create a ‘null’
distribution against which individual SNPs are compared, whilst Bayenv2 employs a covariance matrix,
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generated from genomic data, to account for population structure when performing SNP–climate
associations. Candidate SNPs were, therefore, those that were more differentiated than expected (FST
outliers) or were associated with climate even after accounting for population structure (Bayenv2).

To determine a subset of 40 putatively adaptive candidate SNPs for genotyping, potential candidate
SNPs were filtered to those with (i) a minor allele frequency of greater than 0.05 in at least six of the
seven original provenance sites to ensure a high enough frequency across the dataset to enable effective
SNP-trait association analyses, (ii) to SNPs within 2000 basepairs (bp) of a putative E. grandis gene
with an Arabidopsis thaliana orthologue (TAIR10) based on E. grandis v 1.1 annotation [64] to enable
exploration of potential gene function or physiological processes underlying traits, and (iii) those with
an appropriate flanking sequence for DArTmp, the genotyping methodology used (see below).

An additional 25 ‘non-adaptive’ SNPs were included as a proxy for neutral population structure.
Based on previous analysis, ‘non-adaptive’ SNPs were selected from those not significant in all four
FST outlier tests—BayeScan (q > 0.2), hierarchical FDIST2 (p > 0.1), FDIST2 (q > 0.2) and XT X (outside
top 10% of 3 runs), not strongly associated with any of the 10 climate variables tested (Bayenv2,
Bayes Factor (BF) < 20), and with a minor allele frequency of greater than 0.05 in at least six of seven
original provenance sites. Whilst SNPs deemed non-significant in FST outlier tests may still be under
selection [65], this is likely to be a weaker selection and, therefore, not strongly impact the primary aim
of these SNPs, being to approximate neutral structure. Despite the significantly smaller dataset, the
final dataset of 65 SNPs provided a fair representation of the population structure found in the full
dataset of 4218 SNPs [12]—correlation of r = 0.69 for provenance-level pairwise FST estimates using
the 65 genotyped SNPs within the provenance trial compared to the full dataset of 4218 SNPs for the
seven original natural sites (pairwise FST calculated in Arlequin v 3.5.1.2 [66]).

Flanking sequences for each SNP were extracted from genomic read data from the previous
analysis [12]. Firstly, a E. microcarpa consensus sequence was created from genomic read data flanking
the SNPs of interest by modifying the E. grandis v 1.1 sequence using samtools mpileup v 1.2-10 and
bcftools v 1.3 [67]. E. microcarpa sequences for each SNP locus were then created by extracting flanking
regions covered by known E. microcarpa reads from the “whole genome” consensus.

To genotype the SNPs, approximately 25 mm2 of dried leaf material per tree and fasta sequences
of SNP loci were sent to Diversity Arrays Technology Pty Ltd. for DNA extraction and subsequent SNP
genotyping via DArTmp multiplex PCR. Genotypes were called from allele sequencing read counts
using the maximum likelihood method described by [68] in R, using an error rate of 0.05 and only
scoring genotypes with a minimum total read depth of 20. Data were filtered to SNPs and individuals
with <50% missing data. Little linkage was found between SNPs (average r2 = 0.003 ± s.d. 0.005), nor
within adaptive or neutral SNP subsets (r2 = 0.004 ± 0.006 and r2 = 0.004 ± 0.005, respectively; linkage
(as measured by correlation, r2) was calculated using the ‘r’ function in PLINK v 1.90b3p [69]).

2.3.2. Genotype–Phenotype Associations

SNP-trait associations between the 40 putatively adaptive SNPs and nine scored traits were
performed on 422 individuals in TASSEL v.5 [70]. To account for population structure, a PCA based
on covariance was performed in TASSEL using all 65 SNPs. Overall FST, estimated via analysis of
molecular variance (AMOVA) in Arlequin using all 65 SNPs, found 3% of variance between populations.
Therefore, the first PC accounting for the highest amount of variance and reflecting between-population
variance (PC1 = 4.1%) was retained in all analyses.

To account for relatedness between individuals, a kinship matrix was created in Coancestry v.
1.0.0.1 [71]. Coefficient of relatedness (2θ) was calculated using the triadic likelihood estimator [72]
and using 100 reference individuals. This estimator can account for potential inbreeding, an important
consideration given the mixed mating system of eucalypts [73]. Inbreeding (f ) was calculated using
the estimator of [74], which bounds inbreeding coefficient estimates between 0 and 1. Two different
kinship matrices were tested. The first used individual kinship estimates, allowing for variation in the
degree of relatedness between all individuals, including across families and provenances. However,
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due to the small number of SNPs used in this study, relatedness estimates may be subject to large error
rates. In addition, identity-by-state (genetic similarity) may be mistaken as identity-by-descent (true
relatedness), especially between provenances where true sibling or cousin relationships are unlikely.
To address these issues, an alternative matrix was created using the average family-level relatedness
within and between families. This can reduce the effects of individual spurious estimates, especially
between provenances; however, it may reduce genuine unique relationships. The average relatedness
(2θ) within and between each family and the average inbreeding (f ) within each family was calculated
and an individual matrix created using family-level averages.

SNP-trait associations were tested in TASSEL, using a mixed linear model (MLM) based on the
same underlying framework as previously described for variance component estimation (Equation (1));
with trait observations as the dependent variable (y), provenance, replicate, edge and stems as well as
adaptive SNP and one PC to account for population structure as fixed effects, and kinship included
as a random effect to account for relatedness between individuals. Both the raw individual kinship
matrix and family-average kinship matrix were tested.

2.4. Genotype-Phenotype-Climate Analysis

To provide additional support for climate adaptation in E. microcarpa, and possible underlying
genetic mechanisms, we compared results from the three independent pairwise associations of
genotype, phenotype and climate performed in this and previous analyses [12]. Results of SNP–climate
associations from the previous study were compared to trait-climate and SNP-trait associations in
this study. For trait-climate comparisons, climate association results for the principal component(s) to
which individual traits loaded were used (Table S5).

3. Results

3.1. Genetic Variation Within Quantitative Traits

Significant additive genetic variance suggested a genetic basis for quantitative trait variation
observed in E. microcarpa. Family-level heritability (h2) ranged from 0.106 to 0.373 (Table 2). Significant
heritability was suggested for all traits, except leaf area, with estimates more than one standard error
(SE) from 0. Additive genetic variance was not found for leaf density. Specific leaf area (SLA) and
diameter at breast height (DBH) had the highest heritabilities (0.373 and 0.318, respectively), followed
by leaf weight and tree height (0.230 and 0.210, respectively). Heritability estimates for other traits
were below 0.2 (Table 2). Errors for heritability estimates tended to be large, potentially reflecting low
replication per family.

Significant trait differentiation was found between provenances with QST greater than one SE
from 0 for all traits, excluding leaf density (Table 2). Furthermore, QST estimates for tree height, leaf
area and leaf length exceeded neutral FST (FST ‘neutral’ SNPs = 0.033), suggesting these traits are
potentially under divergent selection (Table 2; Figure S1). Low, neutral FST here is in line with low
differentiation identified in E. microcarpa using greater numbers of loci and samples [12]. QST ranged
from 0.094 to 0.483, with leaf area and leaf length having the highest QST estimates (> 0.4), followed by
leaf weight and thickness (0.224 and 0.205, respectively). For all other traits, QST was less than 0.2. In
addition to significant variation between provenances, QST estimates also suggested greater than 50%
of trait variation could be attributed to variation within provenances (Table 2, Figure S2).

3.2. Genetic Trait–Trait Correlations

Not all traits were genetically independent. Correlations in additive genetic variance suggested
variation in some pairs of traits had a common heritable basis (Table 3). At the family level, all three
growth traits were significantly correlated (|r| = 0.75 to 0.97, q < 0.1), as were all six leaf traits (|r| = 0.36
to 0.98, q < 0.1; Table 3). Between growth and leaf traits, DBH and leaf traits were independent except
for leaf area (r = -0.20), height was correlated with all leaf traits except leaf weight (r = −0.30 to −0.56),
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and size ratio was correlated with leaf weight and thickness (r = −0.55 and −0.42 respectively; Table 3).
In contrast, most traits were genetically independent at the provenance level, with only five pairs of
traits having significant genetic correlations (r = 0.79 to –0.95, q < 0.1; Table 3). Genetic correlations
between DBH and height (r = 0.93), leaf area and leaf length (r = 0.79), and leaf area and leaf weight
(r = 0.95) reflected family-level results. Leaf length and SLA were also significantly correlated at the
provenance level; however, contrary to family-level results, greater leaf length was correlated with
higher SLA (r = 0.93). Although not significant at the family-level, higher leaf weight was correlated
with larger DBH at the provenance level (r = 0.92).

Table 2. Heritability (h2) and between provenance differentiation (QST) for nine quantitative traits
measured in Eucalyptus microcarpa (Grey box). SE = one standard error.

Trait Abbreviation Units
Family Level Provenance Level

h2 SE QST SE

Growth traits
Diameter at breast

height DBH cm 0.318 0.226 0.094 0.065

Height Height m 0.210 0.137 0.431 0.190 *
Size Ratio Size Ratio height:DBH 0.106 0.080 0.165 0.162
Leaf traits

Leaf area Area cm2 0.155 0.169 0.467 0.220 *
Leaf length Length cm 0.144 0.100 0.483 0.226 *
Leaf weight Weight g 0.235 0.102 0.224 0.145

Leaf thickness Thickness mm 0.193 0.098 0.205 0.147
Specific leaf area SLA mm2 mg−1 0.373 0.116 0.182 0.115

Leaf density Density mg mm−3 0.000 - - -

* = QST > FST. Lower bound SE (QST – SE) significant (p < 0.05) against χ2 distribution with df = mean neutral
FST (3.3%).

Table 3. Family-level (upper right) and provenance-level (lower left) genetic correlations between traits
in Eucalyptus microcarpa (Grey box). Note leaf density excluded due to no additive variance found.

Growth Traits Leaf Traits

DBH Height Size Ratio Area Length Weight Thickness SLA

Growth traits
DBH 0.88 * −0.97 * −0.20 * −0.08 −0.03 −0.18 −0.15
Height 0.93 * −0.75 * −0.30 * −0.56 * 0.16 −0.34 * −0.35 *
Size Ratio 0.35 0.81 −0.35 −0.16 −0.55 * −0.42 * −0.15

Leaf traits
Area 0.76 0.53 0.04 0.72 * 0.97 * 0.46 * −0.36 *
Length 0.40 0.32 0.38 0.79 * 0.84 * 0.38 * −0.36 *
Weight 0.92 * 0.56 −0.01 0.95 * 0.59 0.70 * −0.77 *
Thickness −0.37 −0.22 0.22 −0.74 −0.50 −0.76 −0.98 *
SLA 0.16 0.19 0.06 0.70 0.93 * 0.34 −0.38

* q < 0.1 (accounting for multiple testing).

3.3. Climate Associations with Quantitative Trait Variation

Significant heritable genetic variation (h2) and genetic differentiation between provenances (QST)
suggest genetic variation in phenotypes that selection can act on, and that selection has likely driven
trait variation in E. microcarpa. An adaptive hypothesis was further supported by associations between
phenotypic variation and climate among provenances, implicating local adaptation to climate as a
driver of genetic variation in phenotypes.

Provenance level trait estimates (BLUEs) were reduced to two major principal component axes for
growth traits and three major axes for leaf traits (Table S5). Nine of 50 potential associations between
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growth or leaf trait axes and climate were significant, although only marginally after correcting for
multiple testing (p < 0.05, q < 0.15; Table 4a; Table S6 for individual trait-climate associations). Stronger
associations were found between climate and leaf trait axes than growth trait axes (Table 4a; Figure 2).
For growth traits, the second major axis, predominately driven by increasing size ratio and to a
lesser extent decreasing DBH (Table S5), was positively correlated with warmest period maximum
temperature and mean annual temperature. For leaf traits, the second major axis, driven primarily by
decreasing leaf density and increasing SLA and to a lesser extent increasing leaf length and thickness,
was positively correlated with the three temperature variables and was negatively correlated with
both aridity variables and winter precipitation. The third leaf trait axis, primarily reflecting increasing
leaf weight and thickness, was negatively correlated with summer precipitation.
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Figure 2. Example associations between climate and provenance level trait principal component (PC)
axes in Eucalyptus microcarpa (Grey box). (a,b) Climate associations with second growth trait PC,
reflecting primarily (increasing) size ratio and (decreasing) DBH. (c–f) Climate associations with second
leaf trait PC, reflecting predominately (decreasing) leaf density and (increasing) SLA and to a lesser
extent, (increasing) leaf thickness and leaf length. Adj. r2 = adjusted r2 of linear regression; penv =

significance of environmental component of the linear model (see Table 4). Refer to Table S5 for further
details on trait contributions and correlations to PC axes.
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Table 4. Top climate associations (penv < 0.05) for leaf and growth trait principal component (PC) axes in Eucalyptus microcarpa (Grey box), calculated (a) without and
(b) with adjustment for spatial population structure (latitude and longitude). Note penv = significance of environmental component in the linear model; qenv = accounts
for multiple testing.

Trait Environment
(a) Trait ~ Environment (b) Trait ~ Lat. + Long. + Environment

Adj. r2 Assoc. Fenv [1,5] penv qenv Adj. r2 Assoc. Fenv [1,3] penv qenv

Growth traits

PC2 Warmest period max.
temp. 0.59 + 9.7 0.026 0.13 0.56 + 0.1 0.831 0.811

PC2 Mean annual temp. 0.53 + 7.7 0.040 0.15 0.56 − 0.1 0.835 0.811
Leaf traits

PC2 Max. abs. mean max.
temp. 0.76 + 20.1 0.007 0.13 0.69 + 7.4 0.073 0.400

PC2 Mean annual aridity 0.73 − 17.1 0.009 0.13 0.71 − 8.4 0.063 0.400
PC2 Winter precipitation 0.69 − 14.6 0.012 0.13 0.81 − 13.8 0.034 0.400
PC2 Max. aridity 0.63 − 11.1 0.021 0.13 0.58 − 4.7 0.119 0.575

PC2 Warmest period max.
temp. 0.62 + 10.6 0.022 0.13 0.70 + 7.9 0.067 0.400

PC2 Mean annual temp. 0.59 + 9.5 0.027 0.13 0.74 + 9.4 0.055 0.400
PC3 Summer precipitation 0.52 − 7.6 0.040 0.15 0.26 − 2.5 0.215 0.811
PC2 Summer precipitation −0.17 + 0.1 0.732 0.61 0.88 − 23.1 0.017 0.385
PC2 Driest period prec. −0.17 + 0.1 0.742 0.61 0.87 − 22.7 0.018 0.385
PC2 Annual precipitation 0.13 − 1.9 0.231 0.43 0.77 − 11.4 0.043 0.400

Adj. r2 = adjusted r2 of linear model; Lat. = Latitude; Long. = Longitude; Assoc. = association (+ = positive; − = negative).
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After accounting for possible neutral demographic effects, associations with growth traits were
no longer significant (Table 4b). However, local adaptation cannot be ruled out due to strong spatial
autocorrelation of the two temperature variables and latitude (r = 0.91 and r = 0.90 for mean annual
temperature and warmest period maximum temperature respectively). Associations with leaf traits
remained significant, although p-values were higher. Additional associations were identified when
accounting for population structure—the second leaf trait axis was also associated with summer
precipitation, precipitation of the driest period and annual precipitation, although these were not
significant after correcting for multiple testing (p < 0.05, q > 0.15; Table 4b).

3.4. Genotype–Phenotype Associations

Associations between putatively adaptive SNPs and quantitative trait variation further support
a genetic basis to trait variation, validating results of previous genomic adaptation analyses [12]
and providing insights into possible genomic regulatory factors. Nine of the 40 putatively adaptive
SNPs genotyped were significantly associated with at least one of the nine measured traits (Table 5).
Arabidopsis thaliana orthologues (TAIR10) of putative E. grandis genes within 2000 bp of associated
SNPs (Table 5; [75]) suggest trait variation in E. microcarpa may be influenced by genes associated with
development (e.g., CHC1, [75]) and stress responses (e.g., PRK5, [76]) as well as gene regulation (e.g.,
MYB78, [77]). For growth traits, three significant SNP-trait associations (p < 0.05) were identified,
each explaining approximately 0.9–1.9% of trait variation. For leaf traits, 11 significant associations
were identified (Table 5). The amount of leaf trait variance explained by an individual SNP varied
from 0.9–3%. No SNP-trait associations were significant after correction for multiple testing across
SNP-trait comparisons.

3.5. Genotype–Phenotype-Climate Associations

Support for climate adaptation was strengthened by four climate-related associations that were
corroborated across the three independent analyses of trait-climate, SNP-trait and, drawing on previous
analyses, SNP–climate associations [12] (examples in Figure 3). In these cases, the results lend weight
to a hypothesis for climate adaptation of genetic variation underlying traits in E. microcarpa and suggest
potential candidate genes that may have been targeted by selection. It should be noted candidate
genes are interpreted here as indicative only and warranting further analysis, given low linkage
disequilibrium in eucalypts [78] and assumptions of sufficient similarity between E. microcarpa and E.
grandis genomes and A. thaliana orthologues reflecting possible gene functions.
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Table 5. Significant SNP-trait associations (p < 0.05) in Eucalyptus microcarpa (Grey box)and possible gene function of SNPs based on Arabidopsis thaliana orthologues
(TAIR10) of predicted E. grandis genes (information from E. grandis v1.1 genome annotation). Mixed linear models (MLM) accounted for kinship using either a kinship
matrix based on individual kinship (indv. kinship) or family-average kinship (avg. kinship).

MLM
(Indv. Kinship)

MLM
(Avg. Kinship)

Eucalyptus grandis (v1.1) Gene
Information (+/−2000 bp) Best TAIR10 Gene Orthologue

Trait Marker p r2 p r2 Name Gene Effect Name Symbol Definition

DBH
3:59841756 0.043 0.019 0.049 0.019 Eucgr.C03147 synonymous AT3G13980.1
Size Ratio

10:29282238 0.023 0.012 0.015 0.014 Eucgr.J02333 synonymous AT3G27150.1 Galactose oxidase/kelch repeat
superfamily protein

10:29282238 0.023 0.012 0.015 0.014 Eucgr.J02334 upstream AT5G14170.1 CHC1 SWIB/MDM2 domain
superfamily protein

2:58822368 0.060 0.009 0.044 0.010 Eucgr.B03399 downstream AT1G27150.1 Tetratricopeptide repeat
(TPR)-like superfamily protein

Leaf area

4:30801453 0.069 0.013 0.037 0.016 Eucgr.D01681 synonymous,
intron AT1G64660.1 ATMGL, MGL methionine gamma-lyase

11:4085447 0.052 0.016 0.044 0.017 Eucgr.K00355 downstream AT5G38280.1 PR5K PR5-like receptor kinase
Leaf length

2:63702271 0.036 0.016 0.002 0.030 Eucgr.B03985 missense AT5G49620.1 AtMYB78,
MYB78 myb domain protein 78

4:30801453 0.012 0.021 0.004 0.026 Eucgr.D01681 synonymous,
intron AT1G64660.1 ATMGL, MGL methionine gamma-lyase

5:5009176 0.030 0.016 0.130 0.009 Eucgr.E00527 missense AT4G23020.1
Leaf weight

5:4625458 0.028 0.017 0.027 0.017 Eucgr.E00491 upstream AT3G60890.2 ZPR2 protein binding
Leaf thickness

5:4625458 0.006 0.023 0.007 0.023 Eucgr.E00491 upstream AT3G60890.2 ZPR2 protein binding
SLA

5:4625458 0.024 0.018 0.017 0.020 Eucgr.E00491 upstream AT3G60890.2 ZPR2 protein binding
11:4085447 0.020 0.021 0.015 0.022 Eucgr.K00355 downstream AT5G38280.1 PR5K PR5-like receptor kinase

Leaf density
5:4625458 0.102 0.010 0.042 0.014 Eucgr.E00491 upstream AT3G60890.2 ZPR2 protein binding

6:39617441 0.086 0.014 0.044 0.018 Eucgr.F02999 synonymous AT1G22610.1
C2 calcium/lipid-binding plant

phosphoribosyltransferase
family protein



Forests 2020, 11, 495 15 of 23

Forests 2020, 11, x FOR PEER REVIEW 1 of 23 

 

3.4. Genotype–Phenotype Associations 

Associations between putatively adaptive SNPs and quantitative trait variation further support 
a genetic basis to trait variation, validating results of previous genomic adaptation analyses [12] and 
providing insights into possible genomic regulatory factors. Nine of the 40 putatively adaptive SNPs 
genotyped were significantly associated with at least one of the nine measured traits (Table 5). 
Arabidopsis thaliana orthologues (TAIR10) of putative E. grandis genes within 2000 bp of associated 
SNPs (Table 5; [75]) suggest trait variation in E. microcarpa may be influenced by genes associated 
with development (e.g., CHC1, [75]) and stress responses (e.g., PRK5, [76]) as well as gene regulation 
(e.g., MYB78, [77]). For growth traits, three significant SNP-trait associations (p < 0.05) were 
identified, each explaining approximately 0.9–1.9% of trait variation. For leaf traits, 11 significant 
associations were identified (Table 5). The amount of leaf trait variance explained by an individual 
SNP varied from 0.9–3%. No SNP-trait associations were significant after correction for multiple 
testing across SNP-trait comparisons.  

3.5. Genotype–Phenotype-Climate Associations 

Support for climate adaptation was strengthened by four climate-related associations that were 
corroborated across the three independent analyses of trait-climate, SNP-trait and, drawing on 
previous analyses, SNP–climate associations [12] (examples in Figure 3). In these cases, the results 
lend weight to a hypothesis for climate adaptation of genetic variation underlying traits in E. 
microcarpa and suggest potential candidate genes that may have been targeted by selection. It should 
be noted candidate genes are interpreted here as indicative only and warranting further analysis, 
given low linkage disequilibrium in eucalypts [78] and assumptions of sufficient similarity between 
E. microcarpa and E. grandis genomes and A. thaliana orthologues reflecting possible gene functions.  

 
Figure 3. Examples of corroboration between three independent association analyses in Eucalyptus 
microcarpa (Grey box)–genotype (SNP; (a) SNP 2:63702271, (b) SNP 5:5009176), phenotype (leaf 
length) and climate (mean annual temperature). Main plot = trait (provenance level best linear 
unbiased estimates, BLUEs) vs. climate. Box plot (right) = SNP vs. trait (provenance BLUEs). Box plot 
(top) = SNP vs. climate. Error bars in main plot = 95% confidence interval. Box plot whiskers extend 
to 1.5 × interquartile range. 

Figure 3. Examples of corroboration between three independent association analyses in Eucalyptus
microcarpa (Grey box)–genotype (SNP; (a) SNP 2:63702271, (b) SNP 5:5009176), phenotype (leaf length)
and climate (mean annual temperature). Main plot = trait (provenance level best linear unbiased
estimates, BLUEs) vs. climate. Box plot (right) = SNP vs. trait (provenance BLUEs). Box plot (top) =

SNP vs. climate. Error bars in main plot = 95% confidence interval. Box plot whiskers extend to 1.5 ×
interquartile range.

Two SNPs associated with leaf length also had several climate associations in common with this
trait (SNP 2:63702271, 5:5009176; Table 5; Figure 3). Leaf length correlated primarily with the first, but
also the second leaf trait axis. Both leaf length, via its correlation to the second leaf trait axis and both
SNPs were associated with mean annual temperature and SNP 2:63702271 was also associated with
warmest period maximum temperature. In addition, the second leaf trait axis and SNP 5:5009176 were
associated with aridity. Based on A. thaliana orthologues of predicted E. grandis genes, possible genes
or functions that may influence climate-related variation in leaf length include an MYB domain protein
(MYB78; SNP 2:63702271), and proteins of unknown function or hypothetical proteins (SNP 5:5009176;
Table 5).

Results for leaf density suggest a possible link to SNP 6:39617441 (putative A. thaliana orthologue,
C2 calcium/lipid-binding plant phosphoribosyltransferase family protein; Table 5) and temperature,
with both the SNP and leaf density, via its correlation with the second leaf trait axis, associated with
mean annual temperature and warmest period maximum temperature.

Finally, a potential link was found between size ratio and SNP 10:29282238, supported by both
the trait, via correlation with the second growth trait axis, and the SNP associated with mean annual
temperature and warmest period maximum temperature. Based on A. thaliana orthologues of predicted
E. grandis genes, a possible SWIB/MDM2 domain or galactose oxidase/kelch repeat superfamily protein
may be involved in temperature-related variation in size ratio (Table 5).

4. Discussion

Building on previous genomic-only assessments of adaptive variation [12], we found evidence
for climate driven, local adaptation of genetic variation in growth and leaf traits of E. microcarpa. The
identification of adaptive phenotypic variation provides support for local adaptation to climate within
E. microcarpa and demonstrates that the genomic variation previously identified likely reflects adaptive
phenotypic variation. Furthermore, the identification of both genetic variance and trait variation
within provenances suggest there is variation that selection could act upon, potentially enabling
adaptation in the future. Although representing a small sample of the genome as well as trait and
population diversity, the combination of both phenotypic and genomic analyses bolstered evidence of
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climate-related, adaptive variation in this species that warrants further investigation, especially for
understanding future adaptive potential and seed sourcing under climate change.

4.1. Evidence of Genetic Variance and Climate Adaptation

In line with many ecological traits in eucalypts [19], this study detected a genetic component to
variation in several traits of E. microcarpa, upon which selection could potentially act. Heritability
estimates for growth traits in this study were similar to, or higher than, estimates seen in other eucalypts
(e.g., DBH h2 = 0.06–0.37, height h2 = 0.13; [22,35]), although estimates for leaf traits were low relative
to other studies (e.g., leaf length h2 = 0.60–0.77; [36,79]). Furthermore, genetic trait–trait correlations
identified in this study suggest a common genetic basis, or pleiotropy, between leaf and growth traits.
Genetic variance and correlation estimates in this study are likely influenced by low replication within
families, increasing the standard error, as well as potential upward bias in additive variance due to
maternal, dominance and epistatic effects unaccounted for [80]. Further analysis using more samples
per family, as well as more test families and provenances, would greatly improve genetic variance
estimates. Despite these limitations, genetic variance detected for leaf and growth traits in E. microcarpa
here suggests potential for future evolution in response to environmental change.

Greater quantitative genetic trait differentiation between provenances than expected under a
neutral model suggest selection has driven adaptive differences in a number of traits in E. microcarpa.
This result is consistent with evidence of selection on leaf and growth traits commonly found in
eucalypts as well as other tree species [19,24,35,36,81]. Whilst significant adaptive divergence in
quantitative traits was detected between provenances, a large proportion (greater than 50%) of total
genetic variance was attributed to variation within provenances. The presence of such standing
variation further suggests a genetic source for future adaptation in these traits.

Associations between trait variation and climate suggest local adaptation in E. microcarpa resulting
from divergent selection. This supports the results of genomic adaptation analyses in E. microcarpa [12]
suggesting significant, climate-associated genomic differences and evidence of phenotypic variation
driven by similar climatic variables in other widespread trees species [25,28,35,36]. Trait associations
with maximum temperature identified here and in other studies [20,36], suggest climate extremes may
be important drivers of adaptive trait differences in trees. In line with a priori expectations of thicker,
denser leaves under higher water stress [82,83], thicker leaves in this study (second leaf trait axis) were
associated with warmer, more arid home climates (consistent with [24]). However, contrary to this
expectation, higher leaf density and lower SLA (second leaf trait axis) were associated with a cooler,
wetter climate of origin. Plastic responses of leaf density and SLA have been found to differ between
provenances and species of eucalypts [24,39,82]. Leaf density and SLA climate associations in this
study may therefore reflect variation in plastic responses to environment at the trial site, especially in
the case of leaf density for which no additive genetic variance was found.

One of the challenges for association studies in trees is disentangling local adaptation from
neutral processes, especially where correlations between climate and population structure exist. False
positives—differences due to drift rather than adaptation—can arise if population structure is not
accounted for. Conversely, correcting for population structure that correlates with environment
reduces the environmental effect and can result in false negatives, as shown in simulation studies of
genotype-environment association analyses [65]. In this study, higher p-values when latitude and
longitude were included in trait-climate associations likely reflect reduced power rather than a lack of
association. Even with reduced climate effects due to correlations with spatial variables and reduced
power (fewer degrees of freedom) given the small sample size (seven provenances), several associations
remained marginally significant (p = 0.034–0.073; Table 4). Furthermore, a lack of significance after
correcting for multiple testing potentially reflects a further reduction in power for this small study
rather than a true lack of association. Indeed, differentiation (QST) greater than neutral population
structure supports local adaptation rather than neutral processes. Future analyses, with a greater
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number of provenances will help to more clearly define those climate variables driving local adaptation
in E. microcarpa.

4.2. Linking Genotype and Phenotype

Whilst genomics is providing advances for identifying signatures of adaptation, assessing
phenotypic variation in combination with genomic data provides greater support for adaptive variation
and increases understanding of potential adaptive mechanisms [16,26,84]. SNP-trait associations in
this study linked previous genomic analyses [12] with quantitative analyses of climate adaptation
in E. microcarpa, validating earlier results, providing stronger evidence of climate as a driver of local
adaption and highlighting potential genes or genic regions underlying quantitative traits.

Combining genomic and phenotypic analyses firstly demonstrated that putatively adaptive
genomic markers explained, individually, a small proportion of genetic variation in quantitative traits.
This, as well as multiple SNPs associating with individual traits, is in line with the highly polygenic
nature of quantitative traits, and characteristic of association studies in trees [18,19,85]. Indeed, variance
estimates found here are comparable to other SNP-trait association studies in trees [25,29,81]. The small
number of SNP-trait associations identified and the weak significance found is likely due to the small
size and power of this study, although they may also reflect the tendency of single marker analyses
to miss associations due to small effect sizes [84,86]. Similarly, non-significance after correcting for
multiple testing may be due to corrections being too stringent given the small study size, combined with
the more subtle associations underlying highly polygenic traits. Future analyses are warranted before
concrete conclusions are drawn from these results, including studies which employ more genomic
markers (e.g., [18,84]), that use polygenic [85] or “omnigenic” [87] assessments of complex traits instead
of single SNP associations (e.g., [88]) and that assess a wider range of traits, including phenology
and physiological traits. Furthermore, additional common garden sites, in contrasting environments,
would assist in separating plastic from genetic responses as well as identifying gene-by-environment
interactions that were not able to be separated in this study. Lastly, multi-species analysis could provide
additional evidence for genomic regions and mechanisms underlying climate adaptation (e.g., [18]).

As found in other studies [28,29], our results demonstrated how combining both genomic and
phenotypic datasets can validate genomic signatures of adaptation and reveal adaptive variation and
potential within a species. Phenotypic variation in this study complement and validate previous
genomic variation, together demonstrating genetic variation between provenances (heritability in this
study and [12]) and high variation within provenances (QST and [56]) and thus suggesting the presence
of variation upon which selection may act. Results of this study, therefore, support the combination of
traditional common garden trials with modern genomic technologies as a method for investigating
local adaptation and the potential for future adaptation in trees [16,26].

4.3. Conservation and Restoration under Climate Change

Incorporating evolutionary potential into conservation management will be essential for long-term
sustainability in natural systems under environmental change [89]. In trees, high standing genetic
variation, fecundity, gene flow, and large effective population size are likely to help enhance evolutionary
potential by maintaining variation upon which selection can act [81,90]. Supporting previous
findings [12,56], significant additive genetic variance and trait variation found in this study suggests
high levels of standing genetic variation and therefore potential for future adaptation in E. microcarpa.
Additionally, adaptive differences between provenances provide an opportunity for the movement
of ‘pre-adapted alleles’, via gene flow or assisted migration, to help facilitate climate adaptation [90].
However, whilst additive variance is important for adaptation, it does not necessarily equate to adaptive
capacity [91]. If genetic correlations identified in this study represent true genetic dependence between
traits, pleiotropy may also constrain adaptive responses in one trait in favour of increased fitness in
another [19]. Furthermore, additional stresses such as habitat fragmentation, reducing population
size and potentially disrupting gene flow, could slow the rate of adaptation within tree populations
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relative to climate change [92]. Where adaptation may not occur quickly enough, introduction of
pre-adapted genetic variation through assisted migration and restoration planting may be necessary to
assist evolutionary potential in natural populations [8].

As restoration seed sourcing strategies move away from ‘local’ and toward capturing evolutionary
potential, especially pre-adapted climate-related diversity [9], understanding climate-related variation
across species’ distributions will help inform effective seed sourcing for long-term sustainability of
populations under climate change. The results of this study, together with genomic results [12] suggest
the presence of climate-associated genetic variation within E. microcarpa that could be utilised to enhance
diversity and pre-adapted climate variation within restoration plantings and the wider landscape. In
particular, temperature, aridity and summer and winter precipitation appear to be important climate
drivers of adaptation in E. microcarpa. Sourcing seed along these climatic gradients, towards projected
future climates, may therefore enhance the long-term potential of restoration sites as well as support
adaptation in the wider landscape through the introduction of pre-adapted genetic variation.

5. Conclusions

Assessing phenotypic variation provides additional support and confirmation of previous
genomic-based assessments of adaptive variation as well as climate as a driver of this variation. The
presence of adaptive variation within and between populations suggests potential future adaptation in
natural populations and may enable selective seed sourcing to enhance climate resilience in restoration
plantings. However, whether the variation found is sufficient for adaptation to future climate change
remains unknown. Further quantitative trait and genomic studies, especially whole-genome sequencing
and polygenic assessments of adaptation, are needed to clarify the extent of adaptive variation in this
species and thus potential adaptability, or vulnerability, to climate change.
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Eucalyptus microcarpa (Grey box), calculated (a) without and (b) with adjustment for spatial population structure;
Figure S1: Empirical per locus ‘neutral’ FST distribution (bar plot) for Eucalyptus microcarpa (Grey box) and QST
estimates; Figure S2: Provenance level, Best Linear Unbiased Estimates (BLUEs) for nine quantitative traits
measured in Eucalyptus microcarpa (Grey box).
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