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Abstract: The land-use change is a major determinant influencing ecosystem carbon (C) patterns and
nutrient cycling in subalpine forests in the Eastern Tibetan Plateau. While some results have been
obtained in relation to the influence of land-use change on aboveground components, less is known
about the belowground microbial communities and related processes. We assessed the structure and
function of soil microbial communities following land-use change from old-growth forest (OF) to
secondary forest (SF), plantation forest (PF), and grassland (GL) in the Eastern Tibetan Plateau, China.
Phospholipid fatty acid profiles and enzyme activity analysis were used to determine the composition
and activities of microbial communities, respectively. Significant differences in physicochemical
characteristics, microbial communities, and extracellular enzyme activities in soils under different
land uses were observed in this study. pH and total nitrogen (TN) in OF and SF were significantly
higher than in GL. PF showed the highest soil organic C (SOC), and significantly higher than in
GL. Total phosphorus (TP) and C/N ratio in PF were significantly higher than the other land-use
types. OF and PF had significantly higher anaerobic bacteria than in GL. The actinobacteria in SF was
significantly higher than in PF. The saprotrophic and ectomycorrhizal (SEM) fungi was significantly
lower in GL than the other land-use types. Total microbial biomass and β-glucosidase activities
were significantly higher in OF and SF than in GL. GL had significantly higher polyphenoloxidase
activities than in OF and PF. Anaerobic bacteria, arbuscular mycorrhizal fungi and SEM fungi
were positively correlated with SOC and TP, Gram+ bacteria were correlated with C/P and N/P
ratio. N-acetylglucosaminidase activity was negatively correlated with anaerobic bacteria, while
polyphenoloxidase activity was positively related to actinobacteria. Furthermore, redundancy
analysis revealed that the microbial community composition was primarily regulated by TN and pH.
This suggested that altered land-use type initiated changes in the physicochemical characteristics of
the soils, which affected the composition of microbial communities and microbial enzyme activities
related to nutrient cycling in this area. This provides a scientific basis for the influence mechanism of
land use on composition and function of microbial communities, as well as the rational utilization
and management of land resources.
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1. Introduction

Interactions between aboveground and belowground communities may strongly affect
ecosystem functioning by regulating plant community dynamics and biogeochemical processes [1,2].
Belowground, soil microbial communities are treated as decomposers of organic materials, playing
important roles in mediating carbon (C) and nitrogen (N) processes and nutrient availability that
are critical for the growth and maintenance of plants [3,4]. Aboveground plant communities can
substantially alter the composition, diversity, and functions of soil microbial communities by changing
root system, rhizodeposition, litter chemistry, canopy structure, and subsequent influences on soil
microclimate conditions and physicochemical properties [5,6].

In human-influenced landscapes, land-use changes are accompanied by changes in aboveground
plant communities and soil characteristics from which aboveground and belowground interactions
develop [7]. It has been recognized that such land-use-driven change is a major determinant influencing
soil microbial community [8,9]. Slight changes in microbial community structure and specific microbial
functions, such as extracellular enzyme activities, have been considered to alter the processes of C and
N cycling [10]. Deeper understanding of the responses of soil microbial communities and processes in
relation to land-use change therefore would greatly benefit land management and ecosystem restoration.

Recent studies, focused mainly on forest conversion or land-use change, have reported the
impacts on the composition and activities of soil microbial communities [1,11–15]. Liu et al. [14],
for example, investigated the influence of forest regeneration patterns on belowground microbial
community composition and activities and found that soil enzyme activities significantly varied
among forest types while bacterial and fungal community did not vary significantly. Ahmed et al. [11]
showed that soil microbial properties and enzyme activities differed significantly among land-use
types. Krashevska et al. [13] examined the effects of land-use change in terms of conversion from
rainforests into rubber plantations and observed significant increase in the abundance of arbuscular
mycorrhizal (AM) fungi and a decrease in bacterial abundance. Guo et al. [12] found significant
changes in the relative abundance of anaerobic bacteria and AM fungi (16:1ω5c) due to conversion
of native broadleaf forests to mixed plantations, or to bamboo forests. A recent study showed that
both microbial biomass and enzymatic activity levels were distinctly lower in ancient oak forests when
compared to historically cultivated sites [1]. In contrast, there have been no significant differences
observed in microbial community composition or enzymatic activities in the “Montado ecosystem” [16]
or between shrublands and broadleaf forests over 27 years of reforestation [17].

The subalpine forest ecosystems in the Eastern Tibetan Plateau located at the transition zone from
the Qinghai–Tibetan plateau to the Sichuan Basin could be very sensitive to global climate change,
with important consequences for biodiversity conservation and the global C and N balance. In the
last century, the subalpine regions in southwestern China were largely covered by old-growth forest
(OF) dominated by firs. With the widespread commercial logging and increased human activities
during the second half of the 20th century, OF were deforested and replaced by natural secondary
forest (SF), plantation forest (PF), or grassland (GL). Recently, forest restoration has been enhanced
to improve forest cover in this region. Therefore, studies on belowground communities in response
to land-use change can provide a good opportunity to improve the understanding of C patterns and
nutrient cycling in the subalpine forests. To date, studies on land-use change in this region have
focused mainly on aboveground components, with less focus on soils and belowground community
processes [18–21]. The size, structure, and function of microbial communities in soils may rapidly
response to any changes in plant and soil characteristics because of different nutrient availability,
substrate’s quality and quantity, root exudates, and rhizodeposits [22–24].
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This study aimed to assess potential effects of different land-use types (OF, SF, PF, GL) on
(i) soil physicochemical characteristics and microbial community composition, and (ii) microbial
extracellular enzyme activities. Furthermore, (iii) can we explain any variation in microbial community
composition through the variations in soil physicochemical properties? We hypothesized that soil
microbial community composition and extracellular enzyme activities would vary among land-use
types. Specifically, we expected that differences in microbial community composition can be explained
by differences in soil physicochemical properties induced by land use change.

2. Materials and Methods

2.1. Study Site

This study was conducted in the Miyaluo Experimental Forest Region (31◦24′–31◦55′ N,
102◦35′–103◦04′ E), located in Li County, Sichuan Province and in the Eastern Tibetan Plateau,
China. This region has a typical subalpine climate (cold winter and cool summer), and altitude ranges
from 2700–3600 m above sea level (a.s.l.). Mean air temperatures in January and July are −8 ◦C and
12.6 ◦C, respectively, and annual mean air temperature is 6.1 ◦C. Annual accumulated temperature
(≥10 ◦C) is 1200–1400 ◦C. Annual mean rainfall is approximately 864 mm, concentrated (about 70.0%)
between May and September, with an average potential evapotranspiration ranging between 1000
and 1900 mm y−1. The soils at the study area are formed from weathered granite and classified as
Cambisols according to Pedoclimatic Zones of China [25,26].

Historically, the primary subalpine forests predominantly contained firs (Abies faxoniana Rehd. et
Wils) that were harvested from the 1940s until 1998 when the Natural Forest Protection Program started.
The deforested lands were subsequently planted with spruce (Picea asperata Mast.) saplings without any
fertilization applied. Spruce plantations had been established in some places of the harvested areas with
sparse understory vegetation, and eventually formed monoculture forest (P. asperata plantation forest
(PF)). Meanwhile, natural restoration was also carried out in areas without cultivation. Nevertheless,
some of the deforested sites failed to form secondary forest (SF) and turned into grassland (GL). Thus,
old-growth forest (OF), SF, PF, and GL now present on the subalpine area. Currently, OF is typically
dominated by old growth A. faxoniana, SF is typically dominated by A. faxoniana and Betula albo-sinensis
Burk., PF is P. asperata monoculture forest. The main understory species were Carex tristachya Thunb,
Cystopteris montana (Lam.) Bernh ex Desv, Polygonum viviparum Linn, and Trisetum sibiricum Rupr, etc.
The coverage of undergrowth vegetation was about 60% in OF and SF and 25% in PF. GL was mainly
characterized as Lolium perenne L. and Thalictrum alpinum L., and the coverage was about 95%.

2.2. Experimental Design, Sampling and Processing

In the studied site, four different land-use types (i.e., OF, SF, PF, and GL) were selected based
on criteria of similar altitude and soil. The land-use types exhibited a mosaic distribution pattern.
We chose three representative stands for each land-use type. The stands were hundreds of meters
to kilometers apart. In each stand, one plot of 20 m × 20 m was randomly established for sample
collection and was approximately 200 m from the edge of the stand. Each plot served as the replicate,
and consequently there were three replicates in each of the four land-use types. All the plots were on
the southeastern slope.

To determine soil physicochemical properties, together with microbial community composition
and microbial extracellular enzyme activities, in each plot, fallen litters were removed and soil samples
(0–10 cm) were collected from five cores (6 cm in diameter). The soil samples collected from each plot
in the same period were thoroughly mixed to obtain one homogeneous and representative sample.
After the composite samples were sieved <2 mm to remove visible roots, stones, plant debris, and soil
animals, all samples were placed in polyethylene bags in triplicate and immediately transported to the
laboratory. One was air-dried and passed through a 0.25 mm sieve for soil physicochemical analysis,
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another was stored at −20 ◦C prior to phospholipid fatty acid (PLFA) profiles, and a third was used for
microbial extracellular enzyme activity analysis.

2.3. Soil Physicochemical Analysis

Soil samples were air-dried (at room temperature), stored in air-tight plastic bags, and later
analyzed for physicochemical properties. Soil pH was determined using a glass electrode meter in a
1:2.5 soil:deionized water solution. Soil organic carbon (SOC) was measured using the wet oxidation
method with K2Cr2O7 and H2SO4, and FeSO4 titration. Total nitrogen (TN) content was measured
using the Kjeldahl method. Total phosphorus (TP) was determined by inductively coupled plasma
(ICP) mass spectrometry analysis (IRIS Intrepid II XSP, Thermo Electron Corporation, Boston, MA,
USA). Briefly, one gram of soil samples was digested with 15 mL of 72% perchloric acid (HClO4) at
203 ◦C until heavy fumes appeared and its contents turned to a white color like sand. After digestion
the samples were filtered with filter paper, and 2 mL supernatant solution was neutralized with 4 N
NaOH using p-nitrophenol as an indicator, and analyzed for TP [27]. Soil samples were extracted
with 2 M potassium chloride (KCl) solution, and ammonium-N (NH4

+-N) and nitrate-N (NO3
–-N) in

extracts were determined with a flow injection auto-analyzer (FIA, Lachat Instruments, Loveland, CO,
USA). The C/N ratio, C/P ratio, and N/P ratio were also calculated.

2.4. PLFA Analysis

PLFA analysis was used to determine microbial biomass and microbial community
composition [28,29]. For the analysis of microbial lipids, fresh soil equivalent to 8 g dry weight
were extracted with 23 mL of chloroform:methanol:phosphate buffer (1:2:0.8) for 2 h. The chloroform
layer was decanted and dried under N2 at 32 ◦C. The extracts were sequentially fractionated into
neutral lipids, glyceride, and phospholipids with chloroform, acetone, and methanol, respectively,
using silica gel-filled solid-phase extraction cartridges. The samples were then subjected to mild
alkaline methanolysis by dissolving them into 1 mL of methanol:toluene (1:1) and 1 mL of 0.2 mol L−1

potassium hydroxide (KOH) solutions, at 37 ◦C for 15 min. Subsequently, 2 mL of water and 0.3 mL of
1.0 mol L−1 acetic acid were added. The resulting fatty acid methyl esters were separated, quantified,
and identified by gas chromatography (GC, N6890, Agilent, Palo Alto, CA, USA) and fitted with a
MIDI Sherlocks microbial identification system (Version 4.5, MIDI, Inc., Newark, DE, USA). Lipid
peaks were determined manually using the associated Agilent FAME identification library, based on
retention time, mass spectra, and comparison with standards. Peak areas were converted into nmol
lipid g−1 dry soil based on the methyl nonadecanoate (19:0) internal standard concentrations.

The total nmol lipid g−1 dry soil (sum of all lipids present) was used as an index of total microbial
biomass. In addition, chemically similar lipid indicators were used to represent ecological groups of
microorganisms. These included the following: Gram-positive (Gram+) bacteria (sum of i14:0, i15:0,
a15:0, i16:0, i17:0, and a17:0), Gram-negative (Gram–) bacteria (sum of 16:1ω11c, 16:1ω7c, 17:1ω8c,
16:1 2OH, and 18:1ω7c), anaerobic bacteria (sum of cy17:0 and cy19:0), actinobacteria (sum of 10Me
16:0, 10Me 17:0, 10Me 18:0, and 10Me 19:0), AM fungi (16:1ω5c), and saprotrophic and ectomycorrhizal
(SEM) fungi (18:2ω6,9c and 18:1ω9c). Ratios of fungal/bacterial (F/B ratio) and Gram+/Gram– bacterial
lipids (Gram+/Gram– ratio) were also included in the data analysis [1].

2.5. Microbial Extracellular Enzyme Activity Analysis

The function of the microbial communities in soils was assessed by analyzing the potential activities
of three microbial extracellular enzymes. The activities of β-glucosidase and N-acetylglucosaminidase
were determined following the method of German et al. [30]. Briefly, soil sample suspensions were
prepared by adding 4.0 g soil to 10 mL of 50 mM sodium acetate buffer (pH 5.0) and homogenizing
for 0.5 h by oscillator. Then, 0.2 mL of 50 mM p-nitrophenyl β-D-glucopyranoside (for β-glucosidase
assay) or 0.2 mL of 10 mM p-nitrophenyl N-acetyl-β-D-glucosaminide (for N-acetylglucosaminidase
assay) was added to 0.8 mL of prepared suspensions. The mixtures were incubated at 37 ◦C in the
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dark for 1 h. To stop the enzymatic reactions, 0.2 mL of 0.5 M calcium chloride (CaCl2) and 0.8 mL of
0.1 M Trishydroxymethylaminomethane-sodium hydroxide (THAM-NaOH, pH 12) buffer were added
after incubation. In the control, the respective substrates were added before the addition of CaCl2 and
THAM-NaOH. Polyphenoloxidase activity was determined according to Sinsabaugh et al. [31], using
L-3,4-dihydroxyphenylalanine (L-DOPA) as substrate. All enzyme activities were expressed as nmol
substrate g−1 dry soil h−1.

2.6. Statistical Analysis

To test if soil physicochemical properties (pH, SOC, TN, NH4
+-N, NO3

–-N, TP, C/N ratio,
C/P ratio, N/P ratio), microbial groups (total microbial biomass, Gram+ bacteria, Gram– bacteria,
anaerobic bacteria, actinobacteria, AM fungi, SEM fungi, Gram+/Gram– ratio, F/B ratio), and microbial
extracellular enzyme activities (β-glucosidase, N-acetylglucosaminidase, polyphenoloxidase) varied
with land-use type, we conducted a series of one-way analysis of variance (ANOVA) followed by
Tukey-HSD tests with land-use type as a fixed factor, and each attribute of soil physicochemical
properties, microbial community groups, or microbial extracellular enzyme activities as responses.
All data were checked for normality and homoscedasticity using Shapiro–Wilk and Bartlett’s test,
respectively. When these assumptions were not met, non-parametric Kruskal-Wallis tests were used.
Additionally, Pearson’s correlation coefficients were used to explore the relationship between the
microbial groups and soil physicochemical properties, as well as microbial groups and enzyme
activities. All statistical tests were performed using SPSS 19.0 (SPSS Inc., Chicago, IL, USA). Statistical
significance was established at p values < 0.05. Microbial PLFA biomarkers obtained from the sampled
soils were standardized before performing principal component analysis (PCA) to ensure each PLFA
had the same weight in the analysis. Redundancy analysis (RDA) was used to analyze the responses
of soil microbial community composition to physicochemical properties using CANOCO software
(Version 4.5, Microcomputer Power, Inc., Ithaca, NY, USA) for Windows. Automatic selection of means
by Monte Carlo permutations was used to test the significance of the variables (p values < 0.05). Figures
were generated using SigmaPlot (Version 10.0, Systat Software, Inc., San Jose, CA, USA).

3. Results

3.1. Soil Physicochemical Properties

Soil physicochemical properties varied significantly according to land-use types (Table 1). Notably,
pH and TN in OF and SF soils were significantly higher than in GL soil (p < 0.05). PF soil showed the
highest SOC, and significantly higher than in GL soil (p < 0.05). The highest NH4

+-N was found in SF
soil, while the lowest was observed in GL soil. GL soil had significantly higher NO3

–-N than in OF
and SF soils (p < 0.05). Additionally, TP and C/N ratio in PF soil were significantly higher than the
other land-use types (p < 0.05). C/P ratio and N/P ratio, however, were significantly lower in PF soil
than the other land-use types (p < 0.05).

Table 1. Soil physicochemical properties of the upper 0–10 cm soil in different land-use types. Values
are means ± SE. Different letters indicate statistically significant differences among the land-use types
(Tukey HSD test, 5% level).

Old-Growth Forest Secondary Forest Plantation Forest Grassland

pH 5.98 ± 0.18 a 5.82 ± 0.03 a 5.34 ± 0.05 ab 5.02 ± 0.27 b
SOC (g kg−1) 61.79 ± 3.97 a 52.32 ± 2.42 ab 63.34 ± 4.75 a 40.39 ± 4.04 b
TN (g kg−1) 4.35 ± 0.44 a 4.22 ± 0.39 ab 3.24 ± 0.12 bc 2.54 ± 0.10 c

NH4
+-N (mg kg−1) 10.99 ± 2.03 ab 13.03 ± 0.12 a 11.06 ± 0.07 ab 8.61 ± 1.47 b

NO3
–-N (mg kg−1) 2.88 ± 0.88 b 3.17 ± 1.21 b 4.22 ± 1.63 ab 8.38 ± 1.84 a

TP (mg kg−1) 76.07 ± 4.65 b 70.19 ± 4.21 b 116.31 ± 3.21 a 43.46 ± 5.23 c
C/N ratio 14.35 ± 0.69 bc 12.52 ± 0.64 c 19.50 ± 0.97 a 15.82 ± 1.08 b
C/P ratio 812.24 ± 17.61 ab 746.79 ± 15.01 b 547.63 ± 57.06 c 938.16 ± 68.36 a
N/P ratio 56.96 ± 3.77 a 59.89 ± 2.36 a 27.96 ± 1.64 b 59.96 ± 6.46 a
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3.2. Soil Microbial Group PLFAs

Land-use type significantly affected the relative abundance of anaerobic bacteria (F = 8.949,
p < 0.05), actinobacteria (F = 4.264, p < 0.05), SEM fungi (F = 8.231, p < 0.05), and F/B ratio (F = 47.5,
p < 0.001). The relative abundance of anaerobic bacteria was significantly higher in OF (11.7%) and PF
(11.5%) soils than in GL (9.9%) soil (p < 0.05) (Figure 1c). Actinobacterial abundance in SF soil was
significantly higher than in PF soil (p < 0.05) (Figure 1d). SEM fungi was significantly lower in GL soil
than the other land-use types (p < 0.05) (Figure 1f). PF soil had significantly higher F/B ratio than the
other land-use types (p < 0.05) (Figure 1h). There was no significant difference among land-use types
for the other microbial groups examined (p > 0.05) (Figure 1a,b,e,g), except for Gram+ bacteria that
were more abundant in GL soil than in PF soil (Figure 1a).
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We found that SOC and TP were significantly and positively correlated with anaerobic bacteria,
AM fungi, and SEM fungi. NO3

–-N was negatively correlated with SEM fungi. TP, C/P ratio and
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N/P ratio were correlated with Gram+ bacteria. Additionally, C/P ratio appeared to be negatively
correlated with anaerobic bacteria and SEM fungi (Table 2).

Table 2. Pearson’s correlation coefficient (R) testing association between microbial group phospholipid
fatty acids (PLFAs) and soil physicochemical properties. p-values are shown in the parenthesis. Bold
values indicate significant effects at p < 0.05 or p < 0.01.

Gram+ Bacteria Gram– Bacteria Anaerobic Bacteria Actinobacteria AM Fungi SEM Fungi

pH −0.14 (0.67) 0.39 (0.21) 0.49 (0.11) 0.32 (0.31) 0.25 (0.43) 0.44 (0.16)
SOC −0.41 (0.19) 0.18 (0.57) 0.60 (0.04) −0.06 (0.86) 0.59 (0.04) 0.76 (<0.01)
TN −0.10 (0.77) 0.20 (0.54) 0.44 (0.15) 0.36 (0.26) 0.34 (0.28) 0.49 (0.11)

NH4
+-N −0.07 (0.83) 0.25 (0.44) 0.49 (0.11) 0.06 (0.86) 0.15 (0.65) 0.46 (0.14)

NO3
–-N 0.42 (0.17) −0.25 (0.43) −0.53 (0.07) −0.12 (0.72) −0.31 (0.32) −0.68 (0.02)

TP −0.70 (0.01) 0.12 (0.72) 0.63 (0.03) −0.38 (0.22) 0.65 (0.02) 0.81 (<0.01)
C/N ratio −0.32 (0.31) −0.09 (0.78) 0.14 (0.68) −0.53 (0.08) 0.20 (0.54) 0.19 (0.55)
C/P ratio 0.76 (<0.01) −0.05 (0.89) −0.68 (0.02) 0.43 (0.16) −0.53 (0.08) −0.75 (<0.01)
N/P ratio 0.63 (0.03) 0.03 (0.92) −0.49 (0.11) 0.55 (0.06) −0.40 (0.20) −0.54 (0.07)

SOC: soil organic carbon; TN: total nitrogen; TP: total phosphorus; C/N: the ratio of soil organic carbon to total
nitrogen; C/P: the ratio of soil organic carbon to total phosphorus; N/P: the ratio of total nitrogen to total phosphorus.

3.3. Soil Microbial Community Composition

The data concerning the individual relative abundance of the 24 most common PLFAs were
subjected to a principal component analysis (PCA; Figure 2). Results showed that the first principal
component (PC1) and the second principal component (PC2) together accounted for 66.7% of total
variation of the soil microbial community composition. The PCA biplots revealed that the soil microbial
community composition from OF was like that of SF. While the soil microbial communities from PF,
GL, and SF were compositionally distinct from each other. GL with higher PC1 scores were observed
on the right of the axes 1. By their loading values, it is evident that the microbial PLFA biomarkers
associated with gram-positive bacteria, including i14:0, i17:0, and a17:0, were all most important for
the separation of the GL. The higher PC2 scores were observed for PF on the upper of the axes 2.
Specifically, PF soil was abundant in AM fungal PLFA biomarkers (16:1ω5c) and one of the SEM fungal
PLFAs biomarkers (represented by 18:2ω6,9c).
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Redundancy analysis (RDA) of the relationships between soil microbial community composition
and soil physicochemical properties showed that the first axes, RD1, explained 45.44% of the total
variance in soil microbial communities, while the second axes (RD2) explained 21.74% of the total
variance (Figure 3).
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Figure 3. Redundancy analysis (RDA) of relationships between soil microbial community composition
and physicochemical properties. The dashed lines with blue color represent the microbial phospholipid
fatty acid (PLFA) biomarkers and the solid lines with red color represent the soil physicochemical
variables. SOC: soil organic carbon; TN: total nitrogen; TP: total phosphorus; C/N: the ratio of soil
organic carbon to total nitrogen; C/P: the ratio of soil organic carbon to total phosphorus; N/P: the ratio
of total nitrogen to total phosphorus.

Nine variables—which included pH, SOC, TN, NH4
+-N, NO3

–-N, TP, C/N ratio, C/P ratio, and
N/P ratio—were found to be significantly correlated to soil microbial community composition (Table 3).
These variables jointly explained 88% of the variations of the soil microbial community. The forward
selection of the variables in the RDA showed that the soil microbial community composition across
these four land-use types was primarily affected by the TN and pH, which explained 30% and 23% of
the variations, respectively.

Table 3. Marginal and conditional effects of forward selection through redundancy analysis (RDA).

Variables Explained α a Explained β b p c F-Ratio d

TN 0.30 0.30 0.008 4.25
pH 0.26 0.23 0.002 4.47
TP 0.27 0.07 0.194 1.43

N/P 0.18 0.07 0.190 1.52
Ammonia-N 0.21 0.05 0.436 1.02

C/P 0.26 0.04 0.452 0.89
SOC 0.24 0.06 0.382 1.16

Nitrate-N 0.27 0.03 0.556 0.73
C/N 0.17 0.03 0.656 0.50

a Marginal effects, which show the variance explained when the variable is used as the only factor. b Conditional
effects, which show the additional variance each variable explains when it is include in the model. c Level of
significance corresponding to b when performing Monte Carlo test at the 0.05 significance level. Bold values indicate
significant effects at p < 0.05. d Monte Carlo test statistics corresponding to b at the 0.05 significance level.

3.4. Soil Microbial Biomass and Extracellular Enzyme Activities

Land-use type had a marked impact on total microbial biomass (F = 23.717, p < 0.001),β-glucosidase
(F = 6.347, p < 0.05) and polyphenoloxidase activities (F = 11.565, p < 0.01). Total microbial biomass,
N-acetylglucosaminidase and β-glucosidase activities were consistently higher in OF and SF soils
than in GL soil (Figure 4a–c). However, differences in N-acetylglucosaminidase activities were not
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statistically significant. Additionally, GL soil had significantly higher polyphenoloxidase activities
than in OF and PF soils (Figure 4d).
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Figure 4. Soil total microbial biomass and microbial extracellular enzyme activities in different
land-use types. Error bars represent the standard error of the mean. Different letters indicate
statistically significant differences among the land-use types (Tukey HSD test, 5% level).
NAGase: N-acetylglucosaminidase.

In a correlation analysis, N-acetylglucosaminidase and β-glucosidase activities significantly
increased with increasing total microbial biomass. N-acetylglucosaminidase activity was negatively
correlated with anaerobic bacteria, while polyphenoloxidase activity was positively related to
actinobacteria. No other microbial variables showed any significant correlations with enzyme
activities (Table 4).

Table 4. Pearson’s correlation coefficient (R) and p values of regression between soil microbial group
phospholipid fatty acids (PLFAs) and microbial extracellular enzyme activities.

N-acetylglucosaminidase β-glucosidase Polyphenoloxidase

R p R p R p

Gram+ bacteria 0.104 0.748 0.242 0.449 0.399 0.199
Gram– bacteria 0.439 0.153 0.183 0.570 0.205 0.523

Anaerobic bacteria −0.702 <0.05 −0.545 0.067 0.014 0.965
Actinobacteria 0.470 0.123 0.300 0.344 0.578 <0.05

AM fungi 0.173 0.591 0.007 0.982 −0.162 0.614
SEM fungi −0.340 0.280 −0.346 0.271 −0.131 0.685

Gram+:Gram– ratio −0.262 0.411 −0.005 0.987 0.042 0.897
Fungi:Bacteria ratio −0.289 0.362 −0.315 0.319 −0.263 0.408

Total microbial biomass 0.624 <0.05 0.718 <0.01 −0.443 0.149
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4. Discussion

The response of soil microbial community composition to land-use changes or disturbances is
commonly assessed by community level PLFA profiles. For example, quite a few studies observed that
soil microbial community showed some tree specificity [1,12]. Consistent with our hypothesis and
findings from previous studies [7,12,13], we found that land-use type had a significant influence on
soil microbial communities and microbial extracellular enzyme activities (Figures 1 and 4), in large
part, due to modified soil physicochemical properties and plant community structure. Contrarily,
Bezemer et al. [32] and Lucas-Borja et al. [33] did not find any relationship between soil microbial
community and land-use type.

Different microbial group PLFAs seemed to prefer different soil conditions [12,34–36]. Gram+

bacteria, for example, were positively correlated with increasing soil TP [12], while actinobacteria
and AM fungi were strongly associated with NH4

+-N and NO3
–-N [23]. In the present study, due

to the great afforestation density and fine-root biomass, meanwhile, because of the relatively gentle
slope and less P loss of top soil, PF showed the highest values of SOC and TP (Table 1). We also
found that anaerobic bacteria and SEM fungi were distinctly higher in OF and PF soils than in GL soil
(Figure 1). Therefore, the anaerobic bacteria and SEM fungi seemed to prefer the soil conditions with
higher SOC and TP concentrations, our further correlation analysis also confirmed this result (Table 2).
A previous study in an oak forest showed that fertile soils favored highly microbial groups after
land-use changes [1], which supported our findings. In addition, our observed trend toward lower
Gram+ bacteria in PF soil may be related to higher TP, lower C/P ratio or N/P ratio, since significant
correlations were found between them (Table 2).

In the present study, RDA showed that the soil microbial community composition from OF soil
was like that of SF soil (Figure 2), which consistent with previous findings that soil microbes under
similar vegetation showed more similar community structure [33]. In addition, we found that microbial
communities from OF (or SF), PF, and GL soils were compositionally distinct from each other (Figure 2),
and the soil microbial community composition was mainly controlled by TN and pH (Figure 3 and
Table 3). Previous studies also concluded that soil N availability could influence microbial growth
in forest soils [37,38]. A recent study, for example, showed that bacteria generally have higher N
demand (microbial C/N = 4 for bacteria and 10 for fungi) [39] and therefore might develop well
under N-rich conditions. Soil pH is one of the major factors influencing the soil microbial community
composition [40,41]. Nevertheless, it was also reported that there was no significant relationship
between soil microbial community and pH [42]. Soil types and their associated soil characteristics,
such as nutrient availability, texture, and soil moisture have varied in different studies, which might
account for the inconsistent relationships.

Plant community structure and species identity has been shown to have significant influence on
microbial communities in soils [43–45]. In this study, changes in plant communities associated with
distinct land uses resulted in different microbial communities in soils (Figure 1). At least two aspects
could be explained for this situation. First, different plant communities often select microorganisms
differentially through affecting access to nutrients and plant rhizodeposits [22]. Second, the increase
of plant community diversity can provide more types of food supply for belowground microbial
communities, leading to more niche availability for soil microbes [1]. In this study, the plant community
composition and structure were more complex in mixed forests (OF and SF) than that of monoculture
PF and GL, meanwhile, mixed leaf litters that contained broad-leaved tree species (SF) often decompose
at a faster rate than monoculture coniferous litters (PF), such differences often affect the structure and
activities of belowground microbial communities [46,47].

Land-use-driven changes are likely to feedback on ecosystem C and nutrient cycling through the
effects on soil microbial communities [48]. Microorganisms produce extracellular enzymes in order
to degrade complex organic substrates into monomers for nutrient acquisition [49,50]. Extracellular
enzyme activities can, therefore, represent microbial nutrient limitation and decomposition potential in
response to changes in soil quality or land-use change [1]. Soil enzymes can be divided into two broad
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groups: (i) hydrolytic enzymes (such as N-acetylglucosaminidase and β-glucosidase) responsible for
the acquisition of C, N, and P to support primary metabolism; and (ii) oxidative enzymes (such as
polyphenoloxidase), produced primarily by fungi, which degrade poor-quality and chemically complex
compounds like lignin in cometabolic acquisition of nutrients [31,51]. These groups of enzymes may
respond differently to land-use change. In our study, land-use changes from OF to GL shifted enzyme
production toward a decrease in β-glucosidase activities (Figure 4), which may reduce nutrient cycling
rates and thus decrease nutrient acquisition for metabolism. However, such land-use changes decreased
the SEM fungi abundance (Figure 1) but dramatically increased the production of polyphenoloxidase
(Figure 4). Previous studies showed that, aside from soil microbes, soil properties (pH, bulk density,
organic matter, TP, total potassium, etc.) and soil processes (soil respiration) were also the direct
factors affecting soil enzyme activities [52]. Sinsabaugh et al. [31] found a strong relationship between
soil pH and phenol oxidase when conducted a global-scale meta-analysis of soil enzyme activity.
Xu et al. [52] observed that land-use changes from bare land to Casuarina equisetifolia L. plantation
increased the fungi abundance, whereas it decreased the polyphenoloxidase, which is similar with
our results. In addition, they concluded that soil texture and respiration were the key determinants
influencing polyphenoloxidase activity. Therefore, it could be speculated that the soil properties
may be the cause of the above results described in our study. Oxidative enzymes may contribute to
humification and are typically linked to the depolymerization of recalcitrant organic compounds and
poor-quality C compounds, such as aromatic C (found in lignin), as observed in Puerto Rico montane
forests [53] and northern United States hardwood forests [54]. Environmental conditions that restrict
in situ oxidative activities sustain an activity-limited feedback cycle that increases the C storage [33].
These results indicate that there is likely to be significant variability in microbial community structural
and functional responses to land-use change, with potential effects on soil C cycling.

5. Conclusions

In summary, we found strong evidence that land-use change has significant impacts on the
structure and function of soil microbial communities in subalpine forests in the Eastern Tibetan Plateau.
The microbial communities from OF (or SF), PF, and GL soils were compositionally distinct from each
other. OF and PF had significantly higher anaerobic bacteria than in GL. The actinobacteria in SF was
significantly higher than in PF. The SEM fungi was significantly lower in GL than the other land-use
types. Total microbial biomass and β-glucosidase activities were significantly higher in OF and SF
than in GL. GL had significantly higher polyphenoloxidase activities than in OF and PF. The microbial
community composition was primarily regulated by soil physicochemical characteristics. These findings
suggested that altered land-use type initiated changes in the physicochemical characteristics of the
soils, which affected the composition of microbial communities and microbial enzyme activities related
to nutrient cycling in this area. This provides a scientific basis for the influence mechanism of land
use on composition and function of microbial communities, as well as the rational utilization and
management of land resources.
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