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Abstract: Research Highlights: This study looks at poplar canker caused by Cytospora chrysosperma as
a geographical phenomenon, and it applies spatial statistics to reveal the pattern and aggregation
effects of the disease on a large scale in time and space. The incidence area of poplar canker in
Northeast China has spatial (spatiotemporal) aggregation effects, which emphasize the importance of
coordinated prevention. The results of spatial and spatiotemporal clusters can guide specific regional
prevention and indicate the possible predisposing factors, respectively. Background and Objectives:
Poplar canker, a harmful forest biological disease that is widespread throughout Northeast China,
brings enormous ecological and economic losses. The limited cognition of its spatiotemporal pattern
and aggregation effects restricts the decision-making for regional prevention and the identification of
disease-inducing conditions. This study aims to explore the spatiotemporal pattern and to detect
the aggregation effects of the disease, trying to provide references for prevention. Materials and
Methods: According to the incidence data of poplar canker reported by each county in Northeast
China from 2002 to 2015, we mapped the distribution of the incidence rate in ArcGIS and performed
retrospective scan statistics in SaTScan to detect the spatial and spatiotemporal aggregation effects of
the incidence area. Results: The spatiotemporal pattern of poplar canker’s incidence rate presents the
characteristic of “outbreak-aggregation-spread-stability.” The incidence area of the disease when we
performed spatial aggregation scan statistics showed the primary cluster covering Liaoning province
(LLR = 86469.86, p < 0.001). The annual spatial scan statistics detected a total of 14 primary clusters
and 37 secondary clusters, indicating three phases of aggregation. The incidence area of disease
also shows spatiotemporal aggregation effects with the primary cluster located around Liaoning
province, appearing from 2009 to 2015 (LLR = 64182.00, p < 0.001). Conclusions: The incidence area of
poplar canker presents significant characteristics of spatial and spatiotemporal aggregation, and we
suggest attaching importance to the clues provided by the aggregation effects in disease prevention
and identification of predisposing factors.

Keywords: poplar canker; Northeast China; spatiotemporal scanning statistics; spatiotemporal
aggregation
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1. Introduction

Poplar trees (Populus spp.) are widely distributed throughout the world and are the main
tree species used for afforestation. However, they are susceptible to a variety of forest diseases.
Poplar canker (Cytospora canker of poplar) caused by Cytospora chrysosperma (Pers.) Fr. (teleomorph:
Valsa sordida Nit.) is one of the most widespread and severely damaging of them [1,2]. Cytospora canker
can occur on at least 85 woody host plant species, including poplars and willows [3,4]. Although
Cytospora canker of poplar also occurs on numerous other woody hosts, the disease caused on species
other than Populus and Salix is generally caused by other species of Cytospora, i.e., not C. chrysosperma.
Considering that the major causal agent of poplar canker is C. chrysosperma in Northeast China,
the term “poplar canker” in this study refers to Cytospora canker of poplar caused by C. chrysosperma.
Poplar canker is a powerfully infectious fungal disease [4,5], whose pathogen is a parasite that can
be spread by wind, rain, and insects [6,7] and infects weak host plants from bark wounds caused
by the climate, animals, or humans [1,3,8]. Once trees become infected, poplar canker leads to the
decay and death of branches and the withering of leaves [3,8]. Symptoms of poplar canker include
elongate, slightly sunken, and discolored areas in the bark, which often splits along the canker margin.
Diseased inner-bark and the bark above the infected cambium may appear sunken and yellow, brown,
reddish-brown, grey, or black, becoming watery and odorous as the tissues deteriorate. Its pathogen
can spread and extend from the wounded bark into healthy tissues and even cause the death of the
whole tree in severe cases [1].

Poplar canker causes significant ecological destruction and economic loss around the world.
According to research, poplar canker infected 41% of black cottonwoods from the northern region of
the “no-cottonwood” belt in British Columbia, Canada, around the year 2001 [9]. It caused the mass
death of white poplars in the Hulla Valley, Northern Israel, in 2002 [10]. It also appeared to play a major
role in the rapid mortality of trembling aspen in Southwestern Colorado, US, in 2006 [11]. Under the
condition of abundant vegetation resources in China, poplar canker would generate more considerable
ecological and economic losses. More than 53 species of poplars are cultivated in China and cover a
total area of over 7 million hectares, accounting for 73% of poplar-planting areas in the world [12,13].
Poplar canker is a major forestry disease as well as the leading cause of poplar death in Northern
China [2]. It is particularly severe in Northeast China, where mortality rates of poplar can reach more
than 70% [6,14]. Researches and statistics from China indicate that the annual economic losses caused
by poplar canker in the county ranged from 320 to 500 thousand yuan [15]. Four large-scale poplar
canker disasters in Liaoning province from 2006 to 2013 resulted in a total disaster area of more than
87,000 hm2, a death area of nearly 27,000 hm2, and a direct economic loss of more than 2 billion yuan [7].
Moreover, poplar canker brought an average annual loss of forest ecological services valued at 1,028.59
million yuan [16]. To make the matter worse, poplar canker in Northeast China is becoming more
aggravated and frequent [6,7].

Prediction and prevention are the fundamental and practical ways of fighting poplar canker [8],
as there are no economically viable control methods suitable for this poplar disease [12]. Exploring the
spatiotemporal pattern and aggregation effects of poplar canker is necessary for the formulation of
macroprevention policies and understanding the prediction mechanisms. The predisposing factors
that present spatial heterogeneity, such as environmental conditions, stand structure, and human
management [6,8], likely allow poplar canker to occur in clusters through space and time. Currently,
most studies on poplar canker in China and abroad focus on the molecular mechanism, incidence
regularity, and control techniques [1,4]. However, limited studies have focused on the spatiotemporal
patterns and aggregation effects of poplar canker on the regional scale from a geospatial perspective.
Many studies of forest diseases and insect damage primarily focus on the pathogens or insects and
miss the opportunity to explore the possible predisposing mechanisms of diseases and insect damage
on a large scale of time and space through geographical analyses.

This study used a geographic information system (GIS) and retrospective scanning statistics in
SaTScan to investigate the spatiotemporal pattern of poplar canker’s incidence rate and aggregation
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effects of poplar canker’s incidence area in four provinces (i.e., Heilongjiang, Jilin, Liaoning, and Inner
Mongolia) of Northeast China from 2002 to 2015. SaTScan is a spatial data analysis software that
uses spatial (spatiotemporal) scan statistics to analyze local spatial heterogeneity. It can perform
geographical surveillance of diseases and detect spatial or spatiotemporal disease clusters, as well as
determine if these clusters are statistically significant. This study used this software for two primary
reasons. First, spatial scan statistics are sensitive and effective, and they are the most suitable cluster
detection method. Compared to initial scan statistics, spatial scan statistics use a variable size scanning
window and deal with data from geographically inhomogeneous conditions. Thus, this detection
method is the most practical [17]. Compared to the geographical analysis machine (GAM), the spatial
scan statistics scanning window is continuously changing and can test the hypothesis without problems
of multiple testing. Compared to global clustering tests, such as maximized excess events tests, spatial
scan statistics have a higher power for detecting local clusters and their location [18,19]. Second, as a
spatial analysis technology of epidemiology, SaTScan has been applied in existing research to analyze
the spatial clusters of forest fragmentation in Southeastern US, spatiotemporal clusters of insects and
pathogens in Pacific Northwest US [20], and geographic concentrations of perforated forests in Eastern
US [21].

The purpose of this study was to (1) retrospectively analyze the spatiotemporal pattern of poplar
canker’s incidence rate in Northeast China from 2002 to 2015, (2) detect the spatial (spatiotemporal)
aggregation effect of the incidence area of this disease on the regional scale, and (3) try to explore the
possible predisposing factors in specific space and time based on the results, and to provide a reference
for macroprevention. The results show that (1) the incidence rate of poplar canker presented a rising
trend in general with an average annual increase rate of 27.62%. (2) Liaoning province was one of the
four regions with the most severe disease from 2002 to 2015. (3) The spatiotemporal pattern of poplar
canker’s incidence rate presented the characteristics of “outbreak-aggregation-spread-stability.” (4) The
incidence area of poplar canker had spatial and spatiotemporal aggregation effects, and Liaoning
province was usually in the primary clusters with the most significant probability of aggregative
occurrence. Considering the aggregation effects of poplar canker, we should carry out regional
coordinated prevention and control, rather than only apply prevention activities based on the incidence
rate in a single geographic unit. The results of spatial clusters can reveal the potential high-risk areas
and suggest prevention strategies adapted to local conditions for regional prevention. The results
of spatiotemporal clusters can indicate the possible predisposing factors in specific space and time,
such as afforestation activities and extreme weather.

2. Materials and Methods

2.1. Study Area

The study area spans 275 counties (county-level cities and districts) under the jurisdiction of
Heilongjiang, Jilin, and Liaoning provinces and the Inner Mongolia Autonomous Region of Northeast
China (97◦12′, 135◦05′ N; 37◦24′, 53◦33′ E) with an area of 199.14 million hectares (Figure 1). This area
has extensive forest coverage with a wide variety of trees. It is not only the location of the largest
natural forest area, the Northeast Forest Region composed of the Greater and Lesser Khingan Ranges
and Changbai Mountains, but also contains the large-scale artificial afforestation project called the
Three-North Shelterbelt Program. According to the China Statistical Yearbook on Environment (2018),
the forest area in these northeastern provinces reaches 57.71 million hectares, accounting for 27.79%
of the national forest area. In 2017, the afforestation area was 1.08 million hectares, accounting for
14% of the country. According to the Flora of China (2004), around 59 species of Populus and Salix,
susceptible to poplar canker, are cultivated throughout the study area. The climate of the study area
includes a temperate monsoon climate and a temperate continental climate, so the seasonal changes of
temperature and humidity are distinct. The spatial heterogeneity of climate characteristics is evident
in the study area. Its average annual temperature ranges from −3.6 ◦C to 11 ◦C, and the annual
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precipitation ranges from 64 to 1100 mm. The climate in Northeast China from March to June is suitable
for the occurrence and spread of poplar canker. This disease usually occurs in late March and April
every year, and its incidence rate reaches its peak of incidence between May and June [6].
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Figure 1. Location of the study area.

2.2. Data Collection and Preprocessing

The statistical data of poplar canker’s incidence in the study area from 2002 to 2015 was provided
by the Forestry and Grassland Diseases and Pests Control Station, National Forestry and Grassland
Administration (NFGA) of the People’s Republic of China. Only data collected for the occurrence
of poplar canker on Populus species caused by Cytospora chrysosperma were used for the analyses.
The data was acquired from the 275 detection and reporting stations set up by the NFGA at the
county-level in four provinces of Northeast China. According to the main objectives of the survey and
reporting methods promulgated by the NFGA, regular survey and perennial monitoring are adopted to
accurately record the number of affected trees, occurrence areas, severity, and incidence rate of poplar
canker every year. The types of Populus forests and plantings examined in the conducted surveys
included plantations, non-managed planted forests, and naturally regenerated forests. The field survey
was carried out using a systematic line survey and was augmented with data collected from standard
circular plots (0.2 hm2). The additional plots were established when a surveyed area was found to
have more than 10% affected trees. Plots were set up every 5 hm2 for these situations. Representative
trees with poplar canker were selected for sampling and verification of the causal fungus. Specifically,
isolations were made from stem cankers in the laboratory to confirm the presence of C. chrysoperma.
The incidence rate equals the number of trees confirmed to be infected with poplar canker caused
by C. chrysosperma divided by the total number of trees surveyed × 100%. The county-level survey
data is reported to the NFGA level-by-level each year within the stipulated timeframe. With strict
quality control of Forestry and Grassland Administration at four administrative levels (e.g., the county,
municipal, provincial, and national levels), the accuracy rate of the data can reach more than 99%.

Additionally, the normalized difference vegetation index (NDVI) used in this study was the
MODND1M monthly synthesis product with a spatial resolution of 500 m, provided by the Geospatial
Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences (http://www.
gscloud.cn). It was initially obtained by the moderate-resolution imaging spectroradiometer (MODIS)
sensor on the TERRA satellites. NDVI ranged from −1 to 1, the positive value indicates vegetation,
and its value increases with the increase in the proportion of vegetation coverage.

http://www.gscloud.cn
http://www.gscloud.cn
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Considering that the actual host area and total incidence area of each county have no records
available, we assumed the mean value of the maximum NDVI for each month from March to July (i.e.,
the period when trees are luxuriant, and poplar canker is prone to occur) to approximately represent
vegetation coverage, as the positive relationship between NDVI and vegetation coverage [22]. It is a
typical representation in regional geographic analyses [23,24]. Under the premise that a variety of host
plants (around 59 species of Populus and Salix) are widely distributed in the study area, the vegetation
coverage was approximately considered as the host vegetation coverage. Thus, the host area was
estimated by the product of county area and vegetation coverage, and it included all hosts of poplar
canker. Then, we used the incidence rate recorded in official statistical data to multiply the host area as
the incidence area. The county is the geographic unit of the calculation process. Although this process
cannot accurately calculate the exact value, it reasonably represents the corresponding quantitative
relationship and the actual meaning of the variables between different geographic units. The scan
statistics in this study used the obtained incidence area as the variable to detect.

2.3. Data Analysis

2.3.1. Spatial (Spatiotemporal) Scan Statistics

This study applied scan statistics to detect clusters of cases, and it scanned the entire area by
circular windows with variable positions and sizes. The windows, in turn, center on each geographical
unit positioned throughout the study region, while the radius of the window varies continuously in size
from zero to the upper limit, which specifies the percentage of the maximum total population at risk
within the scanning window [17]. The numerous generated geographical circles are possible clusters
waiting for detection. Therefore, to test the aggregation effect of each window, we propose the null
hypothesis as follows. There is no aggregation effect of poplar canker in the window, and the incidence
area is a random variable obeying the discrete Poisson distribution (i.e., the expected incidence area is
proportional to its host area and is consistent with the characteristics of forest pests and diseases) in
geographical location, independent of whether it is inside or outside the window. The corresponding
hypothesis is that the incidence area in the window is abnormally higher than outside the window.
The log-likelihood rate (LLR) is a statistic that describes the degree of abnormality of the incidence in
the window. Under the condition of a discrete Poisson model, the likelihood function for a specific
window is proportional to [17]:

(a ⁄ E(a)) a
× ((A-a) ⁄ A-E(a)) A-a

× I (), (1)

where A is the total area of poplar canker incidence, a is the observed area of incidence within the
window, and E(a) is the covariate-adjusted expected area of incidence within the window under the
null hypothesis. I () is an indicator function that is equal to 1 when the window has areas that are
larger than expected under the null hypothesis, and 0 otherwise.

The cluster with the largest calculated LLR (i.e., the cluster least likely to be an accidental infection
of poplar canker) is the primary cluster (i.e., the most likely cluster), of which the likelihood ratio is
used as the maximum likelihood ratio test. The remaining statistically significant scan windows are
secondary clusters, sorted by LLR in descending order. Monte Carlo simulation was used to generate
random datasets under the null hypothesis. The p-value was calculated by comparing the rank of
the maximum likelihood from the realistic dataset with the maximum likelihoods from the random
datasets [17]:

p = R ⁄ (1+N), (2)

where R is the rank of the realistic dataset and N is the number of random datasets generated by Monte
Carlo simulations. When the p-value rejects the null hypothesis, poplar canker in the scanning window
can be considered to have significant aggregation effects, and the relative risk (RR) is meaningful.
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RR represents how much more severe the disease is in this location and time compared to the baseline.
The higher the RR value, the more seriously poplar canker aggregately occurred:

RR = (a ⁄ E(a)) ⁄ ((A-a) ⁄ A-E(a)), (3)

The spatiotemporal scanning statistics add a time dimension based on the spatial scanning
statistics and replace circular windows with cylindrical windows. Their bottom had the same meaning
and function as the circles of the spatial scan statistics, while the height reflects the period of the
possible cluster. The position, radius of the bottom, and height of the cylinder windows are variable
and cover the entire space and study period.

2.3.2. Scan Statistics Using SaTScan

SaTScan v.9.5 was developed by Martin Kulldorff at Harvard University Medical School in Boston,
MA, U.S., together with Information Management Services Inc. (www.satscan.org). It was the tool
used for the spatial (spatiotemporal) scan statistics. The three input files need to contain the spatial
coordinates of a set of geographic units, the number of cases in each unit, and the population size for
each unit, respectively. They link to each other through a standard county code, which also served as
the unit identification. Similar to the existing application of SaTScan in forest health research [20,21],
this study used the poplar canker’s incidence area as the “case” and the host area as the “population”.

A pre-experiment was used to identify the maximum radius of the scanning window suitable for
this research. It found many non-pathogenic areas located in the cluster and potentially meaningless
secondary clusters could both be avoided when the window size was set to 30% of the total host area
(compared to 40% and 50%). This conclusion is consistent with a previous study [25]. Therefore,
the upper limit of the maximum radius in the scan statistics was set to 30%.

The number of Monte Carlo simulations was set to 999 so that the calculated p-value would
indicate whether to reject the null hypothesis when compared to the typical cut-off value of 0.001.
Furthermore, we kept the other default settings so that geographically overlapping clusters were
not reported.

The SaTScan output results include result report documents and geospatial information.
All statistically significant clusters, including the geographic units, aggregation center, radius, LLR, RR,
and other statistical variables, were recorded in the documents. The generated “.shp” files were used
for the ArcGIS mapping. In the map, a circle represents a spatial cluster unless the cluster is confined
to only one county, in which case it is represented by a dot.

3. Results

3.1. The Incidence Trends of Poplar Canker

The average incidence rate (AIR) of poplar canker in Northeast China exhibited a fluctuating
upward trend from 2002 to 2015 (Figure 2a). AIR sharply increased with an average annual increase
rate of 27.62%. The disease was rapidly aggravated in 2003 and 2006 when the AIR increased by 1404%
and 164% compared to the former year, respectively. The AIR increased steadily over five years from
2009 to 2014 with an average annual increase rate of 14.87%, reaching a maximum value of 4.54%
during the study period in 2014.

During the study period, a total of 901 poplar canker cases in 149 counties was reported in the
four provinces of Northeast China. The fluctuation trend of the number of infected counties was highly
consistent with the AIR trends, except for 2006 (Figure 2b). The AIR of infected counties in most years
was between 6.63% and 14.86% but was 31.74% in 26 infected counties in 2006. Similarly, the number
of infected counties rose to its maximum observed value during the study period in 2014 when 100
counties were affected.

www.satscan.org


Forests 2020, 11, 454 7 of 16
Forests 2020, 11, x FOR PEER REVIEW 7 of 16 

 

 

(a) 

 

(b) 

Figure 2. (a) Annual variation of the average incidence rates of all counties in the study area from 
2002 to 2015; (b) Annual variation of the number of infected counties in the study area from 2002 to 
2015. 

3.2. The Severity of Poplar Canker in Affected Counties 

High incidence rates of poplar canker were mainly concentrated in four regions as follow: (1) 
Liaoning province, (2) western counties in Jilin province, (3) Ulanqab, Baotou, and their surrounding 
areas (region U-B), and (4) Jarud and Ar Horqin banners (region J-A) (Figure 3). Some others were 
distributed in southern Heilongjiang and southern Jilin. 

 

Figure 2. (a) Annual variation of the average incidence rates of all counties in the study area from 2002
to 2015; (b) Annual variation of the number of infected counties in the study area from 2002 to 2015.

3.2. The Severity of Poplar Canker in Affected Counties

High incidence rates of poplar canker were mainly concentrated in four regions as follow:
(1) Liaoning province, (2) western counties in Jilin province, (3) Ulanqab, Baotou, and their surrounding
areas (region U-B), and (4) Jarud and Ar Horqin banners (region J-A) (Figure 3). Some others were
distributed in southern Heilongjiang and southern Jilin.
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Poplar canker in central Liaoning province had a high incidence rate, and it continually occurred
for a long time in this area. The AIR in Xinmin city, Liaozhong county, Taian county, Dengta city, and
the Anshan municipal district were all over 18%. Liaozhong county and three other counties suffered
from the disease for 13 consecutive years. Another seven counties, including Xinmin city, suffered
from the disease for 12 years during the study period. The AIR of five counties in Western Jilin, led by
Songyuan municipal district and Qian’an county, ranged from 7% to 25% and only occurred from 2007
to 2008 and 2012 to 2015. In region U-B, the AIR ranged from 2% to 12.8% in many areas, and the first
case of poplar canker was reported in 2010. Then, the disease spread and became exacerbating around
2012. In region J-A, poplar canker broke out at the beginning of the study period and continued for a
more extended period compared to region U-B, and its AIR ranged from 2.2% to 5.4%.

3.3. The Spatiotemporal Pattern of Poplar Canker

The spatial distribution pattern of poplar canker’s incidence rate in Northeast China presented
“outbreak-aggregation-spread-stability” (Figure 4). The “outbreak” stage began in 2002 when Chifeng
city, Tongliao city, and a few of their neighboring eastern counties reported their first poplar canker
cases. This phase lasted until 2003 when poplar canker was not only introduced to 37 counties in
Liaoning and Jilin provinces but had a wide dissemination range and even spread to 16 counties
located in Northern Heilongjiang and Western Inner Mongolia, rendering all provinces in Northeast
China infected by poplar canker.

Over the next three years, notable contractions occurred in the affected areas, and the disease
entered the “aggregation” stage. Particularly in 2006, infected counties, such as Nong’an county,
Liaozhong county, Anshan municipal district, and Haicheng city, were centrally located in central
and northern Liaoning province and Western Jilin provinces with an extremely high incidence rate
over 70%.

The “spread” phase lasted from 2007 to 2014. The spatial extent and incidence rate of the poplar
canker repeatedly increased and decreased before 2011. Then, the disease aggravated steadily after
2011, some counties at the junction of Songyuan city and Daqing city were infected, and their incidence
rates were high. The same situation poplar canker also occurred in the U-B region. From 2014 to
2015, the condition of poplar canker was relatively stable, and the state of the most infected counties
remained approximately unchanged except for a few counties located in Eastern Inner Mongolia.

3.4. Detection of Spatial Aggregation Effects

The spatial scan of the cumulative incidence area of poplar canker identified one primary cluster
and eight secondary clusters (Figure 5). The primary cluster was located in Liaoning province and
its western contiguous zone with a radius of 234.88 km was geographically centered around Beizhen
city (RR = 9.68, p < 0.001). The secondary cluster 1 was located in the junction of Western Jilin and
Southwestern Heilongjiang with a radius of 136.41 km centered around Zhaoyuan county (RR = 4.63,
p < 0.001). Secondary clusters 2 and 3 were each located in one county, Hailin city (RR = 8.07, p <

0.001) and Fuyu county (RR = 5.93, p < 0.001), respectively. Secondary cluster 4 covered region U-B
and four counties of Xilin Gol league and Hohhot city (RR = 1.98, p < 0.001), centering on Siziwang
banner with a radius of 213.59 km. The remaining secondary clusters were scattered in Jarud banner
and Huolin Gol city and other places with relatively low incidence rates but significant aggregation
effects (RRs = 1.49–3.32, p < 0.001).
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Purely spatial scan statistics conducted for each year detected 14 primary clusters and 37 secondary
clusters (Appendix A Table A1), indicating three phases of aggregation (Figure 6). The first stage
occurred from 2002 to 2007, the number of detected clusters was small, and their location was singular
during this period. The primary cluster presented regular changes in the aggregation radius and
number of counties exhibiting the “expansion-centralization-expansion” pattern with the movement
of the aggregated barycenter. The aggregation area of disease extended southeastward to Liaoning
province and Jilin province. After the disease concentrated in Liaoning province, its aggregation
effects expanded again. There were only a few irregular secondary clusters, and these clusters did not
represent the risk of further aggregation at the time. The second stage occurred from 2008 to 2009,
when Hailin city was severely infected and replaced the Liaoning province and Jilin province clusters
as the primary cluster. The latter became secondary cluster 1 and exhibited a decreasing trend of the
radius, thereby moving the barycenter to Liaoning province. More secondary clusters appeared in
Heilongjiang province during this period. The third stage occurred from 2010 to 2015, the location and
coverage of the primary cluster each year were relatively stable, and the number of secondary clusters
increased. New stable clusters formed around Songyuan city and Ulanqab city, respectively.



Forests 2020, 11, 454 11 of 16
Forests 2020, 11, x FOR PEER REVIEW 11 of 16 

 

 
Figure 6. (a) to (n) correspond to annual variation of spatial distribution clusters detected by spatial 

scan statistics from 2002 to 2015 respectively. 

3.5. Detection of Spatiotemporal Aggregation Effects 

The incidence area of poplar canker in Northeast China also had significant spatiotemporal 
aggregation effects. Spatiotemporal scan statistics detected one primary cluster and six secondary 
clusters (Figure 7). The primary cluster covered most counties throughout Liaoning province and its 
surrounding counties of Southeastern Tongliao city, occurring from 2009 to 2015, with a radius of 
241.89 km and a center in Beizhen city. The poplar canker incidence of this cluster was relatively 
higher than the outside (RR = 9.51, p < 0.001). Secondary clusters 1 and 2 contained only Hailin city 

Figure 6. (a) to (n) correspond to annual variation of spatial distribution clusters detected by spatial
scan statistics from 2002 to 2015 respectively.

3.5. Detection of Spatiotemporal Aggregation Effects

The incidence area of poplar canker in Northeast China also had significant spatiotemporal
aggregation effects. Spatiotemporal scan statistics detected one primary cluster and six secondary
clusters (Figure 7). The primary cluster covered most counties throughout Liaoning province and
its surrounding counties of Southeastern Tongliao city, occurring from 2009 to 2015, with a radius of
241.89 km and a center in Beizhen city. The poplar canker incidence of this cluster was relatively higher
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than the outside (RR = 9.51, p < 0.001). Secondary clusters 1 and 2 contained only Hailin city from 2008
to 2010 and Lanxi county from 2011 to 2015, respectively. Both of them had an extremely high risk of
aggregated disease (RRs = 38 and 56.95, respectively, p < 0.001). Secondary cluster 3 covered Songyuan
city in Western Jilin province and its neighboring Nong’an county, Da’an city, and Zhaoyuan county,
where the concentration of the poplar canker occurred from 2006 to 2008, had a radius of 90.36 km, and
a center in Qian Gorlos county. This cluster also had a very high incidence risk (RR = 14.36, p < 0.001).
Secondary cluster 4 was located in region U-B and its neighboring counties of Hohhot city and Xilingol
league from 2012 to 2015, centering on Siziwang banner with a radius of 213.59 km. Its incidence risk
was relatively low (RR = 5.74, p < 0.001). The remaining clusters were mainly concentrated in region
J-A in 2008 with a low risk of aggregated disease (RR = 4.53, p < 0.001) and scattered throughout the
Mo banner in 2012 with high severity (RR = 32.86, p < 0.001).
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4. Discussion

The extent and severity of poplar canker in Northeast China exhibited an upward trend during
the study period. Partial reasons for this phenomenon are the natural spread of disease and our
poor performance in prevention and control. Apart from this, we need to pay attention to a series of
afforestation projects in China, including the Three-North Shelterbelt, Beijing–Tianjin Sand Source
Control, and Grain to Green, which can exacerbate the spread of the disease. The young seedlings of
poplars are highly likely to carry pathogens [14] and are weak and susceptible at the sapling stage [1].
It is easy to introduce a new source of poplar canker during cultivation. Currently, people tend to focus
on the greening benefits of these forestry projects [26] but ignore the survival rate of planted trees and
the forest diseases and pests that may occur when trees are transplanted or imported under intensive
and homogeneous afforestation [8,14]. Research has found that forest diseases like poplar canker are
the leading cause of degradation in the Three-North Shelterbelt forests of Liaoning province [27].

As far as we know, previous studies have not reported the spatiotemporal pattern as
“outbreak-aggregation-spread-stability” for poplar canker’s incidence rate in Northeast China.
This pattern may be a region-specific pattern as predisposing factors with the characteristics of spatial
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heterogeneity, such as daily average temperature and humidity, abnormal climate, soil characteristics,
and human management, can induce poplar canker [6]. Thus, it is inadequate to explore the possible
predisposing factors without considering the spatial heterogeneity of incidence. Several studies on
occurrence and factors of forest disease have focused on the spatial heterogeneity [28–31]. This study
further detected spatial heterogeneity through spatial and spatiotemporal scan statistics.

This study identified the spatial and spatiotemporal aggregation effects of poplar canker’s
incidence area in Northeast China for the first time. Moreover, the spatial aggregation effects have
existed since the initial report of poplar canker. Our findings support the previous conclusion that
many poplar pathogen outbreaks have occurred at the regional scale [13]. The counties with a
high possibility of aggregation effect of poplar canker detected by spatial scan statistics included
not only counties with high incidence but also some surrounding geographical units with relatively
low incidence. This suggests that we should neither merely regard the incidence rate in the unit as
the standard for prevention nor treat poplar canker independently in each unit. Instead, we need
coordinated prevention on the regional scale using the reference of aggregation clusters. On the one
hand, the incidence rate may not accurately reflect the actual condition of poplar canker, considering its
characteristic of latent infection [11]. On the other hand, the disease can quickly spread to neighboring
areas by natural conditions and human activities. The participation of multiple counties is more
conducive to systematic and effective prevention.

The knowledge extracted from the interannual change pattern of spatial aggregation clusters
can guide regional prevention strategies. Aggregated poplar canker occurred year-round in Liaoning
province, which had the highest incidence risk and should receive continued attention, as well as be
given priority in prevention and control work. The clusters gradually diversified, and new clusters
separated from Western Jilin province. In addition, the region U-B also progressively developed into
new clusters. Although the severity of poplar canker in these clusters was relatively weak during the
study period, there were high potential risks of further expansion. Thus, prevention work in these
clusters and their surrounding areas should be strengthened. The clusters detected in only a single
county were usually accompanied by high incidence and short duration, mostly caused by specific
acute disturbance. Emergency disposal and improving the effectiveness of prevention should be the
focus in these regions.

Different from the panel data used in the purely spatial scan statistics, spatiotemporal scan statistics
detect the aggregation effect in the continuous temporal dimension. The latter is more conducive to
identifying the possible predisposing factors in specific space and time, in particular, factors such as
climate and policy with long duration and delayed response. For example, poplar canker in Liaoning
province exhibited spatiotemporal aggregation effects from 2009 to 2015. The probable explanation is
that this is due to afforestation and extreme weather in Liaoning province during that period. At that
time, Liaoning province planted Populus × canadensis No.107 and No.108, which are vulnerable to
freezing injury and cannot adapt well to the climate conditions in Liaoning province [7]. Moreover,
Liaoning province frequently suffered from disasters of drought, flood, and other abnormal climatic
conditions, including cold spells in late spring during these years (China Meteorological Disaster
Yearbook, China Meteorological Administration). The above conditions can wound trees and obstruct
their normal physiological processes [6,8], rendering it easy for canker to infect poplars and form into
the aggregated clusters.

There are some limitations to this study. Firstly, the scan statistics fixed the shape of the window
as a circle, which may result in a bias of the location of clusters, because it is insensitive to geographic
units separated by linear features, such as mountains or rivers. Subsequently, the grain of time in
our data is slightly coarse, and it is difficult to reflect the seasonal changes of poplar canker and
corresponding factors. Additionally, this study did not quantitatively explore the precise impact of
influential factors on incidence, which can be studied by geographically weighted regression (GWR) in
future research. Furthermore, accurate prediction is the fundamental goal of forest disease prevention
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and control. The prospective spatiotemporal scan statistics can warn of the possibility of aggregation
effects within the period, which is worth studying and utilizing in future research.

5. Conclusions

This study retrospectively summarized the spatiotemporal pattern of poplar canker and detected
its aggregation effects. The results show that both the severity and influential area of poplar
canker increased in Northeast China from 2002 to 2015. The spatiotemporal pattern of poplar
canker in Northeast China presented the characteristic of “outbreak-aggregation-spread-stability.”
The incidence area of poplar canker had spatial and spatiotemporal aggregation effects. We suggest
that coordinated prevention in a regional area is more effective, and suggest incorporating the results
of spatial and spatiotemporal clusters when designating local prevention strategies and identifying the
possible predisposing factors in space and time, respectively. The further application of prospective
spatiotemporal scan statistics for the prediction of forest diseases and pests is expected.
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Appendix A

Table A1. Summary of the purely spatial scan conducted for each year.

Year
Primary Cluster Secondary Clusters

Central County Radius of
Cluster (km)

Number of
Counties RR Number of

Clusters
Number of
Counties

2002 Kailu 132.11 8 219.99 0 0
2003 Kuandian 355.53 73 46.11 2 2
2004 Tieling 349.56 93 20.32 3 3
2005 Taian 196.36 45 4196.72 0 0
2006 Kangping 262.40 67 134.75 0 0
2007 Horqin Left Wing Rear Banner 342.10 95 33.65 2 5
2008 Hailin 0 1 32.92 4 101
2009 Hailin 0 1 45.02 2 63
2010 Dawa 204.48 46 16.75 4 6
2011 Panshan 236.85 55 25.92 4 7
2012 Dawa 228.86 50 8.98 4 20
2013 Wafangdian 271.67 40 7.90 3 40
2014 Pansan 236.85 54 8.79 4 24
2015 Fuxin 223.62 48 12.41 5 40
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