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Abstract: Relationship of total height and diameter at breast height (hereafter diameter) of the trees is
generally nonlinear, and therefore has complex characteristics, which can be accurately described by
the height-diameter model developed using the back propagation (BP) neural network approach.
The multiple hidden layered-BP neural network has several hidden layers and neurons, and is
therefore considered more appropriate modeling approach compared to the single hidden layered-BP
neural network approach. However, the former approach is not widely applied for tree height
prediction due to absence of the effective optimization method, but it can be done using the BP neural
network modeling approach. The poplar (Populus spp. L.) plantation data acquired from Guangdong
province of China were used for evaluating the BP neural network modeling approach and compared
its results with those obtained from the traditional regression modeling and mixed-effects modeling
approaches. We determined the best BP neural network structure with two hidden layers and
five neurons in each layer, and logistic sigmoid transfer functions. Relative to the Mitscherlich
height-diameter model that had the highest fitting precision among the six traditional height-diameter
models evaluated, coefficient of determination (R2) of the neural network height-diameter model
increased by 10.3%, root mean squares error (RMSE) and mean absolute error (MAE) decreased by 12%
and 13.5%, respectively. The BP neural network height-diameter model also appeared more accurate
than the mixed-effects height-diameter model. Our study proposes the method of determining the
optimal numbers of hidden layers, neurons of each layer, and transfer functions in the BP neural
network structure. This method can be useful for other modeling studies of similar or different types,
such as tree crown modeling, height, and diameter increments modeling, and so on.

Keywords: Levenberg–Marquardt algorithm; k-fold cross-validation; traditional height-diameter
functions; mixed-effects model; optimal neural network height-diameter model
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1. Introduction

Tree height is one of the most important tree characteristics and measurement of which is used as
a fundamental basis for evaluating forest growth and biomass, site quality, and classifying the vertical
structures of a forest [1,2]. Direct measurement of tree height is generally difficult and time consuming.
However, due to a strong relationship between tree height and diameter at breast height (DBH), height
can be predicted using DBH as a predictor in the height-diameter model [3–12]. This method uses
the measurements of tree height and DBH to fit the mathematical functions with different forms
and number of parameters, and the optimal one is determined based on the standard statistical
indices. This modeling approach is generally known as traditional modeling, and its main theme is to
establish the mathematical equations and get the tree prediction by solving them [3–12]. However, tree
height growth is substantially affected by various factors whose relationships may be in the nonlinear
forms, which may pose the difficulty in describing wider variations of the tree height with a single
height-diameter equation.

As mentioned above, generally, tree height growth has nonlinear characteristics, and is strongly
correlated to various factors, such as tree size, site quality, stand density or competition and climate
factors. Site factors consist of slope, altitude, soil depth, soil texture, humus layer, and soil chemical
constituents. Competition is attributed to the stand crowding and density, such as number of
trees, stand basal area, and canopy density. Climate factors include solar radiation, temperature,
and precipitation. Because of the difficulty in acquiring the accurate information for all these factors
and easy-to-apply-purpose, height prediction models are usually developed using DBH as a single
predictor (simple model) or stand variables, such as basal area and number of trees per hectare are used
in the models in addition to DBH (generalized model) or model incorporating DBH, stand variables
and random effects (generalized mixed-effects model). In order to develop these simple or complex
types of the height-diameter models, some versatile growth functions [1,9–12] are used and fitting of
these functions to data using the least square regression is generally known as traditional modeling
approach. However, in recent years, there has been an increasing trend of applying the mixed-effects
modeling approach to account for larger variability of tree height at the subject-level (e.g., sample plot
level) and increase the model’s prediction accuracy [4,6,7].

The back propagation (BP) neural network is one of the machine learning methods, which is
a multiple layer feed-forward network trained by an error inverse propagation algorithm. The BP
neural network is a modern modeling approach and can be used to develop various forest models.
The BP neural network is often composed of the input layer, hidden layer and output layer. The BP
neural networks can realize the mapping function from input to output, and can approximate any
nonlinear continuous function with high precisions. The BP neural network is characterized with
transfer functions that can be selected between the input layer and hidden layers, and hidden
layers have different functions, such as logistic sigmoid and tangent sigmoid functions. The transfer
functions selected between the layers are also different, and therefore their expressions are different.
Thus, the neural network properly represents the various forms of nonlinear effects. In recent
years, the neural network is increasingly applied for predicting forest dynamics with precise results.
The neural network modeling approach was used to predict different stand and individual tree
characteristics, such as height [13], diameter distribution [14,15] and stem volume [16], and to establish
the models of height-diameter relationships [17], growth and yield [18], inside-bark diameter and
heartwood relationships [19], and to assess forest biomass [20]. These studies compared the fitting
precisions of the traditional regression models of different forms with the neural network models and
showed higher precisions of the neural network models. Özçelik et al. [17] and Castaño-Santamaría
et al. [13] compared the mixed-effects models with neural network and their results showed higher
precisions of the mixed-effects models than those of the neural network models. All these studies were
based on a single hidden layer neural network, and therefore their analyses lack sufficient performance
analyses and comparisons of the multiple hidden layered-neural networks. Furthermore, none of the
previously applied neural network modeling approach has proposed the methods for determining the
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optimal structure of neural network (determining optimal number of hidden layers and number of
neurons in each hidden layer of neural network).

Since tree height-diameter relationship is substantially affected by various factors that may be
nonlinearly related, the traditional height-diameter equation cannot accurately simulate growth and
development of the tree height. This method has other shortcomings, such as low fitting precision and
complex operational steps associated with the fitting procedures. However, the BP neural network
modeling approach has both the higher fitting efficiency and higher precision, and therefore has a great
usefulness in the forest modeling researches. However, current application of the neural network in
the tree height-diameter modeling is limited to a single hidden layer neural network, which lacks the
sufficient performance analyses and comparison of the differences in optimizing the neural network
structure. This study thus intends to solve this problem, mainly improving the performance of the
neural network structure through height-diameter modeling.

Using the poplar tree height and DBH data collected from Guangdong Province in China,
this study establishes the multiple hidden layered-BP neural network height-diameter model and
analyzes the difference of a single hidden layered- and multiple hidden layered-BP neural network
modeling approaches using the MatLab 2016b software (MathWorks, Natick, MA, USA). This study
also compares the fitting precision of the optimal BP neural network height-diameter model with
that of the traditional regression height-diameter models and mixed-effects height-diameter models.
The presented result will be important basis for developing height-diameter models using the BP
neural network and predicting tree height. The proposed methods can be useful for other modeling
studies of similar or different types, such as tree crown modeling, height and diameter increment
modeling, and so on.

2. Materials and Methods

2.1. Data Materials

The data we used came from the sample plots that were established on the poplar plantations in
the Guangdong province of China to develop the height-diameter models. The square-shaped sample
plots with an area of 666.67 m2 were established in the plantations. We only used the sample plots with
a stand density of more than 300 trees per hectare and normal records in the tree height. A total of 9659
trees in 112 sample plots (of which 20 sample plots were measured in 1997 and 92 sample plots in 2002)
were utilized for modeling height-diameter relationship. We calculated the means of height (hereafter
height) and means of DBH (hereafter DBH) by sample plots for easy-to-fit purpose, especially for neural
network fitting. We divided the sample plots randomly into two parts: one for training the model
(80 sample plots, also defined as a fitting data set) and another for testing the model (32 sample plots,
also defined as a validation data set) by application of the k-fold cross-validation method. Summary
statistics of both fitting and validation datasets are presented in Table 1 and scattered graph of tree
height against DBH is presented in Appendix A (Figure A1).

Table 1. Summary of the statistics for the model fitting and validation datasets (Min, minimum; Max,
maximum; Mean, average value; Std = standard deviation).

Data Variable Min Max Mean Std

Fitting data set DBH (cm) 5.9 25.7 11.5 3.0
Height (m) 2.5 13.0 8.3 1.9

Validation data set
DBH (cm) 7.0 22.0 10.4 3.4
Height (m) 3.7 14.1 7.5 2.2

2.2. Modelling Approach

We developed height-diameter models using three different modeling approaches: traditional
least squares regression, mixed-effects modeling, and artificial neural network approach. We focused
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more on modeling height-diameter relationship using the last approach, for example, BP neural
network. The optimal BP neural network height-diameter model obtained from several alternative
models was compared against the height-diameter models fitted using the traditional regression and
mixed-effects modeling approaches.

2.2.1. Traditional Approach

This involves fitting of the traditional height-diameter functions using ordinary least square
regression implemented by the nls function in R software (version 3.2.2) based on fitting data set [21].
We considered six commonly used versatile height-diameter equations (Table 2) for the purpose.
Since all these are the power exponential equations, they are more complex in fitting compared to other
forms of the equations (e.g., linear and fractional forms) and choosing the best performing one would
be more difficult also.

Table 2. Traditional height-diameter equations (H, height (m); DBH, diameter at breast height (cm); a,
b, and c are parameters to be estimated).

Name of Equation Form of Equation Source

Richards H = 1.3 + a(1 − exp(−bDBH))c [9]
Logistic H= 1.3 + a/(1 + bexp(−cDBH)) [22]

Gompertz H = 1.3 + aexp(−bexp(−cDBH)) [23]
Korf H = 1.3 + aexp(−bDBH(−c)) [24]

Mitscherlich H = 1.3 + a(1−exp(−bDBH)) [25]
Schumacher H = 1.3 + aexp(−b/DBH) [26]

2.2.2. Mixed-Effects Modeling Approach

We considered the sample plot-level effect as a random effect to establish the mixed-effects
height-diameter model. In order to get the convergence with the global minimum, a relatively less
complex function (Schumacher function, Table 2) was chosen to include the random effect. Our main
intention of developing mixed-effects height-diameter model was to compare its performance against
the model obtained from the BP neural network modeling approach.

We evaluated three different variance-stabilizing functions (exponential function, power function
and power function with constant) for their effectiveness in removing the heteroskedasticity problem.
Akaike’s information criterion (AIC), Bayesian information criterion (BIC), and log likelihood (logLik)
criteria were used to select the most effective variance-stabilizing function.

The parameters in the developed mixed-effects height-diameter model were estimated by
maximum likelihood using the Lindstrom and Bates (LB) algorithm implemented in the R software
(version 3.2.2) nlme function based on fitting dataset [27]. Detailed descriptions of the mixed-effects
modeling are presented in the references [28–31].

2.2.3. BP Neural Network

As pointed out in the introduction section, artificial neural network has been increasingly applied
to forest growth and yield modeling in recent years [13–20]. It has the tremendous advantages on
nonlinear mapping, adaptive generalization and fault tolerance, which can make up of the shortcomings
of traditional modeling approaches. However, most of the existing modeling studies are based on
the single hidden layer neural network, and application of the multiple hidden- layered-neural
network, e.g., BP neural network in forestry has been rarely reported. The main reason for this is
due to the absence of optimization method used to predict the hidden layer numbers, the number
of nodes and the transfer functions of the neural network. The neural network modeling studies
have shown that more the complex problem, the higher would be usefulness of the multiple hidden
layers [32]. The BP neural network is suitable for function approximation, pattern recognition
and classification [33]. Considering the above-mentioned advantages of the BP neural network,
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we developed the neural network height-diameter models in this study, which were expected to be
more accurate than those obtained from traditional regression and mixed-effects modeling approaches.
The structural parameters of the BP neural network include the number of hidden layers, number of
nodes in each layer, and transfer functions between the layers [34].

• Setting up of the BP Neural Network Structure

We established the tree height-diameter model based on the multiple hidden-layered BP neural
network. For this, firstly, we set the range and step size of the hidden layers, number of nodes and
transfer functions, and secondly, the values in a reasonable range were obtained, so as to generate
a series of neural network height-diameter models. Finally, we used the k-fold cross-validation to
identify the best performing one among several height-diameter alternatives.

The number of nodes in each hidden layer needs to be determined according to fitting precision.
Equation (1) represents a commonly used determination method [35].

S =
√

n + o + m (1)

where S is the number of hidden layer nodes, n is the number of nodes in the input layer, and o is the
number of nodes in the output layer, and m is an integer (m = 1,2, . . . ..,10).

The transfer functions, which occur between the hidden layers or between the input layer and
hidden layer, are S-shaped logistic sigmoid and tangent sigmoid functions. The former is a unipolar
S-function and the latter is a bipolar S-function. The expressions of logistic sigmoid function and
tangent sigmoid function are represented by Equation (2) and Equation (3), respectively. The transfer
function occurring between the hidden layer and output layer is a linear function, and its expression is
represented by Equation (4):

f (x) = 1/(1 + e−x) (2)

f (x) = 2/(1 + e−2x) − 1 (3)

f (x) = ax + b (4)

In order to get the best BP neural network structure for a given data, we set the selection range of
the number of hidden layers, the number of nodes in each layer and the transfer function, and then
generated several height-diameter neural network models. Based on the mean squared error and the
number of iterations, the best performing model was identified. The exhaustive analyses of all the
network models would not be appropriate. Thus, we applied the “trial and error approach” [36] to
reduce the number of tests and applied the k-fold cross-validation [37] to improve the test results of
the BP neural network structure.

• Normalizing Input and Output Factors

As the input factors may have different measurement units, the existence of singular samples in
data would cause an increased network training time and it may also lead to the non-convergence
of neural network. In response to this problem, we used the mapminmax function to normalize the
input and output factors and mapped them to a scale between −1 and 1. The anti-normalization
approach was used to program the results of the operation from the interval [−1,1] mapped to an
actual prediction.

• Training the Model

We trained the BP neural network applying the Levenberg-Marquatdt (L-M) algorithm [38,39].
This algorithm does not follow a single negative gradient direction for each iteration, but allows
the errors to be searched in the direction of deteriorating. At the same time, through the adaptively
adjustment of the steepest gradient descent method and the Gaussian–Newton method optimizes the
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network weight, so that the neural network can effectively converge. Equation (5) is used for adjusting
the weights and thresholds.

∆w = −(JT J + µI)
−1

JTe (5)

where ∆w is the adjusted weights and thresholds, I is unit matrix, J is the Jacobian matrix of the
error-weight differential, and e is the vector of errors, µ is an adaptively adjusted scalar that increases
as it approaches the steepest descent method with small learning rate, and when it descends to 0,
the algorithm becomes a smooth harmonic between the Gauss-Newton methods.

While training the model, the parameters were set as follows: learning rate 0.01, maximum number
of iterations 1000, target precision 0.001, maximum number of verification failures 20, and minimum
performance gradient 0.000001.

• Model Evaluation

We used the coefficient of determination (R2), root mean square error (RMSE) and mean absolute
error (MAE) as evaluation indices to compare the models based on validation data set. These indices
were calculated using formulae (6), (7), and (8), respectively.

R2= 1−
n∑

i=1

(Yi − Ŷi)
2

(Yi −Y)
2 (6)

RMSE =

√√
1
n

n∑
i=1

(Yi − Ŷi)
2

(7)

MAE =

n∑
i=1

∣∣∣Yi − Ŷi
∣∣∣

n
(8)

where n is the number of samples; Y, Yi, and Ŷ are mean value, measured value and predicted value of
a response variable in the model (tree height, in our case), respectively.

Theoretically, the closer the determination coefficient to 1, the smaller the root mean square error
and the mean absolute error, and the higher would be the model’s fitting precision.

• Model Selection

We first obtained a series of the BP neural network height-diameter models by setting different
values of the structural parameters. Then after, the k-fold cross-validation method was used to select
the most suitable model [37]. When there is a sample set S containing m data records, and t models to
be chosen are M1, M2, . . . , Mt, k-fold (k = 5) cross-validation procedures would be as follow:

Step 1. A sample set S is randomly divided into k disjoint subsets, the number of samples in each
subset is m/k, and these subsets are denoted by S1, S2, . . . . . . , Sk.

Step 2. For each model M j( j = 1, 2, · · · , t), following is done: For n = 1 to k { Take S1 ∪ · · · ∪ Sn−1 ∪

Sn+1 ∪ · · · ∪ Sk as a training set; Train the model M j, and get the corresponding hypothetical
function H jn; Take Sn as a verification set, and calculate the model M j generalization error
εSn

(
H jn

)
. } Calculate the average of εS(H jn),n = 1, 2, · · · , k, and get the average generalization

error of model M j.
Step 3. Calculate the average generalization error of all the models, and select the model Mp with the

smallest average generalization error, which is the best model.

It is noted that, as Arlot and Lerasle [40] recommended, five-fold (k = 5) cross-validation was
applied in this study.
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In general, the mean square errors are used to represent the generalized errors εSn

(
H jn

)
, as shown

in Equation (9).

MSE =
n∑

i=1

(Yi − Ŷi)
2
/n (9)

where, n is the number of samples, Yi, Ŷi, respectively, for all observed height values and model
predicted height values.

In addition to the generalized error εSn

(
H jn

)
, the number of iterations, running time, and other

criteria are also used to select the best performing model.
Tree height-diameter modeling process using the BP neural networks is shown in Figure 1.

According to data situation and actual demand, we first set the implied layer number, the number of
hidden layer and the number of nodes, range of values of the transfer function. Then, after we used the
“trial and error approach” to determine the actual value of these structural parameters and generate
the N number of height-diameter models. Finally, the optimum BP neural network height-diameter
model was selected through the k-fold cross-validation.

Figure 1. Flow chart for selecting an optimal tree height-diameter model.

The computations including the developed BP neural network height-diameter models and 5-fold
cross-validation were implemented in the MatLab 2016b software (MathWorks, Natick, MA, USA).

3. Results

3.1. Model Generation and Performance

We used MatLab 2016b (MathWorks, Natick, MA, USA) to build the neural network
height-diameter models through writing M program. Several neural network height-diameter
model alternatives were generated when we set the number of hidden layers from 1 to 3, the number
of neurons in each hidden layer from 2 to 11 with the step size of 3, the neurons adapted through “trial
and error approach”, and logistic sigmoid and tangent sigmoid transfer functions employed with DBH
and height as input layer and output layer. The model with the smallest RMSE and MAE and the
largest R2 was then identified using the k-fold cross-validation with k = 5. The iterative results are
listed in Tables 3 and 4, and more results are in Appendix A (Table A1).
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Table 3. Performance of neural network with single hidden layer, MSE: mean square errors, logsig:
logistic sigmoid function, tansig: Tangent sigmoid function.

Neurons in Each Layer
MSE Iterations MSE Iterations

logsig tansig

1: 2: 1 0.1107 24.0 0.3057 16.0
1: 5: 1 0.0827 14.3 0.0669 15.0
1: 8: 1 0.0568 13.1 0.1143 17.0
1:11: 1 0.0556 11.0 0.0437 13.1

Table 4. Performance of neural network with two hidden layers, MSE: Mean square errors.

Neurons of
Each Layer

MSE Iterations MSE Iterations MSE Iterations MSE Iterations

log:log tan:tan tan:log log:tan

1:2:2:1 0.1237 15.2 0.0881 39.6 0.0790 22.6 0.1071 16.6
1:2:5:1 0.0764 15.2 0.1751 19.4 0.0446 21.4 0.1087 23.0
1:2:8:1 0.0743 17.6 0.0813 16.6 0.0884 23.4 0.1467 18.6
1:2:11:1 0.0839 19.8 0.0935 21.6 0.0801 15.8 0.0948 20.6
1:5:2:1 0.0626 17.0 0.0936 13.0 0.0558 14.2 0.0757 15.0
1:5:5:1 0.0416 16.2 0.0854 19.4 0.1017 15.0 0.0832 22.4
1:5:8:1 0.0897 14.2 0.0584 17.2 0.1091 16.2 0.0971 12.8
1:5:11:1 0.0764 17.6 0.1323 20.6 0.0950 14.4 0.1214 12.0
1:8:2:1 0.0610 14.6 0.0986 17.0 0.0644 13.8 0.1582 14.4
1:8:5:1 0.0971 13.6 0.0948 13.4 0.0869 14.0 0.1304 18.8
1:8:8:1 0.0599 21.0 0.0841 12.2 0.0978 13.4 0.0586 13.2
1:8:11:1 0.1060 13.6 0.1441 17.4 0.1004 13.0 0.0983 13.4
1:11:2:1 0.0750 22.4 0.0852 17.8 0.0530 15.0 0.1272 16.4
1:11:5:1 0.1573 12.8 0.2539 17.6 0.1400 12.2 0.0887 18.8
1:11:8:1 0.1058 23.4 0.1720 17.0 0.1020 15.8 0.0917 12.2

1:11:11:1 0.1402 12.8 0.2726 23.4 0.0766 14.4 0.1651 13.0

The MSE and the number of iterations were used as evaluation indices in screening the models
and the performance statistics of different numbers of the hidden layers corresponding to the neural
networks are presented in Table 5. When the number of hidden layer was 1, there were 8-networks
structure combinations. When the number of hidden layers was 2, there were 64 network structure
combinations. When the number of hidden layers was 3, there were 512 network structure combinations.
Difference of the average MSE of the double hidden layers from that of the triple hidden layers was
not substantially large even though the neural network with the double hidden layers, the structure of
which is 1:5:5:1, had the smallest MSE. There was an indication that this structure, which provided the
best precision, could be used as an optimal neural network structure of the height-diameter model.

There was a slight difference between the double-hidden layer and single hidden layer in the
number of iterations, but it was much lower than the three-hidden layer, which showed that the
convergence rate of the double-hidden layer and single hidden layer were almost similar but slightly
higher than the three-hidden layers. Taken together, double hidden layer had a higher precision.
We selected the double hidden layers (Table 4). When the number of neurons in each layer was
1:5:5:1, and the logistic sigmoid functions were all selected, the minimum value of MSE was 0.0416.
The neural network height-diameter models generated with structure had the best fitting performance.
The number of iterations required to generate the best neural network model was not necessarily the
minimum number of iterations corresponding to the hidden layer (Table 5). The reason for this is that
the number of iterations required to obtain the minimum increase of MSE.
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Table 5. Statistics for performance of three neural networks, MSE: Mean square errors.

Category
Number of

Neural
Network

Best Neural Network Structure

Average
MSE

MSE
(min)

Ratio
of MSE
< 0.1

Average
Iterations

Iterations
(min)

Neurons of
Each Layer Transfer Function Iterations

Single hidden
layer 8 0.1045 0.0437 62.50% 15 11.0 1:11:1 tansig 13.0

Double
hidden layer 64 0.1027 0.0416 62.50% 16 12.0 1:5:5:1 logsig:logsig 16.2

Triple hidden
layer 512 0.1010 0.0428 62.89% 21 11.6 1:8:8:8:1 tansig:tansig:logsig 16.6

3.2. Transfer Function

We generated several neural network models (Figure 2) and selected the best performing one.
This figure shows that the number of neurons of both the first hidden layer and second hidden layer
were 5; the first hidden layer neurons were H11, H12, H13, H14, H15, the second hidden layer neurons
were H21, H22, H23, H24, H25. Different layers would have different biases, namely Bias1, Bias2, Bias3,
respectively. The transfer functions of the input layer and the first hidden layer was the logistic sigmoid
function, the transfer function of the first hidden layer and the second hidden layer was also the logistic
sigmoid function, and the output layer was the purelin function.

Figure 2. Height-diameter model of BP neural networks.

3.3. Comparison with Traditional Model Accuracy

We compared the height-diameter models (Table 2) fitted using ordinary least squares regression
and BP neural network height-diameter model based on three evaluation indices (Table 6). Parameter
estimates of all the traditional height-diameter models were significant (p < 0.05) and they are presented
in the Appendix A (Table A2).
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Table 6. Evaluation indices of the BP neural network height-diameter models and traditional
height-diameter model (R2, coefficient of determination; RMSE, root mean square error; MAE, mean
absolute error).

Evaluation
Index Richards Logistic Gompertz Korf Mitscherlich Schumacher Neural

Network

R2 0.6794 0.6774 0.6771 0.6757 0.6837 0.6788 0.7541
RMSE 1.2713 1.2752 1.2758 1.2786 1.2628 1.2724 1.1133
MAE 1.0887 1.1041 1.0972 1.0858 1.0963 1.0809 0.9482

The BP neural network modeling approach appeared better than the traditional regression
approach for establishing the tree height-diameter models. Among the traditional models evaluated
(Table 2), the highest fitting precision was found with the Mitscherlich model, and the lowest fitting
precision was with the Logistic model. The BP neural network height-diameter model had larger
R2 (by 10.3%), and smaller RMSE (by 12%) and MAE (by 13.51%) than those of the Mitscherlich
height-diameter model. The tree heights predicted from the best BP neural network height-diameter
model and the Mitscherlich height-diameter model were compared against the observed height
(Figure 3). The prediction accuracy of the former model shows a substantially higher accuracy than the
latter model.

Figure 3. Comparison of height prediction by two different modeling approaches: left graph is
based on the back propagation (BP) neural network approach, and right is based on the traditional
approach (Mitscherlich model). Fitting equation based on the observed data and predicted data,
y = 1.0927x − 0.2554 for left graph, and y = 1.1433x − 1.306 for right graph.
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The residuals for the BP neural network model are concentrated around 0 (Figure 4), indicating that
this model has better fitting performance. Using the two intervals of (−1,1) and (−2,2) in which our data
points scattered mostly as examples, Figure 4 shows that using the BP neural networks height-diameter
model, 20 points of the residual are within the range of (−1,1), accounting for 62.5%, and range
of (−2,2) has 30 points, accounting for 93.75%. However, using the Mitscherlich height-diameter
model, 15 points are within the range of (–1,1), accounting for 50%, and range of (−2,2) has 28 points,
accounting for 87.5%. Thus, the precision of the BP neural network model appeared higher than the
Mitscherlich model.

Figure 4. Residual graphs: left is based on the BP neural network height-diameter model and right is
based on the Mitscherlich height-diameter model.

3.4. Comparison with Mixed-Effects Model Accuracy

We included random effects at sample plot-level into the simplest traditional height-diameter
model (Schumacher model) among the six models presented in Table 2. The random effect added to
the parameter b of this model converged with the smallest AIC and BIC, and the largest log likelihood
among the alternative mixed-effects models formulated through addition of the random effect to
the fixed-effect parameters. Exponential function showed the most powerful ability to account for
the heteroskedasticity and thus was used to develop the final mixed-effects height-diameter model
(Table 7).

Table 7. Evaluation indices of three variance-stabilizing functions employed to the nonlinear
mixed-effects height-diameter model; AIC, Akaike information criterion; BIC, Bayesian information
criterion; loglik, log likelihood.

Variance Function Formula AIC BIC loglik

Exponential function var(ε) = σ2 exp(βDBH) 283.8982 295.8084 −136.9491
Power function var(ε) = σ2DBHβ 283.9949 295.9051 −136.9975

Power function with
constant var(ε) = σ2(β1 + DBHβ2 )

2 285.9949 300.2871 −136.9975
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The mixed-effects height-diameter models with estimated parameters are presented in
Equation (10). 

Hi = 1.3 + 17.8522 exp((−10.5868 + ui)/DBHi) + εi
ui ∼ N(0,ψ = 0.3966)
εi ∼ N(0, Ri= 8.4698 exp(−0.1422DBHi))

(10)

where Hi and DBHi are the stand mean height and stand mean diameter at breast height of the ith
sample plot, ui is the random effects generated by the ith sample plot and assumed to be distributed
normally with zero expectation and a variance-covariance matrixψ, and εi is the error term of ith sample
plot and also assumed to be distributed normally with zero expectation and a variance-covariance
matrix Ri.

The fitting precision of the mixed effects height-diameter model (R2 = 0.7179, RMSE = 1.1926,
and MAE = 0.9888) was substantially lower than that of the neural network height-diameter model,
but higher than that of the traditional height-diameter model (Equation 10, Table 6). We considered
that when a mixed effects model was used, it would be equivalent to adding more input factors. Then,
it was necessary to change the structure of the neural networks and added random effect factor as the
input to the neural network for comparison purpose, that is, it would be more meaningful to compare
the same number of input factors.

4. Discussion

We established the modeling method that could generate several BP neural network
height-diameter models based on the combinatorics mathematics. Among these models, we selected
the best model through the comparison of the fitting and prediction accuracies, and convergence rates.
The BP neural network optimization method was employed to establish the optimal height-diameter
model for poplar plantations in the Guangdong Province in China. The poplar tree species has been
becoming one of the main plantation tree species in China in recent decades due to its faster growing
characteristics, and is recognized as a focus for research of the woody plants and ideal materials for
bioenergy research. Also, it is of great importance for taking poplar as a research objective in our
study. This study compares the fitting performances of a single hidden layered- and multiple hidden
layered-BP neural network approaches. When there were two hidden layers, the higher performance
was obtained, i.e., the neural network with double hidden layers is attributed to a higher fitting
precision, higher estimating efficiency, better acceptable time of the iterations. This is because that,
increasing the number of hidden layers may not only result in a longer computational time, but also
increases the likelihood of over fitting, which results in the model’s non-optimal prediction performance.
In the past, most studies focused on single hidden layer neural networks [13–20], but none of them
investigated the effects due to more numbers of hidden layers, neurons and transfer functions of the
neural networks. In this context, our study, which focused on these features of the neural network
modeling, may be interesting and useful to other researchers.

The traditional Mitscherlich height-diameter model with the highest fitting precision was compared
with the optimized multiple hidden layered-BP neural network height-diameter model. The BP neural
network model appears substantially superior to the Mitscherlich model in predicting tree height
(Table 6, Figures 3 and 4). Our results are also consistent with those from Castaño-Santamaría et al. [13]
and Özçelik et al. [17], which predict tree height of the uneven-aged beech forests in northwestern Spain
and Crimean juniper in southwestern region of Turkey. These studies compared the neural network
models against the nonlinear regression models. Although our study is based on the different tree
species from those studied by Castaño-Santamaría et al. [13] and Özçelik et al. [17], comparison results
are almost identical, meaning that neural networks can be the best alternative of modeling on any tree
data regardless of species. Özçelik et al. [17] used the single hidden layer with only one or two hidden
nodes in the neural network and they did not investigate the effects of multiple hidden layers on the
precision of the neural network model and determination of appropriate forms of the transfer functions.
Our study is substantially different from the previous studies [13–20], because we proposed the method
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of selecting the optimal model through application of the “trial and error approach” [30], k-fold
cross-validation approach [31] and combinatorial optimization approach. It can help determining the
structure of the neural network, such as the hidden layer nodes, transfer functions and the number of
hidden layers. The hidden layers, number of neurons in each layer, and transfer functions can have
substantial effects on the precision of the neural network model. Castaño-Santamaría [13] considered
the change of input factors, but did not take into account other factors, such as different transfer
functions of the neural network, and did not introduce the process of determining the optimal neural
network model. Castro et al. [18] established the multi-layer perceptron neural network growth model
for Eucalyptus. They estimated the annual mortality with the best structure associated with three
neurons in the input layer, four neurons in the hidden layer, and one neuron in the output layer.
All these studies [13,17,18] compared the precisions using different input variables, but none of them
compared different numbers of transfer functions and hidden layers, and neurons of neural networks.

In our study, the neural network modeling produced the highest fitting precision and prediction
accuracy, followed by mixed-effects models, and finally non-linear traditional regression models
(Table 6, Equation (10)). This might be related to our employed methods of the structural optimization
of the BP neural network. Fitting precisions of three different modeling approaches, such as traditional
regression, mixed-effects modeling and neural network modeling were also compared in the previous
modeling studies [13,17]. These studies showed the highest precisions of mixed-effects models,
followed by neural network models, and traditional regression models. This may be due to the
weaknesses of their modeling techniques, whereby they did not investigate the effects of multiple
hidden layers on the precisions of the neural network models they developed. The results obtained
from different modeling approaches including ours thus indicate the inconsistent ranking of approaches
on the basis their fitting and prediction accuracies. Further investigation on the models, especially those
to be developed with mixed-effects modeling and neural network modeling approaches using large
datasets collected from extensive forest areas is necessary to better explore their differences. Generally,
the neural network models have strong robustness, but traditional regression models and mixed-effects
models have biological significance, for example, they have the parameters describing growth rates
and growth patterns. The neural network modeling approach has tremendous advantages, such as
avoiding complex selection procedures for the best performing model and obtaining higher precision.
Furthermore, the BP neural network modeling has a better generalization ability, and therefore can
approximate any nonlinear continuous function with a high precision. The BP neural network modeling
approach is suitable for describing plant growth, which generally follows nonlinear patterns, and
making it suitable for solving the problems caused by interrelated factors affecting plant growth.

The process of determining the selection of the traditional height-diameter models and neural
network height-diameter models was also evaluated in this study. The traditional regression modeling
needs the evaluation and comparison of differences among the fitting precisions of the candidate
models considered, and the fitted model with the highest precision could be selected as the final model.
The neural network modeling, on the other hand, needs the determination of the number of hidden
layers and the number of neurons in each layer, and the numbers and forms of the transfer functions,
and this modeling approach determines the best structure of the BP neural network. There are none of
the well-organized robust methods, which can determine the number of hidden layers and the number
of transfer functions, and the number of neurons based on the combinatorial mathematics that could
help obtain the high precisions. We applied this method, and thus the height-diameter model proposed
in this article is based on the multiple hidden layered-BP neural network. This method can help
modelers to find the best neural network structure, and thus provide the best performance. However,
neural network weights and thresholds are not easy to explain and determining the optimal structure
of neural network is more tedious, and this can be done into a friendly interface program module,
which can help future modelers to quickly determine the best structure of the BP neural network.

Our modeling system introduces the method of determining the best neural network structure
with optimal numbers of hidden layers and neurons in each layer, and optimal number and forms
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of transfer functions. The model comparison would make the senses when traditional regression
models, mixed-effects models, and neural network models have the same input factor, such as DBH
in our case. Because DBH is the main factor influencing tree height, in this study, only the effect of
DBH on the tree height was considered for both modeling approaches. In our subsequent studies,
in addition to DBH, the effects of other factors on the tree height growth may be considered and
models can be made more comprehensive and complex. However, introducing many variables does
not guarantee the high accuracies of the models that are developed using any modeling approach.
In the neural network modeling, all potential interconnected factors that affect the response variable
(tree height, in our case) of the model are assumed to be properly described, and thus this approach
can be considered more appropriate than other modeling approaches, such as ordinary least square
regression and mixed-effects modeling approaches. This is because

The neural network is able to optimize the model efficiently through the combinatorial
optimization process.

5. Conclusions

We proposed the modeling method which can generate several BP neural network models
based on the combinatorics mathematics, and among them, the model with the best structure was
selected through comparison of the fitting and prediction precisions, and convergence rate. In the
process of determining the structure of the neural network, both the number of hidden layers, the
numbers of neurons and the number of transfer functions of the BP neural network were considered.
We developed the BP neural network optimization method to establish the optimal tree height-diameter
model for poplar plantations in the Guangdong Province of China. The optimal BP neural network
structure was 1:5:5:1 and transfer functions determined were the logistic sigmoid functions. The optimal
structure of the BP neural network height-diameter accounted for 75% variations of tree height-diameter
relationship, which is higher (by 10.3%) than the best fitted traditional regression height-diameter model.
The BP neural network height-diameter model also outperformed the mixed-effects height-diameter
model. In addition to diameter at breast height, tree height growth is also substantially affected by
other several factors, such as site and climate factors, and stand conditions, which may be introduced
in the height-diameter model for gaining a higher prediction accuracy. The proposed method of the
neural network modeling can be suitable for other forest modeling studies of similar or different types,
such as tree crown modeling, height and diameter increments modeling, and so on.
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Appendix A

Table A1. Performance of neural network with three hidden layers.

Neurons of
Each Layer

MSE Iterations MSE Iterations MSE Iterations MSE Iterations

tan:tan:tan tan:tan:log tan:log:tan tan:log:log

1:2:2:2:1 0.0884 26.2 0.0556 31.0 0.0940 33.6 0.1014 23.2
1:2:2:5:1 0.1020 18.2 0.0772 26.8 0.0505 19.4 0.0572 21.0
1:2:2:8:1 0.0461 24.0 0.0795 14.6 0.0878 17.8 0.0710 15.8

1:2:2:11:1 0.3880 23.8 0.0563 17.8 0.0945 21.6 0.0708 18.8
1:2:5:2:1 0.0674 45.0 0.0863 22.2 0.0800 17.2 0.1039 16.6
1:2:5:5:1 0.1028 14.6 0.1228 13.6 0.1759 25.4 0.0801 16.2
1:2:5:8:1 0.1194 24.2 0.0803 18.6 0.0518 15.4 0.1179 17.6

1:2:5:11:1 0.0761 18.4 0.0918 37.4 0.1213 20.4 0.0785 13.4
1:2:8:2:1 0.0776 24.8 0.1195 18.6 0.0511 21.8 0.0585 31.6
1:2:8:5:1 0.1066 16.4 0.0936 16.8 0.1049 17.2 0.1071 21.8
1:2:8:8:1 0.0560 19.2 0.0986 13.6 0.0545 15.8 0.0548 14.8

1:2:8:11:1 0.0788 43.2 0.0673 19.0 0.0899 15.8 0.0965 16.4
1:2:11:2:1 0.1351 19.4 0.1037 15.2 0.0803 25.6 0.0843 19.2
1:2:11:5:1 0.0772 15.0 0.0578 16.2 0.0621 19.0 0.0711 20.4
1:2:11:8:1 0.1403 40.2 0.1037 14.8 0.1418 16.0 0.1167 22.4
1:2:11:11:1 0.1180 25.4 0.0833 22.2 0.1200 25.4 0.1007 15.4

1:5:2:2:1 0.0660 18.4 0.1323 20.0 0.0446 23.2 0.0711 15.0
1:5:2:5:1 0.0624 16.4 0.0763 26.8 0.1192 25.0 0.0679 18.2
1:5:2:8:1 0.1065 27.8 0.1056 21.2 0.3581 17.8 0.0730 13.6

1:5:2:11:1 0.0892 19.2 0.0813 19.6 0.0796 22.0 0.1183 15.2
1:5:5:2:1 0.0630 20.2 0.0989 22.4 0.0733 16.4 0.1106 18.6
1:5:5:5:1 0.0625 14.6 0.0864 22.0 0.0981 17.0 0.0678 14.0
1:5:5:8:1 0.1087 19.4 0.1020 13.6 0.0501 13.8 0.0528 14.6

1:5:5:11:1 0.0537 20.2 0.0595 15.2 0.0634 14.2 0.1059 19.0
1:5:8:2:1 0.0716 13.6 0.0802 18.2 0.0752 20.6 0.0762 16.6
1:5:8:5:1 0.1409 13.4 0.1006 16.8 0.0676 18.2 0.0626 13.4
1:5:8:8:1 0.1101 18.8 0.1258 13.2 0.0652 15.6 0.0980 14.4

1:5:8:11:1 0.0590 16.8 0.1035 13.0 0.1775 16.6 0.1028 14.4
1:5:11:2:1 0.0665 17.0 0.0815 17.8 0.0509 16.0 0.0975 22.4
1:5:11:5:1 0.1387 14.2 0.0685 20.4 0.0796 14.4 0.1302 15.4
1:5:11:8:1 0.1145 12.8 0.0873 15.6 0.0919 17.8 0.0965 12.4
1:5:11:11:1 0.1451 15.2 0.0756 22.8 0.0856 12.8 0.0726 20.0

1:8:2:2:1 0.0709 15.8 0.0780 16.4 0.0689 15.0 0.0668 28.2
1:8:2:5:1 0.0814 34.8 0.0831 19.6 0.0698 16.4 0.0687 15.0
1:8:2:8:1 0.1178 19.8 0.0752 20.6 0.0593 16.8 0.0603 26.0

1:8:2:11:1 0.0814 17.6 0.0837 16.8 0.0580 19.4 0.0798 16.0
1:8:5:2:1 0.0811 15.6 0.1080 34.0 0.1530 18.4 0.0958 17.8
1:8:5:5:1 0.0916 15.4 0.0892 18.0 0.0653 13.6 0.1192 13.8
1:8:5:8:1 0.1110 13.8 0.0951 14.8 0.0814 13.6 0.1123 13.0

1:8:5:11:1 0.0899 15.8 0.0793 14.0 0.1076 12.6 0.0679 15.0
1:8:8:2:1 0.0939 15.6 0.1011 18.4 0.0859 14.8 0.1391 22.8
1:8:8:5:1 0.0772 18.0 0.1049 16.4 0.1353 14.6 0.1907 15.8
1:8:8:8:1 0.1859 14.0 0.0428 16.6 0.0793 13.2 0.1157 21.0

1:8:8:11:1 0.0812 16.2 0.1838 19.2 0.1607 14.2 0.0922 19.0
1:8:11:2:1 0.0957 22.8 0.0654 13.0 0.0578 21.6 0.1096 16.4
1:8:11:5:1 0.0544 13.0 0.0711 18.2 0.0579 16.2 0.0672 13.8
1:8:11:8:1 0.0937 12.4 0.1274 20.2 0.1468 17.0 0.0652 13.6
1:8:11:11:1 0.1193 23.2 0.1547 16.2 0.0652 15.4 0.0747 12.6
1:11:2:2:1 0.0767 16.6 0.0734 20.4 0.0953 17.2 0.0704 17.2
1:11:2:5:1 0.1564 13.8 0.0763 16.4 1.6445 21.2 0.0640 18.2
1:11:2:8:1 0.1009 17.4 0.0469 15.2 0.1369 12.4 0.1474 22.0
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Table A1. Cont.

Neurons of
Each Layer

MSE Iterations MSE Iterations MSE Iterations MSE Iterations

tan:tan:tan tan:tan:log tan:log:tan tan:log:log

1:11:2:11:1 0.2392 42.4 0.1206 18.8 0.0919 18.6 0.0650 24.2
1:11:5:2:1 0.0780 26.4 0.0896 16.6 0.0711 16.6 0.1083 14.2
1:11:5:5:1 0.1551 13.8 0.1454 14.8 0.0846 13.8 0.0958 17.6
1:11:5:8:1 0.0814 15.6 0.0607 18.0 0.1620 15.8 0.0813 16.6
1:11:5:11:1 0.0987 15.0 0.0752 18.2 0.1069 13.4 0.1012 12.6
1:11:8:2:1 0.0901 16.0 0.0598 15.6 0.1069 14.6 0.0917 23.4
1:11:8:5:1 0.0838 17.0 0.1097 12.4 0.0570 15.8 0.0956 15.2
1:11:8:8:1 0.1041 14.4 0.1094 15.4 0.1474 15.2 0.1147 16.2
1:11:8:11:1 0.1105 21.8 0.1220 18.6 0.1508 15.0 0.0504 14.2
1:11:11:2:1 0.0755 18.4 0.0560 24.2 0.1350 12.0 0.0854 15.0
1:11:11:5:1 0.0785 18.6 0.0872 15.6 0.0854 11.8 0.1641 18.8
1:11:11:8:1 0.1129 16.0 0.0883 22.0 0.0946 13.2 0.1444 12.4

1:11:11:11:1 0.1004 14.6 0.1252 13.6 0.1538 13.2 0.0893 21.0
1:2:2:2:1 0.0985 20.6 0.0852 23.4 0.0840 42.4 0.1218 17.6
1:2:2:5:1 0.0861 66.2 0.1063 22.2 0.1230 18.4 0.0853 18.0
1:2:2:8:1 0.1157 19.2 0.0684 20.0 0.0812 40.2 0.1089 15.0

1:2:2:11:1 0.3540 26.6 0.0730 27.4 0.0613 22.0 0.0941 15.4
1:2:5:2:1 0.1066 29.6 0.0931 17.8 0.1062 17.4 0.3278 27.6
1:2:5:5:1 0.1151 17.2 0.0905 17.4 0.2043 16.8 0.0690 14.4
1:2:5:8:1 0.0749 18.2 0.0859 23.8 0.0686 17.0 0.0782 14.4

1:2:5:11:1 0.0578 15.0 0.0469 17.4 0.1966 18.0 0.1248 21.0
1:2:8:2:1 0.1176 21.6 0.0458 19.2 0.0827 19.2 0.0691 21.0
1:2:8:5:1 0.0885 17.6 0.0719 17.2 0.1539 16.8 0.0821 20.6
1:2:8:8:1 0.0824 25.0 0.1182 14.6 0.0804 21.4 0.0681 18.0

1:2:8:11:1 0.0797 19.6 0.0807 17.0 0.0580 13.2 0.0983 17.2
1:2:11:2:1 0.1024 15.6 0.1074 18.2 0.0727 32.4 0.0829 17.2
1:2:11:5:1 0.0961 15.4 0.0696 16.6 0.0785 15.0 0.0819 23.0
1:2:11:8:1 0.0922 19.6 0.0723 19.0 0.0921 15.6 0.0797 30.0
1:2:11:11:1 0.0733 19.8 0.0872 13.8 0.0734 15.2 0.1016 14.4

1:5:2:2:1 0.0874 13.4 0.0864 23.8 0.0673 24.0 0.0782 16.6
1:5:2:5:1 0.0769 17.8 0.0715 19.2 0.0668 15.6 0.1170 15.8
1:5:2:8:1 0.0651 14.0 0.0718 20.8 0.0729 19.8 0.1238 18.8

1:5:2:11:1 0.0661 19.0 0.0894 14.6 0.0793 14.4 0.1327 15.0
1:5:5:2:1 0.1260 15.4 0.1682 15.6 0.0627 17.8 0.1830 14.8
1:5:5:5:1 0.1038 13.4 0.0750 15.8 0.0748 18.8 0.0991 16.8
1:5:5:8:1 0.0684 13.0 0.0522 33.8 0.0786 17.6 0.0999 15.2

1:5:5:11:1 0.1568 17.4 0.0920 18.0 0.0900 18.8 0.1166 19.2
1:5:8:2:1 0.0793 23.4 0.0947 17.4 0.0521 14.0 0.1257 19.4
1:5:8:5:1 0.1234 21.6 0.1050 19.0 0.0716 19.2 0.1332 21.6
1:5:8:8:1 0.0903 14.0 0.0794 11.6 0.1379 19.0 0.0695 17.4

1:5:8:11:1 0.1751 17.4 0.1073 18.2 0.1630 21.2 0.0895 13.2
1:5:11:2:1 0.0927 18.2 0.1065 15.4 0.0739 32.4 0.1177 24.8
1:5:11:5:1 0.0941 13.2 0.0847 16.2 0.0821 21.2 0.0702 13.8
1:5:11:8:1 0.2084 20.6 0.0703 13.6 0.0994 14.0 0.1120 22.0
1:5:11:11:1 0.0896 22.0 0.0832 21.2 0.0895 14.2 0.0853 13.2

1:8:2:2:1 0.1322 14.8 0.1244 16.0 0.0948 16.0 0.0940 17.6
1:8:2:5:1 0.0963 13.0 0.0981 16.0 0.1278 21.8 0.0717 16.8
1:8:2:8:1 0.1204 15.0 0.0961 15.8 0.0900 29.2 0.0823 19.8

1:8:2:11:1 0.0550 22.4 0.1335 12.8 0.1197 13.2 0.0694 14.2
1:8:5:2:1 0.0824 17.2 0.0804 23.6 0.1899 22.6 0.0671 18.4
1:8:5:5:1 0.0693 17.6 0.1303 20.4 0.0820 15.6 0.0867 15.4
1:8:5:8:1 0.0930 14.8 0.1011 13.2 0.1109 12.6 0.1415 15.0

1:8:5:11:1 0.2495 17.4 0.0850 13.2 0.0676 15.2 0.1607 13.0
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Table A1. Cont.

Neurons of
Each Layer

MSE Iterations MSE Iterations MSE Iterations MSE Iterations

tan:tan:tan tan:tan:log tan:log:tan tan:log:log

1:8:8:2:1 0.0538 15.2 0.0825 21.6 0.1115 18.0 0.1038 25.6
1:8:8:5:1 0.0827 12.4 0.0513 15.4 0.0678 14.2 0.1517 16.4
1:8:8:8:1 0.1120 17.0 0.0994 15.6 0.1560 15.0 0.0733 12.2

1:8:8:11:1 0.1027 17.4 0.1331 13.4 0.1040 14.6 0.0763 21.0
1:8:11:2:1 0.0499 15.0 0.0648 18.6 0.0955 20.0 0.0762 29.6
1:8:11:5:1 0.1685 16.4 0.1082 13.0 0.0982 15.6 0.0786 12.4
1:8:11:8:1 0.0700 13.2 0.1409 12.4 0.1046 19.0 0.1053 22.6
1:8:11:11:1 0.1234 18.2 0.0767 18.2 0.0686 16.6 0.0789 19.2
1:11:2:2:1 0.0864 19.2 0.0585 20.2 0.0655 20.4 0.0920 15.0
1:11:2:5:1 0.2456 17.2 0.1119 16.4 0.0881 23.6 0.1038 14.8
1:11:2:8:1 0.0570 19.2 0.0852 21.8 0.0724 17.8 0.1493 26.4
1:11:2:11:1 0.1345 18.2 0.1407 19.2 0.1392 14.4 0.0836 16.2
1:11:5:2:1 0.1205 18.6 0.0658 20.6 0.0561 16.8 0.1163 16.8
1:11:5:5:1 0.0736 17.2 0.0896 17.2 0.0867 17.0 0.1203 23.6
1:11:5:8:1 0.0746 15.6 0.1327 16.4 0.0625 20.0 0.1371 17.2
1:11:5:11:1 0.0634 14.6 0.0999 18.4 0.0862 15.6 0.1830 19.8
1:11:8:2:1 0.0918 19.4 0.1124 25.2 0.1609 13.8 0.0704 16.4
1:11:8:5:1 0.2184 19.4 0.0709 14.0 0.1025 14.6 0.1356 15.6
1:11:8:8:1 0.1078 17.8 0.0873 14.4 0.0806 15.4 0.1091 13.0
1:11:8:11:1 0.0693 15.4 0.1357 16.6 0.0812 14.2 0.1164 16.0
1:11:11:2:1 0.0992 15.2 0.0919 14.8 0.1202 16.4 0.0973 14.0
1:11:11:5:1 0.0992 16.8 0.1095 13.6 0.0990 17.2 0.0652 13.6
1:11:11:8:1 0.1335 19.4 0.0798 17.2 0.0928 15.8 0.0991 17.0

1:11:11:11:1 0.1030 13.8 0.1092 22.0 0.1025 14.8 0.1140 12.6

Table A2. Parameter estimates of traditional height-diameter models.

Equations
Parameter Estimates

a b c

Richards 13.2393 0.1119 1.9216
Logistic 12.3167 7.0594 0.1959

Gompertz 12.6456 3.0414 0.1447
Korf 16.9864 11.9539 1.0749

Mitscherlich 22.2102 0.0331
Schumacher 18.0091 10.6440

Figure A1. Scattered diagram of stand mean height and stand mean diameter at breast height (DBH)
for both model fitting and validation datasets.
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