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Abstract: The expansion of rubber (Hevea brasiliensis) plantations has been a critical driver for the rapid
transformation of tropical forests, especially in Thailand. Rubber plantation mapping provides basic
information for surveying resources, updating forest subplot information, logging, and managing the
forest. However, due to the diversity of stand structure, complexity of the forest growth environment,
and the similarity of spectral characteristics between rubber trees and natural forests, it is difficult
to discriminate rubber plantation from natural forest using only spectral information. This study
evaluated the validity of textural features for rubber plantation recognition at different spatial
resolutions using GaoFen-1 (GF-1), Sentinel-2, and Landsat 8 optical data. C-band Sentinel-1 10 m
imagery was first used to map forests (including both rubber plantations and natural forests) and
non-forests, then the pixels identified as forests in the Sentinel-1 imagery were compared with GF-1,
Sentinel-2, and Landsat 8 images to separate rubber plantations and natural forest using two different
approaches: a method based on spectral information characteristics only and a method combining
spectral and textural features. In addition, we extracted textural features of different window sizes
(3 × 3 to 31 × 31) and analyzed the influence of window size on the separability of rubber plantations
and natural forests. Our major findings include: (1) the suitable texture extraction window sizes of
GF-1, Sentinel-2, and Landsat 8 are 31 × 31, 11 × 11 to 15 × 15, and 3 × 3 to 7 × 7, respectively; (2)
correlation (COR) is a robust textural feature in remote sensing images with different resolutions;
and (3) compared with classification by spectral information only, the producer’s accuracy of rubber
plantations based on GF-1, Sentinel-2, and Landsat 8 was improved by 8.04%, 9.44%, and 8.74%,
respectively, and the user’s accuracy was increased by 4.63%, 4.54%, and 6.75%, respectively, when the
textural features were introduced. These results demonstrate that the method combining textural
features has great potential in delineating rubber plantations.

Keywords: rubber plantation; multiresolution remote sensing images; GLCM; multiscale window
sizes; variable importance; Random Forest classifier
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1. Introduction

Of the 56.8 million hectares (ha) of plantations in the tropics in 2015, 29.9 million ha are in South
and Southeast Asia [1]. These plantations are crucial in global climate change regulation [2] and
natural resource protection [1] as they not only increase carbon dioxide fixation and carbon sink with
high growth rates, but also provide large quantities of wood and other products and services [3].
Although there are so many benefits, the process of plantation expansion has also caused ecological
and environmental problems including soil erosion and natural forest reduction. Natural rubber (latex)
is a necessary, strategic material for national development, and the rubber tree is the only source of
natural rubber products. Due to its suitable climate and growing conditions, Southeast Asia has the
largest proportion of rubber plantations in the world [2]. In recent years, rubber planting areas have
dramatically expanded in many Southeast Asian countries due to the increasing global demand for
natural rubber products. In order to solve poverty, the Thai government launched a plan to promote
rubber plantations in northeastern Thailand from 2003 to 2013. As a result, the planting area of rubber
plantations in northeastern Thailand has expanded rapidly in the past decade. While large-scale
rubber planting increases the income of local governments and farmers, it also causes many ecological
and environmental problems, such as the dramatic reduction of tropical rainforest, soil degradation,
and loss of biodiversity in rubber planting areas [4,5]. Timely, accurate maps of rubber plantations are
required to manage forests effectively and document the expansion of rubber plantations.

Remote sensing is a powerful and efficient tool to extract rubber plantations from the surrounding
landscape. A number of studies have used optical satellite data to detect rubber plantations,
mostly relying on spectral signatures like NDVI, EVI, LSWI, and SWIR1 of optical images to delineate
rubber plantations [6,7]. However, rubber plantations in Mainland Southeast Asia grow in tropical
rainforest areas with complex ecosystems, characterized by high vegetation coverage and less seasonal
variation. Rubber plantations have similar spectral characteristics compared to natural forests because
the spectral coefficients of rubber plantations tend to be saturated, especially during peak growing
seasons or after stands reach a certain age [8,9]. These problems bring considerable uncertainty to
rubber plantation extraction and monitoring based on spectral and vegetation indices [9].

Textural features in satellite imagery contain spatial information that is very important for feature
extraction because textures do not depend on the tone or brightness of the object surface and can reflect
gray information, spatial distribution, and structural information about the image. Textural features
are relatively stable compared with spectral characteristics, which are susceptible to the external
environment. Some studies have employed textural features for mapping crops, monitoring built-up
areas [10], detecting wetlands [11], classifying tree species [12,13], and mapping land cover [14,15].
The effectiveness of textural features on tree species identification has been confirmed by adding them
to the classification procedure of high- to relatively low-resolution satellite images. In the study of
mapping plantation extent based on Landsat-8 Operational Land Imager (OLI), Synthetic Aperture
Radar-2 (PALSAR-2), and Sentinel-1A images, Torbick et al. [9] found textural features could capture
the homogeneity of the plantation canopy, spacing, and structure relative to natural forests and were
useful for distinguishing oil palm and rubber plantation from other land cover types. Dian et al. [16]
confirmed that combining the spectral and spatial information derived from Airborne Hyperspectral
Imagery could improve the accuracy of tree species classification. Textures derived from high spatial
resolution QuickBird image [17] and the WorldView-3 satellite image [18] were also proved for their
potentials in detecting species-specific differences in crown structure, thus for better tree species
mapping. Despite many existing efforts, some problems relative to the application of textures to specific
tree species like rubber tree mapping require further investigation. Since no single window size could
adequately characterize the range of textural conditions in one image [10], what is the effect of window
sizes on textures measure and which textural features are more useful and robust for specific tree
species discriminating? Furthermore, the textural features strongly depend on spatial resolution of the
images used [19], then what is the effect of remote sensing images at different spatial resolutions on
specific tree species identification?
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In this study, three satellite data including GaoFen-1 (GF-1), Sentinel-2, and Landsat 8 imagery
with different resolutions were used for testing and analyzing the effect of textural features on rubber
plantation extraction in tropical Thailand. The specific objectives of this study are to (1) define
appropriate window sizes for each individual textural feature of different spatial resolution images; (2)
quantify the importance of texture variables and identify the effective textural features; and (3) evaluate
the applicability of satellite images at different spatial resolutions on the extraction of rubber plantations.

2. Materials and Methods

2.1. Study Area

Northeastern Thailand is located on the Khorat Plateau with an altitude between 100 m and 200
m. It belongs to a humid subtropical monsoon climate, with obvious dry and wet seasons. Heavy
rainfall is concentrated in the rainy season from May to October. The highest temperature, often in
April, can reach 40 ◦C while in December, the night temperature usually falls below 0 ◦C. Traditionally,
northeastern Thailand has been an important cultivation area, with fewer rubber plantations [20].
Stirred by an aggressive government policy for rubber plantations since 2003, dramatic expansions
have been seen in the south, the traditional rubber plantation area in Thailand. Then the plantations
gradually spread to northeastern Thailand to meet the demand for large areas of land [21]. As a
result, many patches of cropland and natural forest have been encroached by rubber plantations.
A subset image of GF-1, Sentinel-2, and Landsat 8 image within Northeastern Thailand was derived as
the experiment area (Figure 1) in this study, where massive rubber planting activity is prompting a
significant encroachment to natural forest and other land cover types.
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2.2. Datasets and Pre-Processing

2.2.1. Sentinel-1

A total of 92 scenes of Sentinel-1A and Sentinel-1B Interferometric Wide Swath GRD images of
2018 from the Google Earth Engine (GEE) [22] platform were used for forests mapping at the first step.
The Sentinel-1 data was pre-processed with the Sentinel-1 Toolbox [23] using thermal noise removal,
radiometric calibration, and terrain correction. A Refined Lee filter was applied to de-speckle each
image. The final terrain-corrected values were converted to decibels via log scaling (10 × log10(x)),
where x is the digital number value of pixels in vertical transmit and vertical receive (VV) or vertical
transmit and horizontal receive (VH). The Ratio and Difference between VV and VH were calculated
based on Equations (1) and (2).

Ratio = γ0
VV/γ0

VH, (1)

Difference = γ0
VV − γ

0
VH. (2)

where γ0
VV and γ0

VH are the backscattering coefficients of VV and VH in decibels.

2.2.2. GaoFen-1

GaoFen-1 (GF-1) imagery was acquired from the China Center for Resource Satellite Data and
Application (http://www.cresda.com). The GF-1 image (path/row = 16/128) was obtained on 5th March
2019. Pre-processing steps for GF-1 imagery using ENVI 5.3 software included radiometric calibration,
atmospheric correction, orthorectification, projection definition, and image fusion. The FLAASH
model was used for atmospheric correction. The orthorectification was done by Rational Polynomial
Coefficient (RPC) files. The spatial resolution of GF-1 varies for the different bands—the panchromatic
band has a resolution of 2 m and the multispectral bands are 8 m. We applied the Gram-Schmidt [24]
method to fuse panchromatic and multispectral images and obtain multispectral images with a spatial
resolution of 2 m.

2.2.3. Sentinel-2

Sentinel-2 data was downloaded from the European Space Agency’s Copernicus Scihub (https:
//scihub.copernicus.eu). The acquired Sentinel-2 data (T47QQV) was obtained on 16th February
2018. The imagery was pre-processed for atmospheric correction using the Sentinel Application
Platform (SNAP) 7.0 open-source software [25]. ESA’s Sen2Cor in SNAP was used to convert the
top-of-atmosphere reflectance values (TOA) to corrected surface reflectance values. The spatial
resolution of Sentinel-2 data varies from 10 m to 60 m. Bands 1, 9, and 10 were excluded from the
dataset due to their sensitivity to aerosol and clouds and their spatial resolution (60 m). Then, the image
was resampled at 10 m using a bilinear method.

2.2.4. Landsat 8

The Landsat 8 data was downloaded from USGS (https://earthexplorer.usgs.gov/). The data with
orbit number path/row = 129/48 was captured on 13th February 2018. The pre-processing for Landsat
8 using ENVI 5.3 included radiometric calibration, atmospheric correction, and geometric correction.

In order to eliminate the geographic deviation, all acquired data were georeferenced in the WGS84
coordinate system and UTM projection, zone 47. Based on a GF-1 image, relative geometric correction
was carried out on Sentinel-2 and Landsat 8 data using a 2nd order polynomial. The characteristics of
the datasets used in this study are shown in Table 1.

http://www.cresda.com
https://scihub.copernicus.eu
https://scihub.copernicus.eu
https://earthexplorer.usgs.gov/
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Table 1. Summary of the characteristics of the remotely sensed datasets used in the study.

Sensor Name Sensor Type Acquisition Date Band Resolution (m)

Sentinel-1 C-band Radar All throughout 2018 VV + VH 10
Sentinel-2 Optical 16th February 2018 490–2190 nm 10–20

GF-1 Optical 5th March 2019 450–890 nm 2–8
Landsat 8 Optical 13th February 2018 450–2290 nm 30

2.2.5. Field Survey Data and Sample Datasets

A set of sample points was collected from field survey information and high-resolution satellite
imagery from Google Earth (http://earth.google.com/). We conducted the filed surveys in February
and August 2017 and collected 284 rubber plantation sample points, 106 natural forest sample points,
and 178 other typical land cover types sample points using GARMIN GPSMAP 639sc. Moreover,
we obtained 1478 sample points including 679 rubber plantation sample points, 477 natural forest
sample points, and 322 other typical land cover types sample points by visual interpretation from
Google Earth.

2.3. Texture Processing

The gray-level co-occurrence matrix (GLCM) is currently the most prevalent statistical method to
derive textural features [26,27]. We used GLCM to exploit the texture information of GF-1, Sentinel-2,
and Landsat 8 images. GLCM is a symmetric matrix with each value representing the probability values
of a nearest-neighbor gray tone at a given distance and orientation [26]. This technique first uses a
spatial co-occurrence matrix that computes the relationships of pixel values, and then the second-order
statistics will be computed by using this matrix. In this study, textural features were retrieved with
fifteen window sizes from 3 × 3 to 31 × 31. The following eight textural features including Mean
(MEAN), Variance (VAR), Homogeneity (HOM), Contrast (CON), Dissimilarity (DIS), Entropy (ENT),
Angular Second Moment (ASM), and Correlation (COR) were computed by the formulas [26] shown
in Table 2.

There is a certain degree of correlation between multispectral bands, resulting in information
overlap between different bands [11], so we used the first principal component of the images in the
principal component analysis (PCA) [28] to extract the textural features. Bands 1–4 were input into
the PCA for GF-1 image, Bands 2–8A, 11 and 12 for Sentinel-2 image, and Bands 2–7 for Landsat 8.
The variance contribution of the first principal component of GF-1, Sentinel-2A, and Landsat 8 are
92.41%, 69.53%, and 74.34%, respectively.

2.4. Random Forest Classification

Random Forest (RF), proposed by Leo Breiman [29] in 2001, is an ensemble learning algorithm for
supervised classification with a decision tree as the basic classifier. Previous studies have shown RF
algorithms can process high-dimensional, massive data in parallel with high accuracy compared with
other machine learning algorithms. In this study, Random Forest was employed as a tool to classify
and assess the effect of textural features in remote sensed data at different spatial resolutions on rubber
plantation extraction (Figure 2).

http://earth.google.com/
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Table 2. Image texture measure formulas.

Texture Measure Formula Description

Mean (MEAN) MEAN =
N−1∑
i, j=0

iPi, j

MEAN represents the average brightness information
in the window. It reflects the degree of texture rules. The
stronger the rules, the greater the value.

Variance (VAR) VAR =
N−1∑
i, j=0

(
Pi, j − µ

)2
/(N − 1)

VAR reflects the contour of each homogeneous region
of the image and the change in gray level. When the gray
level changes greatly, its value is larger.

Homogeneity (HOM) HOM =
N−1∑
i, j=0

i
Pi, j

1+(i− j)2

HOM is a measure of smoothness of image
distribution. The more uniform the image matrix, the
larger the value.

Contrast (CON) CON =
N−1∑
i, j=0

iPi, j(i− j)2
CON reflects texture thickness. The bigger the

difference between adjacent pixels and gray value, the
bigger the value.

Dissimilarity (DIS) DIS =
N−1∑
i, j=0

iPi, j
∣∣∣i− j

∣∣∣ DIS is similar to contrast (CON), reflecting the
heterogeneity of images.

Entropy (ENT) ENT =
N−1∑
i, j=0

iPi, j
(
− ln Pi, j

) ENT is a measure of the amount of information. The
more complex the texture in the window, the greater the
entropy value.

Angular Second Moment
(ASM)

ASM =
N−1∑
i, j=0

iPi, j
2 ASM is the roughness of image texture. The finer the

texture, the smaller the ASM.

Correlation (COR)

COR =
N−1∑
i, j=0

i jPi, j − µ1µ2

µ1 =
N−1∑
i=0

i
N−1∑
j=0

Pi, j

µ2 =
N−1∑
j=0

j
N−1∑
i=0

Pi, j

COR reflects the similarity of pixels in row and
column directions of the gray level co-occurrence matrix.
The higher the correlation, the greater the value.

Where i, j are the gray levels of paired pixels; P(i,j) are the probabilities of co-occurrence; and N is the number of
distinct gray levels in the quantized image.
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2.4.1. Forests Mapping

Previous studies have proved that mapping forests using SAR data was feasible and
accurate [7,30,31]. In this study, Sentinel-1 SAR data were employed to produce the forest map
as the baseline for further assessing the effect of textures on classifying rubber plantations from natural
forests. The annual average value images of VV, VH, Ratio, and Difference were input to RF model for
classifying forests from other land cover types in reference to [31,32]. In this study, a Python script was
used to import the GDAL library to read training sample data and the Random Forest classifier was
imported from the Scikit-learn library. Each Random Forest was built using ntree = 800 trees, and the
number of variables randomly sampled as candidates at each split (mtry) was set by default (sqrt(p),
where p is the number of variables). Stratified random sampling of all the 2046 samples was carried
out in ArcGIS 10.5, 70% of which were selected to train RF model and the remaining 30% were used
for accuracy assessments of forests mapping using confusion matrix. The 10 m forest/non-forest map
was obtained by merging non-forest categories and resampled to 2 m and 30 m to match the GF-1 and
Landsat 8 spatial resolutions.

2.4.2. Feature Importance Measure

The RF algorithm is more advantageous for estimating the importance of predictor variables
compared with other machine learning algorithms [33,34]. The feature importance is calculated using
the Mean Decrease in Gini (MDG), which measures how much a feature reduces the Gini Impurity
metric in a class. The Out of Bag (OOB) error is then used for model evaluation to determine the
importance of model features. We calculated different window sizes for each texture with 3 × 3, 5 ×
5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, 17 × 17, 19 × 19, 21 × 21, 23 × 23, 25 × 25, 27 × 27, 29 × 29,
and 31 × 31 to assess the effect of window sizes on textures for rubber plantation extraction. Then the
15 variables were input to RF to determine the optimal window size for each texture using out-of-bag
(OOB) estimation. After that, eight textural features which were calculated using individual optimal
window size were input to RF to measure their importance for rubber plantation identification.

2.4.3. Rubber Plantation Extraction Using GF-1, Sentinel-2, and Landsat 8 Data

To evaluate the effect of different data sources on rubber plantation extraction, RF models were
established using only the original spectral bands and spectral bands combined with textural features
selected above to classify the images masked by the forest map. A total of 1528 rubber plantation and
natural forest samples were used for training and validation using confusion matrices.

3. Results

3.1. Forest Mapping and Accuracy Assessment

According to the validation results of the confusion matrix (Table 3), the resultant Sentinel-1
forest/non-forest map (Figure 3) has a high accuracy. The overall accuracy is 0.9593, and the Kappa
coefficient is 0.8919. The user’s accuracy and producer’s accuracy of the ‘forest’ category are 98.24% and
96.34%, respectively. Therefore, the forest map can be used as a reliable base map for further analysis.

Table 3. Accuracy validation of forest/non-forest classification result based on 10 m Sentinel-1.

Class User’s Accuracy Producer’s Accuracy Estimation Error 1 Overall Accuracy Kappa

Forest 2 98.24% 96.34% 3.66 ± 1.71%
0.9593 0.8919

Non-forest 3 89.31% 94.67% 5.33 ± 3.59%

Note: 1 the error associated to the estimation of a proportion p is z*sqrt(p(1 − p)/n), where n is the number of
data points utilized to compute p, and z the tabulated z-score [35]. The number of forest points is 464 and that of
non-forest is 150. Z = 1.96 (α = 0.05) in this study. 2 Forest types mainly include natural forest and rubber plantation.
3 Non-forest mainly includes cropland, water, and built-up land.
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3.2. The Optimal Window Sizes for Textures Calculation

Figure 4 shows how the importance of textural features, derived from GF-1, Sentinel-2, and Landsat
8, varies with the window size in distinguishing rubber plantations from natural forest. With the
increase in the window size, the importance of the textural features exhibited different variation modes
for the three data sources.
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The importance of GF-1 textural features increases with small fluctuations as the window size
enlarges, and the increasing trends of the MEAN and CON are especially obvious. The importance of
the eight textural features of Sentinel-2 follows up-down-up modes with the increase in window size
and reaches the maximum mainly at 11 × 11, 13 × 13, and 15 × 15. Among the eight textural features,
the increasing and decreasing trend of the importance of VAR and COR is most obvious before and
after the peak. In the case of Landsat 8, high importance can be observed in smaller window sizes
(3 × 3 to 7 × 7). Except for COR, the rest of the textural features are of relatively high importance at
window sizes ≥25 × 25. Considering the 30 m resolution of Landsat 8, too large of a window size
will over-smooth the image, introducing erroneous spatial information, and thus is not suitable for
calculating Landsat 8 textural features. To define the appropriate window size is a very important step
when textural features are considered for classification because the window sizes selected have had a
great effect on feature contribution.

The optimal window size was determined where the peak importance was located for rubber
extraction. The resultant window size for extracting eight textural features from GF-1 is 31 × 31. For
Sentinel-2, the window sizes are 15 × 15 for MEAN and VAR, 13 × 13 for HOM, CON, ENT, ASM, and
COR, and 11 × 11 for DIS. For Landsat 8, the textural features calculation window sizes of MEAN,
ENT, and ASM are 3 × 3; CON and DIS are 5 × 5; and HOM, VAR and COR are 7 × 7.

3.3. The Importance Sorting of Textural Features for GF-1, Sentinel-2, and Landsat 8

We calculated the importance of eight textural features derived from the optimal window size
defined in Section 3.2. The results are shown in Figure 5. Among the textural features of GF-1, ENT is
the most important, accounting for 32.02%, followed by MEAN, COR, VAR, accounting for 25.48%,
19.30%, and 10.96%, respectively. The textural features of Sentinel-2 with relatively high importance
are HOM, ENT, COR, and ASM, with values of 20.22%, 19.52%, 17.84%, and 13.78%, respectively.
For Landsat 8, COR is the most important textural feature, accounting for 17.87%, followed by MEAN,
CON, and HOM, accounting for 17.49%, 15.82%, and 13.13%, respectively. Among the top 3 important
textural features, COR is the only robust feature in rubber plantations delineation concurrently for all
three data sources.
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The cumulative contribution rate of the top 3 textural features is 76.80% for GF-1, 57.58% for
Sentinel-2, but only 51.18% for Landsat 8. Similarly, the cumulative contribution rate of textural features
ranked top 4 is 87.76% for GF-1, 71.36% for Sentinel-2, but only 64.31% for Landsat 8. So, we can find
the contribution is more concentrated on a small number of contextual features for GF-1, and less
concentrated for Sentinel-2. For Landsat 8, the contribution disperses among all textural features,
with no one more than 18%.

According to the ranking results, MEAN, VAR, ENT, and COR were selected as important textural
features to combine with spectral information for Random Forest classification of GF-1. Similarly,
HOM, ENT, ASM, and COR of Sentinel-2 imagery and MEAN, HOM, CON, and COR of Landsat 8
were chosen to build the Random Forest model.

3.4. Classification Results Using GF-1, Sentinel-2, and Landsat 8 Data

The resultant rubber plantation and natural forest maps produced from GF-1, Sentinel-2,
and Landsat 8 imagery are shown in Figure 6. The classification accuracy was validated using
a confusion matrix for each data source (Tables 4 and 5). As expected, rubber plantations were confused
with natural forest in the classification that only used spectral bands. The producer’s accuracy of
rubber delineation results for Sentinel-2 and Landsat 8 data was less than 82%, and for GF-1 the rubber
plantations producer’s accuracy was the lowest with an accuracy of only 79.37%, which implied that
the resultant rubber plantation map produced by GF-1 had the largest number of rubber plantations
that was misclassified as natural forests. Regarding the user’s accuracy, GF-1 had the highest accuracy
(92.65%), followed by Sentinel-2 (92.13%) and Landsat 8 (89.84%), indicating that it had the largest
incorrect classification of the rubber plantation objects in Figure 6e. The overall accuracy of rubber
plantations and natural forests classifications using GF-1, Sentinel-2, and Landsat 8 were 0.8271, 0.8386,
and 0.8161, respectively, and the Kappa coefficients were 0.6448, 0.6639, and 0.6162, respectively.

Table 4. Accuracy validation of RF classification using only spectral information.

Class User’s Accuracy Producer’s Accuracy Estimation Error Overall Accuracy Kappa

GF-1
Rubber plantation 92.65% 79.37% 20.63 ± 6.27%

0.8271 0.6448Natural forest 70.65% 88.75% 11.25 ± 3.66%

Sentinel-2
Rubber plantation 92.13% 81.82% 18.18 ± 5.98%

0.8386 0.6639Natural forest 72.92% 87.50% 12.50 ± 3.83%

Landsat 8
Rubber plantation 89.84% 80.42% 19.58 ± 6.15%

0.8161 0.6162Natural forest 70.53% 83.75% 16.25 ± 4.28%

Note: The number of rubber plantation points is 286 and that of natural forest is 160. z = 1.96 (α = 0.05) in this study.

Table 5. Accuracy validation of RF classification using spectral and texture information.

Class User’s Accuracy Producer’s Accuracy Estimation Error Overall Accuracy Kappa

GF-1
Rubber plantation 97.28% 87.41% 12.59 ± 5.14%

0.9036 0.7985Natural forest 80.95% 95.63% 4.37 ± 2.37%

Sentinel-2
Rubber plantation 96.67% 91.26% 8.74 ± 4.38%

0.9238 0.8379Natural forest 85.80% 94.38% 5.62 ± 2.67%

Landsat 8
Rubber plantation 96.59% 89.16% 10.84 ± 4.82%

0.9103 0.8108Natural forest 82.97% 94.38% 5.62 ± 2.67%
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Figure 6. Random forest (RF) classification results based on the spectral features only (a,c,e) and the
spectral + textural features (b,d,f).

The accuracy of combining spectral and textural features is higher than that of only using spectral
features (Table 5). The improvement in accuracy varies under different resolutions. The overall
accuracy of Sentinel-2 is the highest at 0.9238, followed by Landsat 8 at 0.9103 and GF-1 at 0.9036.
The accuracy changes before and after adding textural features are shown in Figure 7. The producer’s
accuracy of rubber plantations based on GF-1, Sentinel-2, and Landsat 8 was improved by 8.04%, 9.44%,
and 8.74%, respectively, and the estimation error was reduced correspondingly. The user’s accuracy
was increased by 4.63%, 4.54%, and 6.75%, respectively. The overall accuracy and Kappa coefficient
have been increased to varying degrees. In addition, the “salt and pepper” phenomenon shows an
obvious improvement, and the uniformity effect of rubber forests is better after adding textural features.
The GF-1, Sentinel-2, and Landsat 8 classifications after adding textural features could accurately extract
the rubber plantation areas, with an area of 179.44 km2, 204.83 km2, and 221.01 km2, respectively.
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4. Discussion

4.1. The Optimal Window Sizes for Textural Features Calculation

The importance of textural features for land cover classification has been studied by several
researchers [27], and window size plays a critical role in texture calculation [14]. The standard method
of texture analysis is to process spectral information in a single band with a fixed window size.
However, this method has limitations because a single window size is not able to adequately describe
multi-scale characteristics of different objects [10], nor can it fully characterize all the textures for the
image. In previous studies [36,37], all textural features were defined by only one fixed window size;
we further defined the optimal window size for each individual textural feature.

Window size selection depends on the spatial resolution of the image and the relationship between
features (such as canopy size) [16] and texture indices to be calculated [38]. In fact, the spatial
characteristics of specific land cover types cannot be exploited sufficiently if the window is too small.
Too large of a window may cause mixed pixels at the boundary of two categories to be misclassified,
and even pure pixels may be misclassified into another category due to the edge effect [39,40]. Therefore,
selecting the texture window is a very important step in calculating textural features. In this study,
we used data in three different spatial resolutions to study the multi-scale effect. With the decrease in
spatial resolution, the edge effect became more and more obvious for the “rubber plantation” category.
The edge effect was apparent for rubber plantations in Sentinel-2 and Landsat 8 images, especially in
small rubber plantation patches, since there were more non-rubber plantation pixels involved in the
texture measuring area. The lesser edge effect in GF-1 may be due to the higher spatial resolution and
higher spectral variation of the pixels at the edges, which leads to insufficient spatial characteristics of
rubber plantations, even though the window size had already been set to 31 × 31.

As window size for texture analysis is related to image resolution, it is meaningful to choose the
texture calculation window size for images with different resolutions. At finer spatial resolutions, the
suitable window size used for extracting textural features should be larger when extracting rubber
plantations. In this study, the appropriate texture window sizes for GF-1 images is 31 × 31, then 11 × 11
to 15 × 15 for Sentinel-2, and 3 × 3 to 7 × 7 for Landsat 8 as the textural features of rubber plantations
and natural forests could achieve the maximum differentiation among such windows. The results for
window size are partially consistent with previous, similar studies. Aguera et al. [17] used QuickBird
imagery (2.5 × 2.5 m) to detect plastic-covered greenhouses. Their results revealed that the optimal
window size was around 15 × 15. Zhou et al. [38] used 37 window sizes from 3 × 3 to 75 × 75 to test the
optimal window size of Sentinel-1 imagery for urban land cover classification. They revealed that for
each individual textural feature (MEAN, VAR, ENT, DIS, HOM, COR, CON, and ASM), the optimal
window sizes for the best classification results were: 5 × 5, 23 × 23, 25 × 25, 13 × 13, 19 × 19, 49 × 49, 51
× 51, and 9 × 9, respectively. Gao et al. [41] suggested that a smaller window size (5 × 5) may be more
representative to obtain multi-seasonal textures of Landsat 8 to map the spatial distribution of the six
forest types. Compared to rubber plantations, plastic greenhouses have a smoother texture and larger
contrast with surrounding objects, so a small window size can adequately describe the difference.
When selecting the window size of a texture, the special conditions of the study area, the bands used to
calculate textures, the contents within the images, and the main objective of the classification and other
factors should be taken into consideration [16,27].

4.2. Contribution of Textural Features on Rubber Plantation Delineation

This study showed that texture information is a valuable feature for rubber plantation delineation
as the addition of textural features makes it easier to accurately separate rubber plantations from
natural forests. After adding textural features, overall accuracies of the resultant rubber plantation
map were increased by 0.0765 to 0.0942 and the Kappa coefficients were increased by 0.1537 to
0.1946. Several studies have found that individual textural feature contributed differently to specific
land cover classification [9]. Pei et al. [42] chose CON as the best textural feature to participate in
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classification. Berberoğlu et al. [27] also found that CON was a useful discriminator for any individual
class. Mongus et al. [43] found that texture measures including MEAN, CON, HOM, and DIS extracted
from Sentinel-2 data had increased the classification method’s total F1 score by over 7%. Moreover,
CON introduced the largest improvements (approximately 3%). Torbick et al. [9] found that the
Landsat textural features based on NIR had substantial separation between plantations and forests as
forests have higher values of VAR, CON, DIS, while plantations have higher ENT values. The four
highest information entropy values of the textural features, including MEAN, CON, HOM, and VAR,
were selected to classify the image using the information entropy theory in the study by Zhang et al. [44].
After adding textural features, the overall accuracy was improved by 10.99–24.10% compared with
spectral information alone. Similar to these studies, we evaluated the importance of eight textural
features when distinguishing between rubber plantations and natural forests. Our results also showed
that MEAN, HOM, CON, VAR, and ENT have important effects on improving the separation of rubber
plantations and natural forests.

Sorting the results of textural feature importance (Figure 5) showed that COR was the most robust
feature when distinguishing rubber plantations from natural forests as its importance has always been
in the top three in images of all three spatial resolutions, although not always of the highest importance.
COR may provide additional insight into the characteristics of rubber plantations.

4.3. Applicability of Remote Sensing Data at Different Resolutions to Rubber Plantation Extraction

Many studies have shown that the specific land cover type area is closely related to the sensor data
used. We also found that there were significant differences in the rubber plantation areas produced by
GF-1, Sentinel-2, and Landsat 8. With the decrease in spatial resolution, the rubber plantation area
that was extracted increased gradually. The outcome of the study by Paul et al. [45] also showed
that glacier extents derived from the 30 m Landsat 8 imagery are 4–5% larger than those from 10 m
Sentinel-2. The results are related to the generous interpretation of mixed pixels, especially along
the target category perimeter. In this study, the rubber plantation area estimated with GF-1 was less
than the actual area as the ability of GF-1 to recognize edges for rubber plantations is still insufficient
(Figure 8), although GF-1 rubber plantation extraction results were rich in detail.

According to the classification accuracies shown in Table 5, after adding textural features,
the moderate spatial resolution Sentinel-2 and Landsat 8 data outperformed GF-1 with high spatial
resolution in extracting rubber plantations. This may be because of the absence of a SWIR band,
which was also demonstrated by Shapiro et al. [46] and Wang et al. [47] when mapping mangrove
extent. Wang et al. [47] found that the moderate Sentinel-2 and Landsat 8 imagery could outperform
high-resolution Pléiades-1 imagery with the help of more refined spectral divisions when using
different sensors to map larger mangrove zonation and extent. In this study, the ability of the GF-1
sensor to discriminate rubber plantations with low canopy density was lower than that of Sentinel-2
and Landsat 8 (Figure 8a). This may be because GF-1 imagery has only four multispectral bands,
lacking a SWIR band compared with Landsat 8 and Sentinel-2. In previous studies [9,48], LSWI and
NBR indices (the function of SWIR) played important roles in distinguishing rubber plantations from
natural forests. Consequently, the absence of a SWIR band may limit the accuracy of GF-1 imagery
in identifying rubber plantations. In addition, the rubber plantations with low canopy density were
more affected by the vegetation and soil under the plantations, which will enlarge the variability of its
interior and increase the difficulty of identifying other rubber plantations.
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Figure 8. Comparison of rubber plantation maps using GaoFen-1 (GF-1), Sentinel-2, and Landsat 8
imagery. Group (a) is the example of low canopy density rubber plantation classification, and Group
(b) is the example of scattered rubber plantation classification. Group (c,d) are the examples of rubber
plantation classification at the edges and boundaries

When using different sensors to map small-sized features and the details of rubber plantations,
spatial resolution might be more important than the spectral bands. All three rubber plantation
maps from GF-1, Sentinel-2, and Landsat 8 show generally consistent spatial distribution but differ in
geometric details such as boundaries and gaps between two rubber plantation patches. The higher
the spatial resolution, the richer the detailed information, especially in scattered, small plantation
plots (Figure 8b). The Landsat 8 sensor resulted in under classification of line shape (Figure 8b).
This may be because the spatial extent of rubber plantation is less than the pixel size, which leads to the
rubber plantations being dissolved by surrounding objects. Plantations along the gaps and boundaries
were underestimated, even though the map produced by the high spatial resolution GF-1 data could
better distinguished the gaps between two rubber plantation patches and boundaries between rubber
plantations and surrounding objects better than Sentinel-2 and Landsat 8. This may be due to the
high spatial resolution of GF-1, which resulted in large spectral variation at the edges of the rubber
plantation, and the rubber tree shadow at the edges (Figure 8c) and boundaries could be misclassified
as natural forest (Figure 8d).

When we decide which data source to use, a variety of factors needs to be taken into account, such
as spatial resolution, spectral resolution [47], and the patch size of rubber plantation. The 2 m GF-1
imagery presents more abundant details of the rubber plantations with its smaller pixel size, which
can provide excellent imagery for visual interpretation. However, fine spatial resolution will bring
more variability than moderate resolutions. In addition, texture calculation is based on the spectral
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relationship among pixels within a certain window range; the low spectral resolution of GF-1 may
limit the distinction between rubber plantations and natural forests in texture characteristics. Owing to
those reasons, GF-1 has limited advantages in automatic extraction of rubber plantations. Regarding
the 10 m Sentinel-2 imagery with the most refined spectral division, the highest rubber plantation
accuracy and accurate boundary of rubber plantation were achieved with a 10 m Sentinel-2 image.
Furthermore, as frequent cloud cover is a major obstacle for creating precise images in tropical regions,
the shorter repetition interval of Sentinel-2 might allow an increased availability of appropriate images.
Compared with GF-1, Landsat 8 has more spectral bands. However, a 30 × 30 m Landsat 8 pixel
tends to contain several types of land cover with a fragmented context, which limits its suitability for
mapping smaller rubber plantations, as Landsat 8 over- or under-classified rubber plantations to some
extent. On the whole, for continuous or large areas of rubber plantations, Sentinel-2 and Landsat 8 are
good choices; for scattered rubber plantations and small plot sizes, GF-1 may be better.

5. Conclusions

Land use in northeastern Thailand has undergone tremendous changes in the past two decades
because the Thai government launched a plan to promote rubber plantations from 2003 to 2013. Due to
the limitation of similar spectral characteristics between rubber plantations and natural forests, textural
features were introduced in this study to improve the accuracy of rubber plantations recognition.
We explored the performance of textural features for three different image resolutions images including
2 m GF-1, 10 m Sentinel-2, and 30 m Landsat 8. Several conclusions can be drawn from this study:

(1) The higher the resolution, the larger the window size needed. The resultant window size for
extracting eight textural features from GF-1 images is 31 × 31. For Sentinel-2, the window sizes
are 15 × 15 for MEAN and VAR, 13 × 13 for HOM, CON, ENT, ASM, and COR, and 11 × 11 for
DIS. For Landsat 8, the textural feature calculation window sizes of MEAN, ENT, and ASM are 3
× 3, 5 × 5 for CON and DIS, and 7 × 7 for HOM, VAR and COR.

(2) The Random Forest importance measures show that MEAN, VAR, ENT, and COR were important
for GF-1 classification, while HOM, ENT, ASM, and COR were chosen for Sentinel-2 classification.
MEAN, HOM, CON, and COR had more influence in the separation of rubber plantations and
natural forests for Landsat 8.

(3) The importance of COR was always in the top three among the eight textural features in GF-1,
Sentinel-2, and Landsat 8, so COR is a robust textural feature in three different resolutions when
distinguishing rubber plantations from natural forests.

(4) Adding textural features as additional inputs improved the overall accuracy and the producer’s
and user’s accuracies compared to using spectral features only for rubber plantation classification.
With the help of textural features, the 10 m Sentinel-2 imagery could accurately extract rubber
plantations with the producer’s accuracy reaching 91.26% and the user’s accuracy reaching 96.67%.
Meanwhile, the 2 m GF-1 imagery underestimated rubber plantations with a producer’s accuracy
of 87.41% and a user’s accuracy of 97.28%, and the rubber plantation area was overestimated
by the 30 m Landsat 8 imagery with a user’s accuracy of 96.59% and a producer’s accuracy of
89.16%. Compared with GF-1, the higher accuracies of the Sentinel-2 and Landsat 8 sensors may
be attributed to the SWIR band.

Textural features can capture the homogeneity of plantation canopy, spacing, and structure.
Textural features are more stable than spectral characteristics as textural features reflect the varying
frequency of tone in a certain window size, rather than depending on the tone and brightness of the
object surface. Due to such advantages, the textural-based approach can be duplicated or transferred
to other geographical regions and other plantation species such as oil palm (Elaeis guineensis) and
teak (Tectona grandis). We finally contend that these achievements are of great significance to guide
the sustainable management of forest resources, soil erosion control, and sustainable development of
society in Southeast Asia and other regions.
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