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Abstract: Secondary succession that occurs on abandoned farmlands is an important source of
biomass carbon stocks. Both direct and indirect tree biomass estimation methods are applied on
forest lands. Using empirical data from 148 uprooted trees, we developed a seemingly unrelated
mixed-effects models system for the young silver birch that grows on post agricultural lands in central
Poland. Tree height, biomass of stem, branches, foliage, and roots are used as dependent variables;
the diameter at breast height is used as the independent variable. During model elaboration we used
restricted cubic spline: 5 knots at the quantiles (0.05, 0.275, 0.5, 0.725, and 0.95) of diameter at breast
height provided sufficiently flexible curves for all biomass components. In this study, we demonstrate
the use of the model system through cross-model calibration of the biomass component model using
tree height measured from 0, 2, 3, and 4 available extreme trees feature in the plot in question. A
different number of extreme trees were measured for final model system and our results indicated
that for all analyzed components, random-effect predictions are characterized by higher accuracy
than fixed-effects predictions.
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1. Introduction

Issues related to climate change have become increasingly important, as evidenced by the world’s
strongest climate-energy policy agreed upon by the European Council in October 2014. The policy’s
objective assumes that within the European Union (EU): (i) at least 32% of the energy demand is being
covered by renewable energy sources and (ii) greenhouse gas emissions (from 1990 levels) will be cut
by 40% by 2030. In this context, due to the area occupied and the amount of accumulated carbon, forest
ecosystems play an important role. For example, the content of carbon in biomass of Polish forests
has been estimated at 822 million tons [1]. It is worth noting, however, that due to the difficulty of
defining the current method of land management, almost 800 thousand ha of forests are not included
in the official statistics [2]. One of the types of land that is not covered by official statistics is secondary
succession, which occurs on abandoned farmlands and are an important source of biomass carbon
stocks [3–5]. These areas are frequently subjected to appearance of pioneer forest tree species, such as
silver birch (Betula pendula Roth.) [6,7]. Those stands during the first eight years produce 31.2 Mg/ha
aboveground biomass [7] and after 15 years can produce up to 75 tons Mg/ha [8]. By introducing rapid
rotation in these areas, it is possible to increase the potential of fast growing silver birch stands, which
can be assessed using a life cycle analysis [9].
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Biomass conversion and expansion factors, combined with stand level volume, are an exemplary
approach to estimating forest biomass stock [10–12]. Allometric biomass models are also a common
solution. In this option, total biomass and/or biomass of each tree component is expressed as a
function of tree-level predictors, such as diameter at breast height [13], only diameter at breast
height [14,15], diameter at ground level [16], only tree height [17], or diameter at ground level and
tree height [18]. Regardless of the type of predictor, field measurements are a common source of
modelling data. An example of such a solution are aboveground biomass functions derived for birch
in Norway [19]. In Finland, Mälkönen [20] analyzed the total aboveground biomass production in
40-year-old silver birch stands. Johansson [21] elaborated biomass equations for silver birch stands
growing on abandoned farmland in Sweden. Kuznetsova et al. [16] performed similar studies in Estonia.
In Poland, Bronisz et al. [22] estimated allometric empirical biomass models for total aboveground,
stem, branches, and foliage dry biomass. However, for the estimating of net primary production,
biomass allocation, belowground competition, and carbon accumulation quantifying belowground
biomass is crucial [23–25].

When formulating a model for the total above/belowground biomass of trees and their components,
it is important to ensure that the logical assumption is made that the sum of the components of the tree
estimated using equations should be equal to the estimated biomass of the whole tree additivity of
biomass models. Threads regarding the use of seemingly unrelated regression (SUR) to obtain biomass
model additivity was raised by Kozak [26], discussed by Chiyenda and Kozak [27], and by Cunia and
Briggs [28]. Parresol [29] pointed out three possible procedures during SUR elaboration. In one of them,
the total biomass regression model is defined as the sum of the individually calculated best regression
models of the biomass of its components (equation 20 in [29]) and the joint behavior of the separate
components is modeled through cross-model correlation. Therefore, SUR has been increasingly used
to develop various additive biomass models. However, we point out that the additivity is not ensured
through the SUR estimation method, but through such formulation of the model equations that the
system is compatible. Bi et al. [30] applied this solution for biomass modeling of 15 native eucalypt
forest tree species in temperate Australia. While Dong et al. [31] developed additive biomass equations
for three coniferous plantation species in Northeast China, Lambert et al. [32] elaborated new sets of
Canadian national tree aboveground biomass equations. Examples of European research are biomass
models developed for the main hardwood forest species in Spain [33] or Polish research related to
Scots Pine [34] or Silver birch [22] aboveground biomass modeling.

The data for biomass models is often characterized by a grouped structure. It usually contains
information about individual tree features for different sample plots. Moreover, the relationship
between independent variables (e.g., diameter at breast height/height) and biomass components as
dependent ones varies among different sample plots. The mixed-effects models, where the fixed and
random-effects are distinguished, is useful solution in those types of forestry data set [35]. The fixed
part of those models allows modelling data for a typical sample plot. A random part describes the
difference of each plot and the typical plot, thus enabling description of the plot specific relationship for
all plots of the dataset [36]. In addition, it allows for a significant improvement of biomass meta-models
for local conditions [37]. Mixed-effect models approach allows to include various data structures
through inclusion of random effects at different levels of grouping, it can be based on country or
region [38]. Mixed-effect biomass models are analyzed in different forms. Ou et al. [39] for example
defined nonlinear mixed-effects models for aboveground biomass of natural Simao pine in Yunnan
(China), whereas Fehrmann et al. [36] developed linear mixed-effects models for logarithmic biomass
based on the national forest inventory of Finland’s forests. Furthermore Pearce et al. [40] defined
linear mixed-effects models for estimating biomass and fuel loads in shrublands. A flexible but less
frequently used solution in case of biomass modeling is the spline regression. Spline is a function
consisting of pieces of second or third order polynomials that are joined at knots [41]. Those type of
function remains as linear with respect to its parameters and the spline provides a way to calculate



Forests 2020, 11, 381 3 of 16

additional transformation of the variable. The function’s flexibility is controlled by the number of
knots, which can be placed at certain quantiles of the independent variable [35].

One benefit from the mixed-effects model is the flexibility in prediction. If no local information
to predict the random effects for the plot in question are available, a prediction using the fixed part
of the model can be used. Using the fixed part of mixed-effects models provides predictions for a
typical plot and in case of nonlinear models it could be biased [42]. However, if even a small amount
of local measurements are available, a more accurate random-effect prediction can be used [43,44].
In the multivariate modeling context, such prediction utilizes the cross-model correlations of the
model system, thus taking into account the logical interactions between the biomass components.
Furthermore, those model systems allow use of the cross-model residuals correlation to predict
residuals for all dependent variables for the calibration trees in question. Lappi [43] developed a
bivariate system of seemingly unrelated mixed-effects model for tree height and volume, and used
the system for prediction of standing tree volume both when measurements of tree height were not
available and when they were available from the plot in question. In this study, we extend this idea
to the multivariate system including models for biomass components and tree height. The model
system allows prediction of plot-level biomass-diameter models and further improving that prediction
using local measurements of tree heights from the plot in question. Above predictions is based on the
estimated best linear unbiased predictor (EBLUP) and it utilizes the estimated variance-covariance
structure of random effects and residuals in a way that leads to statistically optimal prediction [42].

Using empirical data from 148 uprooted trees, we developed a seemingly unrelated mixed-effects
models system for the young silver birch stands growing on post agricultural lands in central Poland.
Tree height, biomass of stem, branches, foliage, and roots are used as dependent variables while
diameter at breast height are used as the independent variable. We demonstrate the use of the model
system through cross-model calibration of the biomass component models using tree height.

2. Material and Methods

2.1. Study Sites

We used empirical data from 16 temporary sample plots located in silver birch stands growing on
post-agricultural lands in Mazowieckie province, central Poland (52◦21′–51◦24′ N, 20◦39′–21◦26′ E,
Figure 1). We analyzed stands originated from natural regeneration that started after farming use
was stopped. No silvicultural treatments had been performed by the time the sample material was
collected. All sample plots were located in a zone of transition from the maritime to continental type
within the temperate climate [45]. Mean annual temperatures were in the range 6–8 ◦C. The average
annual precipitation in the region amounted to 550–600 mm. Soils are generally poor in nutrients.
Elevation ranged from 95 to 160 m above sea level. Each sample plot consisted of about 200 trees.
We measured diameter at breast height of all living trees on sample plot. At each sample plot, we
randomly chose ten trees from the range of diameters. For this study we selected trees taller than 1.3 m.
Age of those trees varied from 3 to 16 years (Table 1).

Table 1. Characteristics of sample plots: Age (years), plot area (Area (ha)), number of trees per hectare
(N), Basal area per hectare (BA (m2 ha−1)), and trees: diameter at breast height (DBH (cm)), height (H
(m)), stem (ST), branches (BR), foliage (FL), and roots (RT) dry biomass (kg) of the sampled trees.

Plots Trees

Age Area N BA DBH H ST BR FL RT

Min 3 0.001 2987 0.21 0.1 1.41 0.0128 0.003 0.002 0.007
Mean 9 0.018 46,486 12.76 3.22 5.57 2.982 0.443 0.174 0.575

Median 9 0.019 12,572 12.73 2.9 4.85 1.078 0.241 0.108 0.26
SD 4 0.015 60,547 9.06 2.17 2.96 4.687 0.644 0.211 0.924

Max 16 0.05 198,095 28.82 9.7 13.08 20.627 4.256 1.133 5.42
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Figure 1. Location of silver birch sample plots (black dots) in Mazowieckie province, central Poland. 
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2.2. Uprooted Trees 

The sample trees were dug out with their root systems. We marked the base level at the bark 
prior to excavation to separate aboveground part of the tree from belowground one. We divided each 
tree into the following biomass components: stem, branches, foliage and roots (>2 mm of diameter 
according to [46]) separated from the stem at the previously marked base level.  

We cleared the roots from soil and other organic materials using brushed and compressed air. 
We weighted all biomass components in the field using precise portable scales (accuracy 0.01 g). We 
took samples of each component (stem discs in the middle of each 1 m section, random samples of 
branches, foliage, and roots) from every tree to calculate the ratio between fresh and dry biomass. We 
dried the samples at 105 °C [47] until they reached a constant weight. We calculated the dry biomass 
of each biomass component for each tree on the basis of corresponding fresh to dry biomass ratios 
[46]. Finally, empirical material consisted of the data from 148 trees taller than 1.3 m. Diameter at 
breast height of those trees varied from 0.1 to 9.7 cm (Table 1, Figure 2). 

Figure 1. Location of silver birch sample plots (black dots) in Mazowieckie province, central Poland.

2.2. Uprooted Trees

The sample trees were dug out with their root systems. We marked the base level at the bark
prior to excavation to separate aboveground part of the tree from belowground one. We divided each
tree into the following biomass components: stem, branches, foliage and roots (>2 mm of diameter
according to [46]) separated from the stem at the previously marked base level.

We cleared the roots from soil and other organic materials using brushed and compressed air. We
weighted all biomass components in the field using precise portable scales (accuracy 0.01 g). We took
samples of each component (stem discs in the middle of each 1 m section, random samples of branches,
foliage, and roots) from every tree to calculate the ratio between fresh and dry biomass. We dried the
samples at 105 ◦C [47] until they reached a constant weight. We calculated the dry biomass of each
biomass component for each tree on the basis of corresponding fresh to dry biomass ratios [46]. Finally,
empirical material consisted of the data from 148 trees taller than 1.3 m. Diameter at breast height of
those trees varied from 0.1 to 9.7 cm (Table 1, Figure 2).
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Figure 2. Diameter at breast height distribution (a) and relationship between analyzed trees components
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2.3. Separate Mixed-Effect Models

We started the analysis by modeling the relationship between the dependent variables and tree
diameter separately for each biomass component using a liner mixed-effect model. In our data, sample
plots defined a single grouping factor and no other potential factors of grouping were present. Each
model for the tree j, j = 1, . . . , ni, of plot i, i = 1, . . . , M, was of form:

yi j = x′i jβ+ z′i jbi + εi j (1)

where x′i jβ is the fixed part and z′i jbi + εi j the random part. We assume that:

bi ∼ N(0,ψ) (2)

where bi are independent among plots and of the residual errors εi j. Matrix ψ is a positive definite
variance-covariance matrix of random effects. The zero-mean residual errors εi j were mutually
independent, normal with variance.

var
(
ei j

)
= σ2DBHi j

δ (3)

where σ2 and δ are the estimated scale and shape parameters for the power function, respectively. The
special case δ = 0 leads to homoscedastic residuals. Notice that our model includes only diameter at
breast height (DBH) as a fixed predictor, therefore prediction does not require that e.g. measurement
of tree height is available. However, our multivariate system allows also improved predictions by
utilizing measurements of height as well.

To ensure that the predicted biomass components and tree heights are positive, logarithmic biomass
and logarithm of height-1.3 was used as yi j. However, the logarithmic biomasses were not linear with
respect of DBH or its logarithm and we used a restricted cubic spline to model this curvilinearity. The
following restricted cubic spline with K nodes tk, (min(DBH) < t1 < . . . < tK < max(DBH)) was used
in the fixed part [41].

x′i jβ = β0 + β1DBHi j + β1a(1)i j + β1a(2)i j + . . .+ β1a(K−2)
i j (4)

The predictors in the last K-2 terms are the truncated power basis functions of form:

a(k+1) = (DBH − tk)
3
+ − (DBH − tK−1)

3
+

(tK − tk)

(tK − tK−1)
+ (DBH − tK)

3
+

(tK−1 − tk)

(tK − tK−1)
(5)

where (DBH − tk)
3
+ is zero when DBH < tk and (DBH − tk)

3 otherwise. This solution allows us to
define model, which is smooth and curvilinear with respect to DBH, but linear with respect to the
regression coefficients; equation (5) provides a way to compute nonlinear transformations of DBH.
Initial exploration of the data suggested random intercept and coefficient of diameter in all models,
therefore the random effects of form: z′i jbi = b(1)i + b(2)i DBHi j were used in all models.

We used five knots placed at certain quantiles of the DBH following the suggestion of Harrell [41].
The number of knots was chosen based on the residuals behavior analysis and AIC (Akaike Information
Criterion). Residual analysis for all dependent variables was carried out using plots of Pearson
residuals in three variants: (i) the means of residuals in 10 classes of the standardized DBH were
plotted together with the 95% confidence interval of individual observations (mean ± 1.96 SD) and the
confidence interval for class mean (mean ± 1.96 SE). Standardized diameter was calculated as difference
between individual tree diameter and mean diameter of the sample plot, divided by standard deviation
of diameter in sample plot. The similar graphs were produced also (ii) in relation to DBH and (iii) the
fitted values. Residuals were plotted as implemented in function mywhiskers of R-package lmfor [48].
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2.4. Multivariate Seemingly Unrelated Mixed-Effects Model System

Multivariate (seemingly unrelated) mixed-effects models are seemingly unrelated models with
random group effects. They are useful, in particular, when several independent variables are measured
from the same sample units and the relationship among the random effects and residuals across models
is of interest. Assume that we have L individual mixed-effects models and pool the observations of the
mth response of plot i to vector y(m)

i and the corresponding model matrices of the fixed and random

parts to X(m)
i and Z(m)

i . The multivariate seemingly unrelated mixed-effects model system for each plot
i, i = 1, . . . , m as [35]:

y(1)
i = X(1)

i β+ Z(1)
i bi

(1) + ε(1)i
y(2)

i = X(2)
i β+ Z(2)

i bi
(2) + ε(2)i

...

y(L)
i = X(L)

i β+ Z(L)
i bi

(L) + ε(L)i

(6)

where var
(
b(l)i

)
= ψ(l) for l = 1, . . . , L. We assume that the cross-model correlations of the random effects

and residuals are the same for all groups. By defining yi =
(
y(1)′

i , y(2)′
i , . . . , y(L)′

i

)′
and correspondingly

for bi and εi (see [35] for details), the multivariate model can be written as univariate model:

yi = Xiβ+ Zibi + εi (7)

where Xi and Zi are block-diagonal matrices, which have the response-specific model matrices on the
diagonal. The variance-covariance matrix of the random effects is

var(bi) = D =


ψ(1) ψ(1,2)

ψ(2)
· · ·

. . .
ψ(1,M)

ψ(2,M)

. . .
...

(sym) · · · ψ(L)


and the correlation matrix of residual errors is

cor
(
εi

)
=


1 ρ12

1
· · ·

. . .
ρ1L
ρ2L

. . .
...

(sym) 1

⊗ I

where ψ(l,m) = cov
(
bi

(l)
′, bi

(m)
)

are the cross-model covariances of random effects and ρlm is
the correlation between the residual errors for the same tree between responses l and m. The
variance-covariance matrix of residual errors is

R = Γ1/2 cor
(
εi

)
Γ1/2 ,

where the diagonal matrix Γ includes blocks var
(
ε(l)i

)
for all responses l = 1, . . . , L, based on the variance

functions of the univariate models. The cross-model covariance components of these matrices describe
the joint behavior of group-specific functions and residual errors. Model (7) defined the multivariate
model as a univariate linear mixed-effects model for a single plot. The definition of the model for
whole data is straightforward. The parameter estimation was done using REML using R-package nlme.
See [35] for more details about the model formulation and for an example about the implementation
in R.
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2.5. Fixed and Cross-Model Random-Effect Prediction

In general, mixed-effect models allows to use fixed-effect and random-effect prediction. Fixed-effect
prediction assumes that the expected value of the random effects is 0 and it is optimal when no sample
information about dependent variables are available from the plot in question. If measurements of
even one tree are available from the plot in question, the random-effect prediction is justified. It may
sound surprising that one measurements can be used for prediction of several parameters, but this is
possible and justified because the approach uses the estimated variances within plots and between
plots to optimally weight the fixed part of the model and the local measurements. The multivariate
seemingly unrelated mixed-effects model allows to use also the cross-model correlations of random
effects and residual errors to predict all dependent variables using measurements of some of them.
Generally speaking, we can predict the random group effects for all dependent variables: both for the
variables that have local measurements and for the variables that do not have local measurements for
the plot in question [35]. We could also predict the residual errors of all response variables for the
sampled trees [35,42].

Technically, we define vector y0 that includes from yi only those elements that have been observed.
We define matrices D0 and R0 by removing from D and R those rows and columns that correspond to
the unobserved variables. In addition, we define matrix C by removing from D all the columns that
correspond to the unobserved variables but keeping all the rows, and Z0 and X0 by removing from Zi
and Xi those rows and columns that correspond to the unobserved variables. The best linear predictor
of the complete random effect vector for group i becomes [35]:

b̃i = CZ′0
(
Z0ψ0Z′0 + R0

)−1(
y0 −X0β0

)
(8)

The prediction variance is

var
(
bi − b̃i

)
= D−CZ′0

(
Z0ψ0Z′0 + R0

)−1(
y0 −X0β0

)
Z0C′

The fixed part and variance-covariance matrices are replaced by their estimates, which leads to EBLUP.
In our case, the heights and biomass components were predicted in a logarithmic scale. To

transform them to the original scale we applied bias correction by adding half of the prediction
variance into the predictions before applying the exponential transformation [35,49]. The required
prediction variance was taken from the diagonal of Z′i var

(
bi − b̃i

)
Zi + var(ei). That variance ignores

the components related to the estimation errors of fixed effects and variance-covariance components,
but their effect is marginal because of the rather large data set.

In our case during plot-specific cross-model random–effect prediction we used tree height as the
observed dependent variable that is used for calibration. We used a different number of available
measured trees for prediction. The fixed-effect approach was applied for 0 available trees, whereas the
cross-model random-effect prediction was created separately for 2, 3, and 4 available trees. From the
literature of experimental design [50], we know the prediction error variance of a linear regression
model is the lowest if the x-variables are taken from the endpoints of the range (extreme trees).
Therefore, we used this procedure for cross-model random–effect prediction. We first randomly
divided each sample plot, with 10 sample trees, into prediction and evaluation part. Afterwards,
based on prediction part we conducted extreme trees sampling (2, 3, 4) for height measurement. We
used DBH as the selection criterion as follows: 2 trees—the thinnest and the thickest tree; 3 trees—1
the thinnest and 2 the thickest trees; 4 trees—2 the thinnest and 2 the thickest trees. The sampling
procedure was replicated 20 times for each plot. Based on trees forming the evaluation part of each
sample plot and which were not used in calibration, we computed the root mean square error (RMSE).
RMSE was calculated for each dependent variable as mean error achieved during all replication.

All analyses were performed using the nlme 3.1-145 [51] and ggplot2 3.3.0 [52] packages of R
software 3.6.3 [53] and RStudio 1.2.5033 [54].
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3. Results

Analysis of the residuals for individual models for each depended variable indicated the presence
of heteroscedasticity. Therefore, we modeled the residual variance using a power function (3). The
assumed variance function modeled the heteroscedasticity well (Figure 3). Likewise, a likelihood
testing indicated that the variance function significantly improved the fit (p < 0.0001).

 
 

 

 

 

Figure 3. Residual plots for individual mixed-effect model for height (a), stem biomass (b) and roots
biomass (c). Grey dots define the models’ Pearson residuals. Large black dots show the means
of residuals in 10 classes of standardized diameter (first column), diameter ate the breast height
(second column) and predicted independent variables (third column). The thin vertical lines show the
confidence interval of individual observations (mean ± 1.96 SD). The thick vertical lines (inside black
dots) show the 95% confidence interval of class mean.

In the spline regression (4), we found that using five knots at the quantiles (0.05, 0.275, 0.5, 0.725,
0.95) of DBH provided sufficiently flexible curves for tree height and all analyzed biomass components
(Figure 4).

Once the model form for the individual models was found, the model was fitted as a five-component
seemingly unrelated mixed-effects model. The estimated regression coefficients and variance function
parameters of the model system are given in Table 2.
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Figure 4. Individual mixed-effect model with restricted cubic spline function for tree height (a), stem
biomass (b), branches biomass (c), foliage biomass (d), and roots biomass (e).

Table 2. Estimated fixed parameters and standard errors (in parentheses) for model system.

Dependent Variable H ST BR FL RT

β0
−0.873
(0.177)

−3.543
(0.224)

−5.281
(0.246)

−5.649
(0.394)

−4.894
(0.198)

β1
1.041

(0.116)
1.463

(0.175)
1.705

(0.189)
1.461

(0.252)
1.573

(0.158)

β
(1)
1

−0.079
(0.019)

−0.052
(0.029)

−0.086
(0.036)

−0.056
(0.045)

−0.075
(0.030)

β
(2)
1

0.171
(0.049)

0.083
(0.076)

0.124
(0.099)

0.038
(0.121)

0.104
(0.081)

β
(K−2)
1

−0.119
(0.043)

−0.035
(0.066)

0.007
(0.095)

0.1
(0.112)

0.013
(0.077)

δ −0.491 −0.705 −0.147 −0.147 −0.3
σ2 0.2242 0.42 0.4742 0.5282 0.4052

The cross-model correlations of the random effects range from 0.08 to 0.995, being moderate or
strong in most cases, which indicates that the cross-model calibration will be successful (Table 3). The
random effects for height are most strongly correlated with random effects estimated for stem biomass.
Considering the analyzed biomass components, it should be noted that the strongest relationship is
observed between random effects achieved for foliage and branches biomass. Random effects for
stem biomass, as component with the largest share in aboveground biomass, are strongly correlated
with foliage and roots biomass. While random effects for roots biomass is strongly correlated with
branches biomass.

Correlation between residual errors for analyzed dependent variables varies depending on the
feature being assessed (Table 4). The strongest correlation is observed in the case of branches and
foliage biomass. In addition, residual errors for roots biomass has a strong relationship to other
aboveground biomass components. Residual error for tree height are not strongly correlated with
biomass components—the highest in case of stem biomass.



Forests 2020, 11, 381 10 of 16

Table 3. Random effects variance covariance matrix for model system. Matrix diagonal-variance,
matrix upper triangle—correlation between random effects.

Dependent
Variable

H ST BR FL RT

b(1)i b(2)i b(1)i b(2)i b(1)i b(2)i b(1)i b(2)i b(1)i b(2)i

H b(1)i
0.4162 −0.963 0.715 −0.859 −0.435 0.518 −0.656 0.952 −0.682 −0.357

b(2)i
- 0.1162 −0.795 0.951 0.219 −0.386 0.477 −0.866 0.497 0.52

ST b(1)i
- - 0.2412 −0.922 −0.228 0.408 −0.484 0.699 −0.486 −0.43

b(2)i
- - - 0.0962 0.093 −0.289 0.378 −0.756 0.395 0.615

BR b(1)i
- - - - 0.4422 −0.902 0.954 −0.677 0.937 −0.617

b(2)i
- - - - - 0.0732 −0.895 0.747 −0.849 0.568

FL b(1)i
- - - - - - 1.012 −0.846 0.995 −0.366

b(2)i
- - - - - - - 0.2222 −0.854 −0.076

RT b(1)i
- - - - - - - - 0.2952 −0.305

b(2)i
- - - - - - - - - 0.0612

Table 4. Correlation between residual errors for model system.

Dependent Variable H ST BR FL

ST 0.256
BR −0.151 0.478 - -
FL −0.054 0.495 0.638 -
RT −0.013 0.579 0.552 0.496

Fixed and Cross-Model Random Effects Prediction

Applied different number of extreme trees measured for final model system indicated that for all
analyzed depended variables random effects predictions have lower RMSE then fixed effects prediction,
which serves as a reference in Figure 5 (Number of trees = 0). When the number of available trees
is increased, the error decreases for all depended variables. The differences between RMSE values
showed in Figure 5 would be clearer with more trees available. However, due to the limitations in the
number of trees per plot of the data, we could not include more trees for random effect prediction.

In the case of height, using four trees in the random-effects prediction decreased the RMSE by
0.045 m (5.4%, Table 5) compared to the fixed-effect prediction. In case of biomass components the
highest relative decrease was reached for foliage biomass and equals 41.1%, whereas the lowest relative
difference occurs in case of stem biomass (6.7%; Table 5).

Table 5. Absolute and relative difference between RMSE achieved during cross-model random-effects
prediction of final model system for different number of available trees for measurements.

Dependent Variable H ST BR FL RT

Number of trees (m) (%) (kg) (%) (kg) (%) (kg) (%) (kg) (%)

2 0.005 0.6 0.006 1.1 0.003 1.8 0.038 29.5 0.002 1.1
3 0.007 0.8 0.012 2.2 0.01 8.5 0.051 39.5 0.008 4.4
4 0.045 5.4 0.037 6.7 0.03 17.6 0.053 41.1 0.02 11
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Figure 5. Root mean square error (RMSE) for model system (equation 7) fixed- and random-effects
predictions for all dependent variables.

4. Discussion and Conclusions

In this study, based on 148 uprooted trees from 16 temporary sample plots, we developed a
seemingly unrelated mixed-effects biomass model system for young silver birch stands growing
on post agricultural lands in central Poland. We defined diameter at breast height as independent
variable and tree height as well as the whole tree biomass components such as stem, branches, foliage,
and roots biomass as dependent variables. During our analysis we applied fixed and random effect
prediction. Under prediction we included the sample plot as the grouping level and tested height
measurements for 2, 3, and 4 available trees in plot in question. It should be noted that the resulting
model system is a solution with high potential in case of biomass modeling. On the one hand, it allows
us to achieve information about roots biomass, which is difficult to measure, but is crucial according
to the understanding and estimating carbon accumulation in birch forest ecosystems [8,23,24]. On
the other hand, it potentially allows prediction of the tree-level residuals and therefore the use of
either diameter or diameter and height in prediction of tree biomass using the procedures explained in
Lappi [43] (see also [42]). Moreover, it allows us to take into account various data sources [55] and is a
new voice in the discussion on biomass prediction using diameter at breast height and height [13,15].
In the context of potential use of achieved solution it is worth noting that during the cross-model
random-effect prediction we focused on the trees available only for height measurements as the most
accessible dependent variable. Therefore, taking into account the larger number of available trees
and other dependent variables (such as measurements of stem biomass to improve the prediction of
other biomass components) achieved model system will allow a broader understanding of accuracy of
cross-model random–effect prediction.

In this study, we estimated total biomass as the sum of the individually calculated best regression
models of the biomass of its components [29]. The variance is estimated by taking into account the
cross-model covariances of random effects and residual errors. This approach was also used during
creation of Canadian national aboveground biomass equations for six tree species [56]. However,
they defined two types of models: (i) the DBH—based equations where, as in our case, DBH is an
independent variable and (ii) the DBH—and height-based equations where, unlike in our study, the
tree height was included as independent variable. Aboveground biomass additive models based
on SUR were also created for the eight relevant tree species in Germany [57]. Likewise, Carvalho
and Parresol [58] applied nonlinear seemingly unrelated regression (as nonlinear joint-generalized
regression) for stem and crown biomass functions for Pyrenean oak trees in Portugal. Morever, in
Poland, research was carried out taking into account SUR in biomass modeling. Zasada et al. [34]
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and Bronisz and Zasada [15] created additive biomass models for aboveground biomass of Scots
Pine. While Bronisz et al. [22] focused on empirical equations for estimating aboveground biomass of
silver birch. The aforementioned studies are examples of creating comprehensive solutions enabling
biomass prediction of various tree components. In addition, these are solutions where DBH and
height are defined as independent variables, while in our work we used a different approach which,
to our knowledge, has not been previously used in biomass modeling. Parresol [59] formulated a
system of biomass models where one of the components is the total biomass, which is just the sum of
the other components of the system. Compatibility of predictions was ensured through parameter
restrictions. However, even though the estimated variance of the total biomass in the empirical data
set was lower, no theoretical arguments for the better performance of such an approach over the one
we used was provided.

It is worth adding that model systems are not only used during biomass modeling. Fu et al. [60]
indicates that seemingly unrelated regression allows to reach higher prediction accuracy for crown
width than other methods such as adjustment in proportion or ordinary least square regression.
Mehtätalo [61] created a model system for stand-specific diameter distribution while Siipilehto [62]
developed a system of models for 20 stand-level variables (e.g., basal area, mean diameter and dominant
height). Instead Maltamo et al. [55] predicted and calibrated diameter at breast height, tree height,
volume, dead branch height and crown base height using airborne laser scanning.

Regardless of whether biomass is modeled using individual formulas or a model system, solutions
based on linear regression are possible [63]. However, due to modeled biomass relationships, nonlinear
regression is more often considered [21,22,25]. One of the reasons is that the biomass is always positive,
which was in our case ensured by modeling logarithmic biomass. Another acceptable solution would
be a generalized linear mixed-effect model based on gamma distribution [64]. During our study we
modeled the curvilinear relationship of biomass and diameter by using a spline regression, which
ensures that the model remains as linear. It is continuous function consisting of pieces of second or third
order polynomials that are joined at knots [41]. In addition, Harrell [41] indicates that number of knots
depends on the sample size. Others claim that for many datasets four knots offers a good enough fit of
the model and is a compromise between flexibility and loss of precision caused by overfitting a small
sample. Our results for individual mixed-effect models indicated that in the case of biomass modeling
of young birch stable residual behavior and lowest AIC value is obtained for five knots. The results
obtained in our study indicate that it is possible to use the spline function for biomass modeling based
on empirical data. Splines have been used in biomass modeling previously in Bollandsås et al. [65].
During this research authors tested three approached for biomass estimation based on field and laser
data collected in a mountain forest in southeastern Norway.

The data for biomass models is often characterized by a grouped structure. It usually contains
information about individual tree biomass components for different sample plots. The relationship
between variables varies among different sample plots. The resulting dependence is properly taken into
account by using the mixed-effects models approach [66]. Smith et al. [25] in research on belowground
and whole tree biomass of birch in Norway indicates that nonlinear mixed effects models approach for
those type of modeling, with similar as in our case, single grouping factor is useful methodology for
those type of modeling. The best model for whole tree biomass was evaluated using two independent
variables (diameter at breast height and height). Repola [63] created three separate multivariate
variance component linear models for aboveground and belowground biomass for birch trees in
Finland. To reach homoscedasticity of the variance and to ensure positive biomasses, the author
used logarithmic transformation of data. In our case, the logarithmic transformation did not lead to
homoscedastic errors and an additional variance function was therefore used. As opposed to our
approach, another author defined diameter at breast height and height as independent variables.

Linear mixed-effect models were also tested during the Fehrmann et al. [36] study. In their
research, aboveground biomass was estimated for Finnish Scots pine and Norway spruce trees using
three approaches: (i) k-nearest neighbour (k-NN), (ii) plot-specific linear mixed-effect biomass models,



Forests 2020, 11, 381 13 of 16

in which DBH and height were used as independent variables, and (iii) simple linear models. Based
on the achieved results, they claimed that even fixed effect prediction based on linear mixed models
allows for greater precision than an ordinary least squares regression.

In addition to taking into account the dependence structure caused by the grouping of the
data, the mixed-effects modeling allows for the flexible prediction alternatives. In cases where in
there is a lack of measurements, only fixed-effects can be used, yet additional measurements allow
random-effects to be predicted [66]. Consequently, it allows for greater predictions accuracy in plots
where additional measurements are available [44]. However, in the case of biomass modeling, obtaining
additional measurements is troublesome because it is associated with the felling of trees. Multivariate
mixed-effects model application allows to take full advantage of the mixed-effects models. In our
case, additional measurements for tree height allows to reach more accurate random cross-model
prediction for all analyzed biomass components. The same idea could be generalized also to root
biomass: if measurements of the above-ground biomass components are available, our model would
allow for (1) more accurate prediction for all biomass components of the plot and (2) even more
accurate prediction of the root biomass for the sample trees through prediction of the residual error of
that tree [42,43].
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Abstract: Secondary succession that occurs on abandoned farmlands is an important source of 

biomass carbon stocks. Both direct and indirect tree biomass estimation methods are applied on 

forest lands. Using empirical data from 148 uprooted trees, we developed a seemingly unrelated 

mixed-effects models system for the young silver birch that grows on post agricultural lands in 

central Poland. Tree height, biomass of stem, branches, foliage, and roots are used as dependent 

variables; the diameter at breast height is used as the independent variable. During model 

elaboration we used restricted cubic spline: 5 knots at the quantiles (0.05, 0.275, 0.5, 0.725, and 0.95) 

of diameter at breast height provided sufficiently flexible curves for all biomass components. In this 

study, we demonstrate the use of the model system through cross-model calibration of the biomass 

component model using tree height measured from 0, 2, 3, and 4 available extreme trees feature in 

the plot in question. A different number of extreme trees were measured for final model system and 

our results indicated that for all analyzed components, random-effect predictions are characterized 

by higher accuracy than fixed-effects predictions.  

Keywords: carbon; above and belowground biomass; model’s additivity; restricted cubic spline  

 

1. Introduction 

Issues related to climate change have become increasingly important, as evidenced by the 

world’s strongest climate-energy policy agreed upon by the European Council in October 2014. The 

policy’s objective assumes that within the European Union (EU): (i) at least 32% of the energy demand 

is being covered by renewable energy sources and (ii) greenhouse gas emissions (from 1990 levels) 

will be cut by 40% by 2030. In this context, due to the area occupied and the amount of accumulated 

carbon, forest ecosystems play an important role. For example, the content of carbon in biomass of 

Polish forests has been estimated at 822 million tons [1]. It is worth noting, however, that due to the 

difficulty of defining the current method of land management, almost 800 thousand ha of forests are 

not included in the official statistics [2]. One of the types of land that is not covered by official statistics 

is secondary succession, which occurs on abandoned farmlands and are an important source of 

biomass carbon stocks [3–5]. These areas are frequently subjected to appearance of pioneer forest tree 

species, such as silver birch (Betula pendula Roth.) [6,7]. Those stands during the first eight years 

produce 31.2 Mg/ha aboveground biomass [7] and after 15 years can produce up to 75 tons Mg/ha 

[8]. By introducing rapid rotation in these areas, it is possible to increase the potential of fast growing 

silver birch stands, which can be assessed using a life cycle analysis [9]. 
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