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Abstract: Process-based terrestrial ecosystem models are increasingly being used to predict carbon
(C) cycling in forest ecosystems. Given the complexity of ecosystems, these models inevitably have
certain deficiencies, and thus the model parameters and simulations can be highly uncertain.
Through long-term direct observation of ecosystems, numerous different types of data have
accumulated, providing valuable opportunities to determine which sources of data can most effectively
reduce the uncertainty of simulation results, and thereby improve simulation accuracy. In this study,
based on a long-term series of observations (biometric and flux data) of a subtropical Chinese fir
plantation ecosystem, we use a model–data fusion framework to evaluate the effects of different
constrained data on the parameter estimation and uncertainty of related variables, and systematically
evaluate the uncertainty of parameters. We found that plant C pool observational data contributed to
significant reductions in the uncertainty of parameter estimates and simulation, as these data provide
information on C pool size. However, none of the data effectively constrained the foliage C pool,
indicating that this pool should be a target for future observational activities. The assimilation of
soil organic C observations was found to be important for reducing the uncertainty or bias in soil C
pools. The key findings of this study are that the assimilation of multiple time scales and types of data
stream are critical for model constraint and that the most accurate simulation results are obtained
when all available biometric and flux data are used as constraints. Accordingly, our results highlight
the importance of using multi-source data when seeking to constrain process-based terrestrial
ecosystem models.
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1. Introduction

Forest ecosystems are among the most important of terrestrial ecosystems, in that they store
large amounts of carbon (C) and play vital roles in regulating the global C balance and mitigating
climate change. In the context of climate change, it is essential to accurately estimate C cycling in forest
ecosystems, as this can provide a basis for predicting climate change and controlling the greenhouse
effect. In recent years, a large number of different types of observations related to changes in ecosystem
C cycles have accumulated, which have mainly been derived from environmental control experiments
and eddy covariance measurements [1–5]. However, deciding how most effectively to utilize the
accumulated data to enhance our understanding of terrestrial ecosystems remains a challenge [6].

Process-based terrestrial ecosystem models are important tools for studying key processes
of C cycles and the mechanisms underlying their control and have been widely used to
estimate regional and/or global C budgets [7–11]. However, given the complexity of ecosystems,
our current understanding of ecosystem-related key processes and control mechanisms is insufficiently
comprehensive, as model parameters inevitably have associated uncertainties, and thus these models
are still unable to accurately simulate and predict ecosystem processes and C source/sink distribution
and changes [12–15]. In this regard, the model–data fusion technique (MDF) provides a powerful
tool for reducing the uncertainty when simulating ecosystem C cycles by combining observations and
models, which can contribute to improving model simulation accuracy [16–18].

MDF makes full use of existing observations and applies mathematical methods to optimize the
parameters and/or state variables of the model to achieve the best combination between simulations and
measurements, thereby enabling more accurate simulation of the changes in ecosystem state [19–21].
The accuracy of these simulations, in turn, depends on the appropriate acquisition of model
parameters [2,12,22–24] and, given that models contain a large number of parameters that are
difficult to estimate accurately, most of the research on MDF in the field of C cycles have tended to
focus on parameter estimation [9,12,15,25,26].

At present, various time scales and types of observational data are commonly used in terrestrial
process-based terrestrial ecosystem modeling, which may contain different types of information
on ecosystem processes. For example, C flux data contains considerable amounts of information
regarding how “fast” processes respond to environmental drivers (e.g., photosynthesis and respiration),
whereas biometric data contains information relating to numerous “slow” processes (e.g., C pool
size and turnover) [1,15,27,28]. Therefore, the data used as constraints require multiple data streams.
In the MDF, due to differences in the circumstances of data collection, biometric data estimation
parameters [26] and flux data [29–34] have been used to independently constrain parameters, as well
as being used in combination [9,25,35]. However, although there have been numerous studies in this
field, few have specifically quantified the impact of different data streams on simulation effects.

Plantations grow rapidly, with higher carbon sequestration rates and greater potential [36,37].
Accordingly, accurate simulation of the C cycle of planted forests is of considerable significance for
reasonable evaluations of the C sequestration rates and potentials of forest ecosystems. In this study,
we used a Data Assimilation Linked Ecosystem Carbon (DALEC) [38] model in conjunction with the
Markov Chain-Monte Carlo (MCMC) method, in an inverse analysis using long-term data obtained
from the Chinese Ecosystem Research Network (CERN, http://www.cern.ac.cn/) and China FLUX
(http://www.chinaflux.org/) to model the C cycle of a subtropical coniferous plantation in Huitong,
China. We constrained the model parameters using a range of different data streams, including
field measurements of leaf area index (LAI), foliage, wood, and fine root biomass, annual litterfall,
soil organic matter, and eddy covariance measurements of net ecosystem exchange (NEE), as well as

http://www.cern.ac.cn/
http://www.chinaflux.org/


Forests 2020, 11, 369 3 of 16

manual chamber measurements of soil respiration (Rs). Our objective is to use the MDF framework to
determine how combinations of different constraint data influence parameter estimates and how these
different parameter-sets influence simulation. On the basis of this information, we can identify which
observational data are most likely to reduce model uncertainties.

2. Materials and Methods

2.1. Site Description

The Huitong subtropical Chinese fir plantation (HTF) observation station (26◦47′ N, 109◦35′ E) is
located in Huitong County, Hunan Province, China. It lies in a transition zone that extends from the
Yun-Guizhou Plateau to the Jiangnan Hills, which is characterized by low mountains and hills with
elevations of between approximately 300 and 1000 m. The parent rock is dominated by slab and shale,
and the soil is a red or yellow soil. It is a typical subtropical region, with an average annual temperature
of 16.5 ◦C and annual precipitation of 1200–1400 mm. The Chinese fir plantation, which comprises
pure stands of Chinese fir, was planted in 1983. The landform is hilly with a slope of 20◦, which runs
in a southeast direction [39]. The observation station of HTF has a comprehensive observation field
(15,000 m2) of Chinese fir plantation, and long-term observation of water, soil, meteorology, and biology.
There are permanent plots, and destructive plots are set in the comprehensive observation field.
The area of permanent plots are about 5000 m2, and a first-class plot (40 × 50 m) is set inside, which is
divided into 25 secondary plots (8 × 10 m), five of them are surveyed every five years, with a cycle of
25 years planned.

2.2. Data

The collected data included a meteorological observation dataset (drive data) and eight sets of
observational data (constraint data), including one flux dataset (NEE, Rs), three biomass datasets
(foliage, fine root, and wood), and single datasets for litter, soil organic C, and canopy dynamics (LAI).

2.2.1. Flux Data

The NEE data were obtained from ChinaFLUX and were aggregated to the daily time step from
30 min CO2 flux data measured using the eddy covariance technique and processed via quality
control and gap-filling [40]. The flux observation system consists of an ultrasonic anemometer (CSAT3,
Campbell, Camden, NJ, USA) and a CO2/H2O infrared gas analyzer (Li7500, Li-cor, Lincoln, NE, USA).
The height of the observation tower is 32.5 m, and the installation height of the flux observation system
is 32.5 m; flux observation time was May 2007. A negative NEE value indicates that the ecosystem
absorbs CO2 from the atmosphere, whereas a positive value indicates that the ecosystem releases CO2

to the atmosphere. Rs values were measured using static chamber-gas chromatography techniques [41].
A total of four to six replicate measurements were obtained two to three times per month, with sampling
times between 09:00 and 11:00. The Rs values thus obtained were converted to monthly averages to
reduce the effects of wind, rain, and other weather.

2.2.2. Biometric Data

LAI was measured optically using an LAI-2000 plant canopy analyzer (LI-COR, Lincoln, NE, USA)
at least quarterly every year and corrected using a foliage clumping index, which was set for plant
functional type (PFT)-specific empirical values [42]. In the MDF analysis, the seasonal variation in LAI
combined with the leaf C mass per leaf area (LCMA) parameter constrained the dynamic trajectory of
the foliage C.

Data obtained for biomass observations made during the study period (2005–2015) were multiplied
by 50% for conversion to C values. The biomass of leaves, stems, and roots was calculated using an
allometric method according to measured diameters at breast height and tree height. The ratio of the
biomass of fine roots and the biomass of entire roots in typical Chinese forests was obtained from
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Zhang and Wu (2001) [43] to facilitate the division of biomass into fine and coarse root components,
and the biomass of coarse roots was combined with the biomass of branches and stems to provide
estimates of woody biomass. The data for leaf, fine root, and woody biomass were used to constrain
the corresponding C pools in the inverse analysis.

The aboveground litterfall biomass (foliage and fine twigs) was measured by 10 replicates of
baskets (100 × 100 cm). Litter was collected monthly during the growing season and once during the
non-growing season. All collected litter was dried at 70 ◦C for 24 h and weighed. We used the annual
litter biomass data (2005, 2006, 2007, 2010, 2011) for inversion analysis to avoid the influence of wind
on the measurement of litterfall biomass within an individual month. The results of long-term annual
measurements indicate that the proportion of C content to dry matter in litter is essentially maintained
at approximately 50%, and thus the average dry weight of litter can be reasonably accurately converted
to litter C.

2.2.3. Soil Data

Soil organic matter (SOM) and soil bulk density were measured using the potassium dichromate
oxidation titrimetric method and the cutting ring method, respectively. Soil sampling was performed
in five layers (at depths of 0–10, 10–20, 20–40, 40–60, and 60–100 cm) at 5-year intervals (2005 and 2010),
with three replicates per sampling. We calculated the soil organic C (SOC) using Equation (1) [44]:

SOC =
∑n

i=1
0.58×Hi × Bi ×Oi×100, (1)

where SOC is the soil organic C density (g C/m2) of all n layers, Hi is soil thickness (cm), Bi is soil bulk
density (g/cm3), and Oi is the SOM content of the i-th layer (%).

2.2.4. Meteorological Driving Data

Data for meteorological drivers were obtained from the CERN Science and Technology Resource
Service System, including daily meteorological data from 2005 to 2015 (air temperature (T, ◦C),
photosynthetically active radiation (PAR, mol m−2/day), relative humidity (RH, %), and saturated
vapor pressure difference (VPD, hPa)). The data were processed by standardized quality control and
gap-filling [40,45].

2.3. DALEC Model

The Data Assimilation Linked Ecosystem Carbon (DALEC) model is a simple ecosystem process
model developed by Williams and colleagues [38], which integrates assimilated data and has been
widely used in MDF analyses [5,9,27,38,46]. The DALEC model connects the C pools by flux. In the
present study, we used the evergreen version of DALEC [27] (Figure 1), which represents the C pools
of foliage (Cf), wood (Cw), fine roots (Cr), litter (Clit), and soil (Csom).

In general, the C cycle of forest ecosystems can be characterized in detail based on four properties,
which are outlined as follows. (1) CO2 in the atmosphere enters the ecosystem via photosynthesis,
and the C cycle typically commences with canopy C [8]. In this regard, we estimated gross primary
productivity (GPP) in the present study using a canopy photosynthesis model, which is a function of
LAI, T, PAR, VPD, and RH [47]. (2) A proportion of the GPP is consumed as autotrophic respiration
(Ra), whereas the remainder (i.e., net primary production, NPP) is allocated to the different plant C
pools (i.e., foliage, wood, and fine root pools). The C from the plant pool subsequently enters the dead
organic matter pool with temperature-dependent loss (heterotrophic respiration, Rh). (3) Subsequent
C transfer is dominated by the upstream C pools (i.e., the litter is decomposed (D) and is incorporated
into the soil). (4) The C released from C reservoirs is based on a first-order differential equation.
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Figure 1. Schematic diagram of the structure of the Data Assimilation Linked Ecosystem Carbon
(DALEC) model. Air temperature (T), photosynthetically active radiation (PAR), saturated vapor
pressure difference (VPD), relative humidity (RH), leaf area index (LAI), gross primary productivity
(GPP), decomposition (D), autotrophic respiration (Ra), heterotrophic respiration (Rh). C pools: foliage
(Cf), wood (Cw), fine roots (Cr), litter (Clit), soil (Csom).

2.4. Parameterization of DALEC

In order to parameterize DALEC, we used the Markov Chain–Monte Carlo (MCMC) method,
which is a non-sequential global search method based on Bayesian theory [2]. The MCMC algorithm
treats the solved parameters as random variables that meet a certain prior probability distribution.
According to the Bayesian formula, the MCMC sampling sequence is constructed through a large
number of random samples [21]. The prior distribution of the parameters is used to determine their
posterior distribution, and then infer the unknown parameters based on the posterior distribution.
The Bayes formula is as follows (Equation (2)):

ρ(θ|x) =
ρ(x

∣∣∣θ)ρ(θ)
ρ(x)

, (2)

where ρ(θ|x) and ρ(θ) are the posterior and prior probability density distributions of the parameters,
ρ(x) is the probability of the observation data, and ρ(x|θ) is the prior parameter of the observations
under the value, that is, the likelihood function of θ. In this study, we assumed that the random error
follows a normal distribution, and its likelihood function is represented as follows:

L =
n∏

i=1

1
√

2πσ
e
−(xi−ηi)

2

2σ2 , (3)

where n is the number of data points in the observations, xi and ηi are the i-th observations and
simulations, respectively, and σ is the standard error of the observation.

We designed five optimization experiments (Runs 1 to 5; Table 1) to examine the effects of different
data streams on parameters and simulation results. Using LAI observations as the base dataset (Run 1),
we added other biometric data and C flux data in a step-by-step manner. All experiments assimilated
the LAI time series, which can be used to constrain leaf C mass per unit area (LCMA) and indirectly
constrains foliage carbon. Run 2 assimilated the biometric data (foliage, fine root, and wood biomass)
reflecting plant C. We designed two experiments to constrain the associated C pool for the soil C
simulation results, which were highly uncertain, with Run 3 assimilating the soil C information
reflecting the dynamics of soil C storage and Run 4 assimilating the observational data for litter [48].
Run 5 assimilated all the observational data used, including C flux data (NEE, Rs) reflecting the carbon
exchange process of the ecosystem. The root mean square error (RMSE) and mean absolute error
(MAE) for simulated and observed values were used to quantify the error.
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Table 1. Multi-source data optimization experiments based on DALEC (Data Assimilation Linked
Ecosystem Carbon).

Run ID Constraining Data Streams Included in Parameter Optimization

1 LAI only
2 Run 1 + foliage + fine root + wood
3 Run 2 + SOC
4 Run 3 + litter
5 Run 4 + NEE + Rs

Notes: soil organic C, SOC; net ecosystem exchange, NEE; soil respiration, Rs.

3. Results

3.1. Constraint Effect of Multi-Source Data on Model Parameters

3.1.1. Parameter Posterior Distribution

In this study, we used biometric data and C flux data to constrain the parameters of the DALEC
model. The MCMC method was used to estimate the posterior distribution of the 10 parameters of the
DALEC model (Figure 2). According to the shape of posterior distributions, the optimized parameters
could be classified into three groups: well-constrained, poorly constrained, and edge hitting, and thus
we were able to determine the constraint effect of different data streams on model parameters.
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Figure 2. Posterior distributions of parameters (listed in Table 2) estimated for the DALEC model using
a variety of different data constraints (Runs 1–5, x-axis, see Table 1). All y-axis represent priori range.
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Table 2. DALEC model parameters.

Parameters Abbreviation Description Prior Range (Low, High)

P1 Td Decomposition rate (per day) Log10(−6, −2)
P2 Fg Fraction of GPP respired (0.2, 0.7)
P3 Fnf Fraction of NPP allocated to foliage (0.01, 0.5)
P4 Fnr Fraction of NPP allocated to roots (0.01, 0.5)
P5 Tf Turnover rate of foliage (per day) Log10(−5, −2)
P6 Tw Turnover rate of wood (per day) Log10(−6, −2)
P7 Tr Turnover rate of roots (per day) Log10(−4, −2)
P8 Tl Mineralization rate of litter (per day) Log10(−4, −1)
P9 Ts Mineralization rate of SOM (per day) Log10(−6, −2)

P10 Et Parameter in exponential term of
temperature-dependent rate parameter (0.05, 0.2)

The parameters were considered to be well constrained if their posterior distribution was normally
distributed (or approximated to a normal distribution) [49]. The posterior distribution of the poorly
constrained parameters was uniformly distributed, with the exception of the uniform distribution of Fg
(fraction of GPP respired) in Run 1, this type of distribution was rarely observed in other experiments.
The posterior distribution of the edge-hitting parameters was often concentrated near the extreme
value of the parameter value range. For example, Td (decomposition rate) and Tw (rate of wood
turnover) in Run 1. Although edge hitting was rarely detected in the posterior distribution with
increases in constraint data, Tf (rate of foliage turnover) was the only parameter that was observed
in all five experiments. Edge hitting may be partly ascribed to the insignificant constraining effect
of the data in model parameters and the limit of the threshold of model parameters. Our analysis
indicated that only two parameters (Fg and Tw) could be constrained using only LAI data (Run 1).
Six parameters—Fg, Fnf (fraction of NPP allocated to foliage), Fnr (fraction of NPP allocated to roots),
Tw, Tr (rate of root wood turnover), Et (parameter in exponential term of temperature-dependent rate
parameter)—could be well constrained by plant C stock data (Run 2). These parameters are mainly
related to the C pools of foliage, fine roots, and wood. Moreover, when the data for the soil C pool were
included, Tl and Ts (representing the mineralization rates of litter and SOM, respectively) conformed
to a normal distribution. With the addition of litter data (Run 4), Fg, Fnf, Tw, Tr, and Ts were all
normally distributed. When all data streams were used in parameter optimization (Run 5), with the
exception of Tf and Et, most parameters could be well constrained. In general, increasing the amounts
of constraint data was found to be conducive to increasing the number of parameters that can be
constrained. In particular, for certain parameters (e.g., Fnf and Td), a multiple constraint approach
may be required in order to achieve well-constrained posterior distribution.

3.1.2. Parameter Uncertainties

The degree to which the posterior distribution of the parameters was constrained and the
improvement in the prior value of the uniform distribution (Figure 2) depend on both the data used to
constrain the calibration (Table 1) and the parameters involved (Table 2). We found that the parameter
posterior distributions generally included the upper and lower limits of the prior value range. However,
the parameters Td, Tf, Tw, Tr, Tl, and Ts were noteworthy in all instances, for which the posterior
interquartile ranges were significantly reduced (with average reductions of 81%, 87%, 74%, 67%, 75%,
and 76%, respectively) compared with the parameter prior interquartile range (= half the width of the
prior range, given a uniform prior).

Whether the parameters could be constrained by the data was dependent on the information
contained in the data and the expression of this information in the model. When only LAI was
used to constrain parameters (Run 1), the 95% confidence interval of the posterior distribution of
six of the 10 parameters was outside the range of the prior interquartile, whereas for four of the
10 parameters, the posterior interquartile range of the posterior distribution was not substantially
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reduced compared with the prior value interquartile (a less than 20% reduction). Although increasing
the number of constraint data sets used could generally reduce the uncertainty of the parameters,
which parameters were affected was highly dependent on the data being assimilated. For example,
soil respiration data (Run 5) were required to constrain the estimates of Fg, fine root data could strongly
constrain Fnr, and litter (Run 4) data were needed to effectively prevent the posterior distribution of
Tf from widening. Unsurprising, when all data streams were used (Run 5), we observed the tightest
parameter distribution.

3.2. The Influence of Multi-Source Data on Predictions

3.2.1. C Pools

When all the observed data were used to constrain state variables (Run 5), the goodness-of-fit
statistics (Table 3) and simulated C pool of the DALEC model (Figure 3) indicated that the model
was capable of capturing the observational data. When the simulations and observations of C pools
(foliage (Cf), wood (Cw), fine root (Cr), litter (Clit), and soil (Csom)) were compared with Run 1,
we observed that the RMSE decreased by 42%, 94%, 75%, 97%, and 93%, respectively, and that the
MAE decreased by 60%, 94%, 75%, 96%, and 94%, respectively. In contrast, the RMSE and MAE of the
simulated LAI error increased slightly (by less than 4%).
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Table 3. Fit between the modeled and observed values for six variables at the Huitong subtropical
Chinese fir plantation.

Run 1 Run 2 Run 3 Run 4 Run 5

Foliage carbon
Pool (g C·m−2)

R2 0.79 0.78 0.78 0.78 0.78
RMSE 594.33 347.74 348.07 347.72 346.82
MAE 536.59 217.58 216.20 218.57 215.71

Wood carbon
Pool (g C·m−2)

R2 0.93 0.93 0.93 0.93 0.93
RMSE 2847.25 167.00 163.93 165.11 164.21
MAE 2564.48 119.28 109.58 114.85 111.73

Fine roots carbon
Pool (g C·m−2)

R2 0.94 0.88 0.91 0.96 0.95
RMSE 8.35 2.91 2.68 1.89 2.10
MAE 7.22 2.37 2.21 1.5953 1.79

Soil carbon
Pool (g C·m−2)

R2 - - - - -
RMSE 1569.98 326.74 108.99 343.15 113.20
MAE 1554.83 320.31 90.08 329.92 90.68

Litter carbon
Pool (g C·m−2)

R2 0.77 0.90 0.91 0.91 0.90
RMSE 651.56 119.52 26.87 15.00 13.52
MAE 600.34 119.33 25.31 13.03 10.50

LAI (m m−2)
R2 0.64 0.66 0.66 0.66 0.66

RMSE 0.03 0.06 0.07 0.08 0.12
MAE 0.03 0.05 0.06 0.07 0.12

Simulating foliage C pools represents a more challenging exercise. Although all the experiments
captured the interannual variability of foliage C, the magnitude of this pool was significantly
underestimated (Figure 3, Table 3). Assimilation of LAI time series data (Run 1), which reflect
canopy dynamics, failed to adequately constrain foliage C. When biometric data (Run 2) reflecting the
dynamics of vegetation C stocks were assimilated, RMSE and MAE were significantly reduced by 41%
and 59%, respectively, compared with Run 1. Although the 95% confidence interval was reduced by
86% and the uncertainty was reduced, the RMSE and MAE remained at 347.74 and 217.55 g C m−2,
respectively. With the addition of soil C and litterfall information, the simulations of Cf were still
markedly different from the observations. The smallest confidence interval for Cf was obtained in Run 5;
however, the simulation results were still highly uncertain (RMSE > 300 g C m−2, MAE > 200 g C m−2).
These observations thus indicated that the fast-turnover C pool was not sufficiently constrained, which
may indicate the need for additional types of data and/or larger amounts of data to constrain this C
pool. Alternatively, the insufficient constraint could be attributable to uncertainties in the observations.

We found that the assimilation of information on plant C pools (Run 2) strongly constrained the
wood and fine roots C pools (Figure 3, Table 3). When only LAI was assimilated (Run 1), the simulation
of Cw was significantly underestimated, with RMSE and MAE values of 2847.26 and 2564.48 g C m−2,
respectively. Subsequent to the assimilation of wood information (Run 2), compared with Run 1,
the RMSE decreased by 17-fold to 167.01 g C m−2 (Table 3), the MAE decreased by 21-fold to
19.28 g C m−2, and the 95% confidence interval decreased by 91%. However, the incorporation of
additional observation data (Run 3 to 5) had little effect on the simulation results of Cw (R2 > 0.93),
with the increases in RMSE and MAE being less than 3 and 10 g C m−2, respectively (Table 3). Similar to
Cw, we detected the largest confidence interval when information relating to Cr was not assimilated
(i.e., Run 1). With the exception of Run 1, Cr (R2 > 0.88) was well simulated in Run 2 to 5, and compared
with Run 1, the RMSE and MAE decreased by an average of 71% and 72%, respectively, and the
confidence interval decrease of more than 90%.

Soil C is a key component of process-based terrestrial ecosystem models and one of the largest
sources of uncertainty, and in this regard, soil C time series data represent key data for C research,
which can minimize the uncertainty of simulation results [48]. We obtained the smallest average RMSE
and MAE values (108.99 and 90.08 g C m−2, respectively) when assimilating soil C data. Compared with
the experiments in which soil C information was not assimilated (Run 1 and 2), RMSE and MAE



Forests 2020, 11, 369 10 of 16

decreased by an average of 80% and 83%, respectively, and the average confidence interval decreased by
an average of 95% (Figure 3, Table 3). However, after assimilating information for litterfall, the RMSE
and MAE values increased by 215% and 266%, although the confidence interval decreased by 48%.
With the assimilation of the C flux, the bias decreased, with RMSE and MAE values reaching 113.20
and 90.68 g C m−2, respectively.

The litter C pool is notably sensitive to the assimilation biometric data (Figure 3, Table 3), and we
found that when assimilating only LAI, the simulated values overestimated Clit, with RMSE and MAE
values of 651.56 and 600.34 g C m−2, respectively. With the assimilation of information on foliage,
fine roots, and wood, the bias between the simulated and observed value was appreciably reduced
(R2 = 0.90), and RMSE and MAE decreased by 82% and 80%, respectively. With the addition of soil
C data, the bias showed further decreases. After assimilating litterfall data, the RMSE and MAE
further decreased to 15.00 and 13.05 g C m−2, respectively. Compared with the experiments without
assimilated litter (Run 1 to 3), RMSE and MAE decreased by an average of 76% and 78%, respectively,
and the confidence interval decreased by an average of 58%.

When all observations with the exception of Csom were used to constrain the DALEC model,
the confidence interval of the other four carbon pools were the narrowest (Csom was the narrowest at
Run 4), with smaller bias, indicating that multi-source data is effective in constraining the DALEC model.
It should be pointed out, however, that MDF entails a balance between variables [50]. For example,
the simulation results of Run 3 and 4 revealed that better simulation results for Clit were gained at the
expense of increasing the bias of other state variables (such as Csom).

3.2.2. C Fluxes

Compared with the observational data (R2 = 0.003 and 0.001, respectively), assimilation of LAI and
plant C pool information (Run 1 and 2) yielded mean RMSE and MAE values of 2.81 and 2.20g C m−2,
respectively, thereby indicating that these C sources do not reflect the true state of Chinese fir plantations
(Figure 4, Table 4) and that assimilation of LAI and plant C data alone cannot constrain NEE. When the
soil C data were assimilated (Run 3), the simulation results are were C sink (R2 = 0.094), and the average
values of RMSE and MAE were 1.17 and 1.47 g C m−2, respectively. After the addition of litterfall data
(Run 4), RMSE and MAE increased slightly (R2 = 0.098). Furthermore, with the assimilation of C flux
(Run 5), the simulated total annual NEE in 2008 was −140.92 g C m−2 (−0.39 ± 1.22 g C m−2), the RMSE
and MAE were 1.44 and 1.17 g C m−2 (R2 = 0.099), respectively, and the simulation corresponded well
with the observation (−168.90 g C m−2) (Table 4, Figure 4).

Table 4. Statistics of C flux simulation results for the Huitong subtropical Chinese fir plantation.

NEE (g C·m−2 day−1) Rs (g C·m−2 m−1)

Run ID RMSE MAE Mean Standard deviation RMSE MAE Mean Standard deviation
1 2.63 2.15 1.48 1.61 5.41 4.21 5.41 3.53
2 2.99 2.24 1.42 1.90 7.13 5.21 6.38 4.67
3 1.41 1.14 −0.40 1.18 1.19 0.99 2.20 1.03
4 1.52 1.21 0.20 1.15 0.91 0.79 2.50 1.20
5 1.44 1.17 −0.39 1.22 0.66 0.55 1.78 0.80
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Soil respiration was also found to be sensitive to information assimilation (Figure 4, Table 4),
with the bias of the simulation results generally becoming smaller, with an increase in assimilated
constraint data. The assimilation of LAI had virtually no constraining effect on Rs (R2 = 0.97), whereas,
in response to the addition of information on foliage, fine roots, and wood (Run 2), the bias of the
simulation results increased (R2 = 0.96), whereas in contrast, the addition of soil C (Run 3), resulted in
a significant decrease in bias (R2 = 0.85), and compared with Run 2, RMSE and MAE decreased by
83% and 81%, respectively. When information on litterfall was added (Run 4), the bias was further
decreased (R2 = 0.91). Not surprisingly, the bias reached a minimum, with RMSE and MAE values
of 0.66 and 0.55 g C m−2, respectively, when C flux data were assimilated (Run 5), although the
simulated value for soil respiration (1.75 ± 0.80 g C m−2) was slightly different from the observed value
(1.21 ± 0.60 g C m−2) (R2 = 0.93), which can be attributed mainly to an overestimation of summer soil
respiration (Figure 4, Table 4).

4. Discussion

In this study, we used multi-source data to constrain the parameters of a DALEC model for a
subtropical coniferous plantation in Huitong, China. After assimilating all collected observations,
we observed that the posterior interquartile range of parameters Td, Tf, Tw, Tr, Tl, and Ts were reduced
by at least 60%, and the bias of simulations was markedly reduced, which enhanced the accuracy of
the model. When constraint is based on a single source of data, the effect on the model is generally
limited [6,9,12,25,51,52]. For example, when using only flux data or biometric data, only a fraction
of the parameters in the model are typically well constrained. However, with the incorporation of
additional observations, the estimates of many (although not all) model parameters are significantly
tightened, and the uncertainty associated with the simulation results is generally substantially reduced
(Tables 3 and 4; Figures 3 and 4) [9,25]. When all the relevant data were used to constrain the DALEC
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model, we found that only two of the 10 assessed parameters (Tr and Et) were poorly constrained
(Figure 2), thereby indicating that other types of data constraint may be required, although this does
not necessarily imply that larger quantities of constraint data will have a better constraining effect on
the model [6,20]. In this regard, Keenan et al. (2013) [6] found that in terms of constraining model
performance, much of the data information is redundant, as these authors observed that only five of
the 17 data sources they evaluated were required for model constraint.

Whether the model parameters can be well constrained by the data is dependent on the data
information content and how this information is represented in the model [1,20]. With respect to forest
C cycling, for example, the data per se contains only limited information on some aspects of the C flux,
such as NEE and Rs, and does not contain sufficient information to constrain parameters related to C
pools, whereas C pool data includes the allocation and transfer between different C pools, which is
relevant to internal system dynamic information. These data are extremely effective for constraining
parameters and variables, and thus multiple data streams are needed to constrain the model. Plant C
pool observations are effective in constraining the relevant parameters of leaf, fine root, and wood
C pools, whereas C flux (NEE, Rs) has a strong constraining effect on NPP allocation and related
parameters of soil C pools [53]. This indicates that observational data for foliage, fine root, and woody
biomass provide information on C transfer from plant C to litter and soil C, and C flux data provide
information on NPP allocation and carbon transfer between the litter and soil C pools.

Simulating foliage C remains a challenge necessitating further attention. Even with the assimilation
of litterfall data (Run 4), the simulation of foliage C pools was not further constrained. This may be
because fir canopies contain multiple years of foliage (i.e., foliage longevity is two or more years).
In addition, the dynamics of foliar C pool has a limit point in the evergreen version of DALEC model [54],
which depends on the values of Fnf and Tf, there may also be a need for further constraints on these
two parameters. In the present study, we found that even when multiple types of observational
data were assimilated, the simulation results for foliage C pools continued to show a large bias.
Therefore, we speculate that other types of data are necessary for foliage C simulation (for example,
soil moisture [55] and chlorophyll content [56] that are closely related to plant growth), suggesting that
these should be targets for future measurement efforts. In addition, the simulated annual summed
values of NEE were in good agreement with observed value (Run 5). However, it appears that the
DALEC model significantly overpredicts Rs, thus should underpredict NEE for the year. To better
simulate C flux, more amounts and smaller scales of data may be required. It is worth noting that the
RMSE, MAE, and confidence intervals mainly reflect the impact of the differences in parameter values
on the simulation results (uncertainty), and we did not consider the influence of the driving data,
observational data, or model structure on the simulation results. Data errors (including system errors)
are particularly important factors with regards to the estimation of parameters and state variables,
and in future research, it will be necessary to take into account data errors and model structure, and the
quantitative errors of the system.

The uncertainty associated with the simulation results for C pools increases with time, whereas the
uncertainty for C flux is generally relatively small (Figures 3 and 4) [57,58]. This is because the size
of C pools is a cumulative quantity, and simulation errors typically show a gradual increase with an
increase in time, whereas the C flux represents a change within a given time period, and thus the error
of the simulation results is relatively independent. In addition, in the present study, we applied a
parameter optimization method for the batch method, that is, we assimilated all our observational data
to optimize the parameters and state variables of the model, whereas the sequential method [such as
the Kalman filter method [59,60] can make parameters and state variables with the appearance of the
new observation update (calibration), if the flux data, simulation is carried out in real-time. This may
be very important (for example, in numerical weather prediction), as it may effectively reduce the
uncertainty of the simulation results.

The uncertainty of model parameters and model prediction results generally decrease with the
addition of new data to the inversion analysis, which enables us to gain a more comprehensive



Forests 2020, 11, 369 13 of 16

understanding of the information contained in these data [25,61]. C flux data also provides valuable
constraining information, and since the measurement of these fluxes is often performed at many sites,
these data are increasingly being used in MDF analysis. Our analysis indicates that incorporating
multiple constraints in the inversion analysis can contribute to enhancing model simulation results by
reducing the prediction bias and uncertainty during the forward run of the model.

5. Conclusions

Biometric data obtained from site observations and NEE data derived using the eddy covariance
method provide rich sources of information for the parameters and state variables of constraint models.
There are still challenges in simulating the foliar C pool, which needs to be paid attention to in future
research. In this study, we found that the degrees to which model parameters are constrained and model
performance is enhanced are dependent on the different constraint data employed. With an increase
in assimilated data, we observed a gradual decrease in the uncertainty of simulations, and when all
evaluated observations were used for model constraint, parameter uncertainties were minimized and
the simulated values were in good agreement with the observed values. Plant carbon data were found
to be the most effective in terms of significantly reducing the uncertainty of the DALEC model carbon
pool, and when all observation data are used to constrain the model, the number of well-constrained
model parameters increases, thereby enhancing the accuracy of model simulations. Furthermore,
we observed that incorporating the additional constraints of soil organic carbon observations is a key
factor with respect to reducing the uncertainty or bias associated with the soil carbon pool.
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