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Abstract: Birch sap is colourless or slightly opalescent and is traditionally drunk in spring. Currently,
birch sap is becoming more important in the market sector as well as to pharmacy companies due to
its biochemical composition and use in a wide variety of products. To extract good quality sap using
birch resources in a sustainable way, there is a need to investigate the influence of the dendrometric
parameters of birch trees and soil properties on the quantity and chemical composition of birch sap.
This study is performed in five silver birch (Betula pendula Roth) forest stands growing in Histosol,
Luvisol and Arenosol with different moisture and nutrient contents. The results indicated that the
most productive silver birch trees for sap harvesting were taller than 28 m, had a diameter at breast
height over 40 cm and a crown base height greater than 19 m. Additionally, the highest quantity of
birch sap was harvested from trees growing in well-aerated mineral soils (Arenosol and Luvisol)
with normal moisture content. However, the sweetest birch sap was harvested from trees growing in
nutrient-rich organic (undrained peatland Histosol) and temporarily flooded mineral (Luvisol) soils.
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1. Introduction

Birch sap is a non-timber forest product that has become more important from an economic and
recreational point of view [1]. Birch sap is a traditional beverage in boreal and hemiboreal regions of
the northern hemisphere [2–4]. Currently, the harvesting of birch sap remains an important activity
mostly in Belarus, Estonia, Finland, Latvia, Lithuania, Poland, Romania, Russia and Ukraine due to the
widespread distribution of birch species and the incorporation of sap into the former Soviet economic
system [1]. However, birch sap is becoming more important in the market sector as well as to pharmacy
companies of the European Union. Birch sap is used to manufacture health products, such as birch sap
drinks flavoured with fruits, birch syrup and cosmetics for skin and hair. Furthermore, scientists from
Poland have started to develop nonperishable, unpasteurized birch sap-based beverages, which can be
classified as a superfood product [5].

Birch sap is a drink that is traditionally consumed in the spring. It is a colourless or slightly
opalescent, scentless liquid with a slightly sweet mineral water taste due to the small amount of
carbohydrates and the considerable amount of dissolved minerals it contains [6]. Viškelis and
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Rubinskienė [7] reported that birch sap may contain soluble sugars, ascorbic acid, phenolic compounds,
and micro- and macroelements, of which potassium was the predominant component.

In the boreal and hemiboreal regions, birch sap is directly tapped from native birch species, mainly
from silver birch (Betula pendula Roth) and downy birch (Betula pubescens Ehrh.) [6,8–10]. According
to the Global Forest Resource Assessment [11], these birch species account for 11%–16% of the total
volume of forest stands in Russia and Fennoscandia, approximately 17% in Lithuania and 24%–28% in
Belarus and Latvia. However, the volume of silver birch and downy birch accounts for only 1%–5%
of the total volume of forest stands in Central Europe [11]. Silver birch grows in fertile forest sites
with adequate moisture and air content and prefers sandy and silty tilled soils as well as fine, sandy
soils [4,9]. Downy birch is predominant in wet, cool, fine-textured and poorly aerated soils.

The ability to harvest birch sap depends on geographical location and climate conditions. In boreal
forests, the best time for birch sap harvesting is from the beginning of March to early April. However,
birch sap harvesting starts later in northern countries (e.g., northern Russia and Finland) [3,8,12–14].
The increasing air temperature in the spring influences the metabolic level of living wood cells and
thus affects the osmotic pressure of the water within the wood [15].

Numerous studies have confirmed that the quantity of harvested birch sap, as well as its physical
and chemical properties, mostly depend on the birch species and the dendrometric parameters and
can change during the harvesting period [8,16–19]. However, knowledge of the influence of soil on
birch sap quantity and quality is scarce. Only two studies have investigated the chemical composition
of birch sap harvested from stands growing in different soils [8,18]. Harvesting birch sap at industrial
rates has started only in recent years in Lithuania. To extract only good quality sap using birch
resources in a sustainable way, there is a need to investigate the influence of the nutrient status of
different soils on the quantity and chemical composition of birch sap.

The aim of this study is to investigate the differences in the quantity and chemical properties of
sap extracted from silver birch (Betula pendula Roth) forest stands growing in three different soils with
different moisture and fertility conditions. The main objective of this study is to evaluate how the
dendrometric parameters of studied pure silver birch stands and soil chemical properties influence sap
quantity and biochemical composition.

2. Materials and Methods

2.1. Study Sites

The study was carried out in 2017 in forest stands of silver birch (Betula pendula Roth) growing in
Histosol (Hs), Arenosol (Ar) and Luvisol (Lv) [20] (Figure 1, Table 1).
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Figure 1. The studied silver birch (Betula pendula Roth) forest stands in the Kaunas region of the
Lithuanian state forest enterprise. Coordinates: Ar1 (54◦50’ N, 23◦36’ E); Ar2 (54◦50’ N, 23◦38’ E); Lv1
(54◦50’ N, 23◦38’ E); Lv2 (55◦2’ N, 23◦50’ E); Hs1 (54◦50’ N, 23◦37’ E).
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The studied pure silver birch stands growing in plains that are situated at 97 to 113 m a.s.l. and
the area of the stands ranged from 0.5 to 2.3 ha. The climate in Lithuania is described as semi-humid
and transitional between maritime and continental climates [21]. The average annual temperature is
7–7.5 ◦C, and the average annual precipitation is 650 mm. The main characteristics of the study sites
are presented in Table 1.

Table 1. The mean dendrometric properties of pure silver birch (Betula pendula Roth) stands growing in
different soils.

Site Age
(yr)

Tree
Density
(ha−1)

DBH
(cm)

H
(m)

Volume
(m3 ha−1)

Soil Group
[20]

Soil Moisture
Condition

Hs1 73 175 38.8 ± 2.9 24.9 ± 1.3 225 Histosol Undrained peatland
Ar1 88 268 31.7 ± 2.3 28.5 ± 0.7 263 Arenosol Temporarily flooded

mineral soilsLv2 91 308 39.4 ± 1.2 25.0 ± 0.9 395 Luvisol
Ar2 105 223 35.6 ± 2.4 27.2 ± 0.7 265 Arenosol Mineral soils of

normal moistureLv1 93 106 42.6 ± 2.7 28.5 ± 0.4 184 Luvisol

Note: DBH—diameter at breast height; H—height of tree; CBH—crown base height. The results of DBH and H are
presented as mean ± SE.

In this study, the silver birch forest stands were over-mature, and their age varied from 73 to 105
years. As seen from Table 1, the largest mean DBH (~43 cm) was found in the forest stand growing
in Luvisol (Lv1) of normal humidity; however, the smallest mean DBH (~32 cm) was found in the
forest stand growing in temporarily flooded Arenosol (Ar1). The largest mean tree height (~29 m)
was found in stands growing in temporarily flooded Arenosol (Ar1) and Luvisol (Lv1) of normal
humidity. Moreover, the smallest mean tree height (~25 m) was found in forest stands growing in
undrained nutrient-rich peatland (Histosol, Hs1) and temporarily flooded Luvisol (Lv2). However, the
dendrometric properties may also correspond to the different tree densities in the studied forest stands
(Table 1).

2.2. Soil Sampling and Chemical Analysis

The soil sampling was carried out in October 2017. Composite soil samples (each at 3 systematically
distributed points) were collected from the 0–20 and 20–40 cm deep layers (rhizosphere horizon) in
three replicates along transects in each study site. The soil samples were taken with a 3 cm diameter
metallic auger (in total, 90 samples were collected). From the soils samples, the following parameters
were determined: the pH was analysed in a 1 M KCl suspension [22]; total nitrogen (TN) was found
using the Kjeldahl method [23]; soil organic carbon (SOC) was found by dry combustion at 900 ◦C
with a CNS analyser (Elementar Analy-sensysteme GmbH, Germany) [24]; mobile potassium (K2O),
mobile phosphorus (P2O5), mobile calcium (Ca) and mobile magnesium (Mg) were quantified by the
égnér–Riehm–Domingo (A-L) method [25]. The pH parameters and chemical compositions of the
studied soils are presented in Table 2.

The studied Histosol (site Hs1) had the highest (p < 0.05) concentrations of SOC and nutrients
(total nitrogen (TN), mobile potassium (K2O), Ca and Mg). The studied Arenosols (Sites Ar1 and Ar2)
were rich in mobile phosphorus (P2O5) and, in contrast with the Histosol, had the lowest (p < 0.05)
concentrations of SOC (only site Ar1), TN, Ca and Mg. The temporarily flooded Luvisol (Site Lv2) was
characterised by having the highest (p < 0.05) pH value in the uppermost soil mineral (0–20 cm depth)
layer. Furthermore, compared with the studied Arenosols, the concentrations of TN, Ca and Mg (only
in site Lv2) were 53%–73%, 96%–793% and 460%–545% higher, respectively, in the studied Luvisols.
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Table 2. Chemical properties of the mineral or peat top layers (0-20 and 20-40 cm depth) in the selected
silver birch (Betula pendula Roth) forest stands.

Soil Layer Histosol
(site Hs1)

Arenosol
(site Ar1)

Arenosol
(site Ar2)

Luvisol
(site Lv1)

Luvisol
(site Lv2)

pHCaCl2
0–20 cm 4.25 ± 0.64 b 3.63 ± 1.89 a 3.26 ± 0.05 a 3.29 ± 0.06 a 5.37 ± 0.18 c
20–40 cm 5.29 ± 1.17 b 4.30 ± 1.96 ab 4.64 ± 0.58 a 3.89 ± 0.61 a 6.53 ± 0.30 b

SOC, %
0–20 cm 30.80 ± 0.51 e 1.62 ± 0.15 a 2.99 ± 0.19 c 3.81 ± 0.49 d 2.66 ± 0.15 b
20–40 cm 28.67 ± 1.20 b 0.48 ± 0.14 a 0.49 ± 0.02 a 0.59 ± 0.19 a 0.42 ± 0.03 a

TN, %
0–20 cm 2.42 ± 0.14 c 0.17 ± 0.03 a 0.15 ± 0.03 a 0.26 ± 0.03 b 0.26 ± 0.01 b
20–40 cm 2.24 ± 0.05 d 0.08 ± 0.02 c 0.04 ± 0.00 a 0.08 ± 0.01 c 0.05 ± 0.00 b

P2O5, g kg−1

0–20 cm 0.044 ± 0.004 c 0.058 ± 0.010 c 0.171 ± 0.024 d 0.016 ± 0.003 a 0.026 ± 0.002 b
20–40 cm 0.024 ± 0.002 b 0.130 ± 0.019 d 0.067 ± 0.012 c 0.011 ± 0.003 a 0.126 ± 0.025 d

K2O, g kg−1

0–20 cm 0.118 ± 0.003 d 0.028 ± 0.004 a 0.042 ± 0.005 b 0.035 ± 0.005 a 0.057 ± 0.005 c
20–40 cm 0.028 ± 0.005 c 0.014 ± 0.002 b 0.013 ± 0.012 b 0.009 ± 0.000 a 0.057 ± 0.030 d

Ca, g kg−1

0–20 cm 10.913 ± 0.284 e 0.266 ± 0.025 b 0.211 ± 0.028 a 0.523 ± 0.133 c 2.110 ± 0.165 d
20–40 cm 11.044 ± 1.047 d 0.171 ± 0.018 a 0.199 ± 0.035 a 0.514 ± 0.005 b 1.788 ± 0.224 c

Mg, g kg−1

0–20 cm 1.117 ± 0.011 c 0.083 ± 0.009 a 0.070 ± 0.011 a 0.076 ± 0.005 a 0.382 ± 0.049 b
20–40 cm 1.081 ± 0.019 c 0.061 ± 0.006 a 0.063 ± 0.014 a 0.062 ± 0.007 a 0.438 ± 0.064 b

Note: Results are expressed as the mean ± SE. The different lowercase letters indicate significant differences at p <
0.05.

2.3. Collection of the Silver Birch (Betula pendula Roth) Sap and Chemical Analyses

The samples of silver birch sap were collected from 10 March to 1 April 2017. A tapping device
(patent no. LT 5813 B) was used for the collection of birch sap (Figure 2).

The holes (diameter 22 mm) were drilled in selected 20 trees growing in forest interior from 5
study sites at the height of 30 cm above the soil surface using a cordless drill and a feather drill bit. The
tapping device included an implant (1) that was driven into a borehole using a rubber hammer. The
implant was connected to a plastic tube (3) using a custom-made screw-on connector (2). The plastic
tube was connected to a 10 litre plastic container (6) using a custom-made screw-on container lid,
which had a 1 mm hole for airflow (4). This setup prevented insects and debris from contaminating the
birch sap.

The chemical composition of the fresh birch sap was determined immediately after the collection
of the samples. The physical and chemical parameters of the birch sap were analysed at the Laboratory
of Biochemistry and Technology, Institute of Horticulture, Lithuanian Research Centre for Agriculture
and Forestry (LAMMC). The ascorbic acid content in the sap was measured using titration with
2,6-dichlorophenolindophenol sodium salt solution [26]. The total soluble solids content was detected
refractometrically using an Atago PR32 digital refractometer (Atago Co. Ltd., Tokyo, Japan) and
expressed as ◦ Brix. The monosaccharide and saccharose contents in the sap were determined by the
Bertrand method [27]. The electrical conductivity was measured with an ECTestr 11+ conductivity
meter (Oakton, Vernon Hills, USA). The pH of the birch sap was measured by a CyberScan pH 6500
pH meter (Eutech Instruments).
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2.4. Statistical Analyses

The differences between quantity and biochemical composition of birch sap in different soils were
compared using one-way analysis of variance (ANOVA) and Tukey’s tests, with a significance level
of 0.05. The influence of the dendrometric parameters on the birch sap quantity was analysed using
linear regression. The model performance was evaluated using the determination coefficient (R2).
The statistical significance of the linear regression model was assessed using the F-test at a significance
level of α = 0.05. Principal component analysis was used evaluate the influence of the dendrometric
parameters (H and DBH), soil group (Hs1, Ar1, Ar2, Lv1 and Lv2) and soil nutrient content (the mean
concentrations of Ca and Mg determined in soil organic and mineral 0–40 cm depth layer) on the birch
sap quantity and chemical composition. PCA analysis was based on the correlation matrix between
the components and standardized variables.

3. Results

3.1. The Quantity of Sap Collected from Silver Birch (Betula pendula Roth) Trees with Different
Dendrometric Parameters

The mean quantity of sap collected during the entirety of the exudation period (10 March–1 April)
of silver birch (Betula pendula, hereafter, birch) from trees of different dendrometric parameters are
presented in Figure 3.
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Figure 3. The quantity (kg) of sap collected from silver birch (Betula pendula) trees (n = 103) of different
heights (A), diameters at breast height (B).
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The mean quantity of birch sap increased with increasing dendrometric parameters, such as tree
height (H) and diameter at breast height (DBH) (Figure 3). The highest mean quantity of birch sap was
collected from trees 32 m in height, with a diameter at breast height of 50 cm.

3.2. The Quantity and Biochemical Composition of Silver Birch (Betula pendula Roth) Sap Collected from Trees
Growing in Different Soils

The influence of different physical and chemical properties of the studied soils on the birch sap
quantity and biochemical composition is presented in Figures 4 and 5 and Table 2.
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Figure 4. The mean quantity of sap harvested from silver birch (Betula pendula) forest stands growing
in different soils. Abbreviations: Hs1—Histosol; Ar1 and Ar2—Arenosol; Lv1 and Lv2—Luvisol.
The results are expressed as the mean ± SE, and different lowercase letters indicate significantly different
(p < 0.05) means based on Tukey’s test.

The results presented in Figure 4 indicate that the highest (p > 0.05) birch sap quantity (200 kg
on average) was extracted from birch forest stands growing in Luvisol (site Lv1) and Arenosol (site
Ar2) of normal humidity. An intermediate quantity (34% lower) of birch sap was collected from birch
stands growing in temporarily flooded Arenosol (site Ar1). The lowest (p < 0.05) quantity (60% lower)
of birch sap was collected in forest stands growing in undrained peatland (Histosol; site Hs1) and
temporarily flooded Luvisol (site Lv2).

Soils with higher moisture content remain frozen longer in early spring. This could have had a
significant effect on the sap quantity collected from forest stands growing in soils with higher moisture
content (i.e., the Arenosol at site Ar1, Luvisol at site Lv2 and Histosol at site Hs1).

The obtained results presented in Figure 6 show the differences in the physical and biochemical
properties of the birch sap collected from the forest stands growing in Histosols, Luvisols and Arenosols.

As shown in Figure 5, the average pH value varied from 6.1 to 6.4 units in all the studied birch sap
samples. The birch sap mostly consisted of monosaccharides (0.7–1.0 g 100 g−1), saccharose (0.2–0.4 g
100 g−1) and ascorbic acid (5.7–6.3 mg 100 g−1). The total saccharide content, expressed as the sum of
the monosaccharide and saccharose concentrations, varied from 0.81% to 1.4% in studied birch sap
samples. The results shown in Figure 5 indicate that the highest (p < 0.05; 50%–75% higher on average)
total saccharide content was found in the birch sap samples collected from forest stands growing in
temporarily flooded Luvisol (site Lv2). The intermediate value (0.9%) of the total saccharide content of
the birch sap was found in undrained peatland (in Histosol at site Hs1); however, the lowest value
(0.84% on average) was found in the birch sap collected from stands growing in Arenosols (sites Ar1
and Ar2) and a Luvisol with normal moisture conditions (site Lv1).
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Figure 5. Mean pH value (A), electrical conductivity (B) and mean concentrations of monosaccharides
(C), saccharose (D), total saccharide content (E), total content of soluble solids (TCSSs) (F) and ascorbic
acid (G) in the birch sap of silver birch (Betula pendula) trees (in total, n = 103) growing in different soils.
The results are expressed as the mean ± SE, and the different lowercase letters indicate significantly
different (p < 0.05) means based on Tukey’s test.

Consequently, the highest (p < 0.05) concentrations of monosaccharides and saccharose were
found in the birch sap harvested from forest stands growing in temporarily flooded Luvisol (site Lv2),
while the intermediate concentrations of monosaccharide and saccharose were found in the birch
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forest stands growing on undrained peatland (Histosol at site Hs1). However, the lowest (p < 0.05)
concentrations of monosaccharide and saccharose were found in birch forest stands growing on
Arenosols (sites Ar1 and Ar2) and Luvisol with a normal moisture content (site Lv1).

The highest (p < 0.05) concentration of ascorbic acid (6.3 mg 100 g−1 on average) was found in the
sap collected from birch trees growing in Arenosol (site Ar2) with a normal moisture content. However,
the lowest concentration of ascorbic acid was found in the sap from birch trees growing in temporarily
flooded Luvisol (site Lv2) and undrained peatland (Histosol at site Hs1).

In the studied birch sap samples, the electrical conductivity may depend on the total content of
soluble solids (TCSSs). The highest (p < 0.05) values of electrical conductivity (512 µS cm−1) and TCSSs
(1.4◦ Brix) were found in the sap samples collected from birch forest stands growing in temporarily
flooded Luvisol (site Lv2). In comparison with the Luvisol (site Lv2), electrical conductivity was 72%
lower (p < 0.05) and the TCSSs was 65% lower (p < 0.05) in the birch sap samples collected from forest
stands growing in undrained peatland (in Histosol at site Hs1).

We found no relation between the pH of the sap and pH of soil samples (Table 3). However, there
was a strong, positive relationship between the soil pH value and sap biochemical composition
(monosaccharide, sucrose and total saccharide content) and electrical conductivity (p < 0.05).
Furthermore, the soil pH (r = 0.7, p < 0.05) and soil Ca and Mg (r = 0.5, p < 0.05) were positively
correlated with sap electrical conductivity and negatively correlated with ascorbic acid (r = −0.5,
p < 0.05). In addition, the concentration of macronutrients (Ca and Mg) had a positive influence on the
electrical conductivity (r = 0.5, p < 0.05) and biochemical composition (except for the concentrations of
ascorbic acid) of the birch sap.

Table 3. Correlation matrix (based on Pearson correlation coefficients) between the pH values as well
as nutrient concentrations (in the 0–40 cm soil layer) of studied soils and the pH values, electrical
conductivity and biochemical compounds of silver birch (Betula pendula) sap samples.

Monosacharides Saccharose Sweetness pHsap Ascorbic Acid Conductivity

pHsoil 0.7* 0.6* 0.7* 0.1 −0.5* 0.7*
OC 0.0 0.0 0.0 −0.1 −0.2 0.0
N 0.0 0.0 0.0 0.2 −0.3 0.0

P2O5 0.1 0.0 0.1 0.0 0.0 0.0
K2O 0.3 0.2 0.3 0.0 0.2 0.3
Ca 0.5* 0.4* 0.5* 0.0 −0.3 0.5*
Mg 0.5* 0.5* 0.5* 0.0 −0.3 0.5*

Notes: * Significant Pearson correlation (r, p < 0.05). Abbreviations: pHsoil—pH in the soil, SOC—soil organic
carbon, TN—total nitrogen, P2O5—mobile phosphorus, K2O—mobile potassium, Ca—mobile calcium, Mg—mobile
magnesium, and pHsap—pH in the birch sap.

3.3. The Influence of Dendrometric Parameters, Soil Group and Nutrient Status on Silver Birch (Betula pendula
Roth) Sap Quantity and Biochemical Composition

The data obtained in our study led us to evaluate the effect of the different soil nutrient properties
and dendrometric parameters of the studied trees on the physical and biochemical properties of the
birch sap (Figure 6).

The most correlated variables as dendrometric parameters of studied birch stands (H and DBH), soil
type (Histosol (Hs1), Luvisols (Lv1 and Lv2), Arenosols (Ar1 and Ar2)), pH value and macronutrients
(Ca, Mg) concentrations in studied soils, as well as pH value, electrical conductivity and biochemical
composition (TCSSs, TSC, monosaccharides and saccharose) of studied birch sap were included in
principal components analysis. The results presented in Figure 6 show that the quantity of birch sap is
strongly correlated with the mentioned dendrometric parameters of studied birch trees. Meanwhile,
the biochemical composition of the birch sap correlated with studied soil types, soil pH value and
macronutrients as Ca and Mg.
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Figure 6. Principal component analysis for the silver birch (Betula pendula) sap physical and biochemical
properties, the dendrometric parameters of the studied birch trees and the macronutrients (Ca and Mg)
found in the different soils. Abbreviations: Quantity—quantity of the birch sap, pHsap—pH value of the
birch sap, TSC—total saccharide content, TCSSs—total content of soluble solids, Conductivity—electrical
conductivity; H—tree height, DBH—diameter at breast height, pHsoil—pH value of the soil, and
Soil-group—type of studied soils (Histosol, Luvisol and Arenosol). Component 1 explains 55% of
variance in data set; Component 2 explains 13%.

As shown in Figure 6, studied soil types had a strong influence on soil pH value, and the
concentrations of Ca and Mg determined in the rhizosphere horizon (0–40 cm depth soil layer).
Furthermore, soil type highly correlated with TCSSs, moderately correlated with the concentrations
of monosaccharides and weakly with electrical conductivity of the birch sap. The concentrations of
saccharose and TSC and TCSSs, as well as electrical conductivity of the birch sap, were moderately
correlated with the nutrients (Ca and Mg) in the rhizosphere horizon, while the relation between the
concentration of saccharose and mentioned soil nutrients was weak. The results of this study indicate
that dendrometric properties such as tree height and diameter at breast height was a major factor
that had an influence on the quantity of the birch sap. However, the sweetest and most nutritious
(according to the value of the TCSSs) sap was collected from birch trees growing in nutrient-rich
Histosol (undrained peatland, site Hs1) and temporarily flooded Luvisol (site Lv2) (see Table 2 and
Figure 5).

4. Discussion

Birch sap ascends from roots to leaves through the xylem due to physical forces, pressure and
osmotic gradients [15,19,30–32]. Positive root pressure causes early spring sap flow in birch trees [4].
The roots of trees with thick and tall trunks usually take up a larger area, allowing them to obtain more
water from the soil.

Studies investigating the sap volume fluxes of birch species have been performed in 50- to
70-year-old forest stands [2,10,33]. However, the relationship between the age of the forest stands and
the extracted sap volume has not been emphasized. Diameter at breast height (DBH) and sapwood
depth are typically used as scaling parameters because they are usually positively related to sap
velocity [16,34–36].

A recent study performed by Zajączkowska et al. [15] showed that the quantity of birch sap
depended on different light availability in the forest stands. In our case, the dendrometric parameters
of studied birch trees were similar. For example, the height (H) of the trees in each studied forest stand
varied by approximately 2%–5% and diameter at breast height (DBH), by 2%–8% (Table 1). Hence,
birch trees may have similar light requirements for photosynthesis in all the studied forest stands.
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In general, the biochemical composition of birch sap is well documented. In many cases, the
biochemical composition of birch sap found in our study was similar to results published in other
studies. For example, Zajączkowska et al. [15] found that sugar content varied from 0.25% to 2.25%
in silver birch sap. Kūka et al. [3] reported that silver birch sap consisted mostly of fructose (5.39 g
100 g−1), glucose (4.46 g l00 g−1) and sucrose (0.58 g 100 g−1), while the average mean concentration of
ascorbic acid was only 3.2 mg L−1, and the average mean concentrations of Ca2+ and K+ were 53 and
41 mg L−1, respectively. Kallio et al. [28] reported that the pH of birch sap varied between 5.5 and
8 units and that the average TCSSs was 0.5◦–1.8◦ Brix. Furthermore, TCSSs consist of sugars (glucose
and fructose), macronutrients (potassium (K), magnesium (Mg) and calcium (Ca)), acids (malic acid,
succinic acid and others), free amino acids (citrulline, glutamine, and asparagine) and a wide variety of
enzymes. Sonneveld and Voogt [29] reported that cations (Ca2+, Mg2+ and K+) had the most significant
effect on electrical conductivity measurements. Therefore, the concentrations of macronutrients such
as Ca2+, Mg2+ and K+ may have the highest influence on the electrical conductivity of the birch sap
collected from trees growing in different soils in our study.

The influence of soil macro- and micro-nutrient composition on the nutrients and bioactive
compounds in silver birch (Betula pendula) and downy birch (Betula pubescens) sap was studied by
Ozolinčius et al. [18] and Grabek-Lejko et al. [8]. Grabek-Lejko et al. [8] reported that the concentrations
of macronutrients, such as Ca, Mg and K, in soil increased the concentrations of these nutrients in birch
sap. However, contrary to our study, Grabek-Lejko et al. [8] did not find a relationship between the
concentrations of macronutrients (Ca, Mg and K) in the soil and the concentrations of glucose, fructose
and sucrose in the sap. Ozolinčius et al. [18] stated that higher concentrations of monosaccharides and
sucrose were found in sap harvested from silver birch trees growing in temporarily flooded Cambisols
and that, in contrast, lower concentrations of mentioned biochemical compounds were found in the
sap of trees growing in Arenosols with normal moisture content. This study confirmed our findings
that the sweetest sap was extracted from birch trees growing in nutrient-rich soils.

Numerous studies have investigated the influence of soil nutrient status on the biochemical
composition of tree sap in sugar maple forest stands. Wild and Yanai [37] investigated maple sap
sugar content after soil fertilization with N, P, or Ca and found that maple trees with higher sugar
concentrations in their sap were growing in sites with higher soil nitrogen mineralization. Moreover,
the combination of soil macronutrients, such as K, Ca, and Mg, increased the sweetness of sap from
trees in northern Vermont in North America [38]. Costanza-Robinson et al. [39] found positive but
statistically insignificant correlations between cations (Ca, Mg, and Mn) found in the soil and maple
sap. This study did not find a relation between Ca in the soil and sap sugar content. However, the
results were affected by the relatively low number of studied sites.

Laing and Howard [13] reported that healthier trees with larger crowns and greater growth
rates tend to have sweeter sap. Furthermore, sugar maples growing in soil with lower Ca and Mg
contents are often not as healthy as those growing in soils with higher cation contents [40–42]. Liming,
the addition of Ca and Mg to soils, decreased the symptoms of maple decline [43–45]. This phenomenon
can also be explained by indirect effects, as Ca and Mg lower soil acidity and simultaneously reduce
the toxicity of Al and Mn cations to tree roots [46]. Safford [47] found that the DBH of sugar maple
increased by 19% after lime addition and by 2-fold after lime plus NPK addition.

5. Conclusions

The quantity and physical and biochemical properties of birch sap were analysed from over-mature
73- to 105-year-old silver birch (Betula pendula Roth) stands growing in Histosol, Luvisol and Arenosol
soils with different moisture and nutrient content. The studied silver birch trees had different
dendrometric parameters: the height of trees varied between 19–32 m and diameter at breast height
varied from 20 to 50 cm. The results of this study showed that the most productive silver birch trees
for sap harvesting were taller than 28 m and had a diameter at breast height over 40 cm. Furthermore,
compared with flooded soils (Histosol and Luvisol (Lv2)), higher quantity birch sap was collected
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from birch trees growing in well-aerated soils (in Luvisol and Arenosol with normal moisture content).
However, the concentrations of Ca and Mg in the rhizosphere horizon (soil organic or mineral layer of
0–40 cm depth) may have had a positive effect on the saccharose, monosaccharide and total saccharide
levels, as well as the total content of soluble solids in the studied birch sap. The results highlight
that the sweetest sap is collected from birch stands growing in nutrient-rich organic (undrained
peatland Histosol) and mineral soils (Luvisols). Further research is now needed to determine the
number of consecutive years that birch trees can be tapped without compromising tree health and to
investigate the diseases caused by pathogens and the volume of nonconductive wood associated with
taphole wounds.
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3. Kūka, M.; Čakste, I.; Geršebeka, E. Determination of bioactive compounds and mineral substances in Latvian
birch and maple saps. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2013, 67, 437–441.

4. Semjonovs, P.; Denina, I.; Fomina, A.; Patetko, A.; Auzina, L.; Upite, D.; Upitis, A.; Danilevics, A. Development
of birch (Betula pendula Roth) sap based probiotic fermented beverage. Int. Food Res. J. 2014, 21, 1763–1767.

5. Bilek, M.J.; Wawer, J.; Szwerc, W.; Słowik, K.; Sosnowski, S. Birch sap concentrate as a potential modern food
product. Econtechmod 2018, 7, 5–9.

6. Peev, C.; Dehelean, C.; Mogosanu, C.; Feflea, S.; Corina, T. Spring drugs of Betula pendula Roth: Biologic
and pharmacognostic evaluation. Studia Universitatis Vasile Goldis Arad Seria Stiintele Vietii 2010, 20, 41–43.
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15. Zajączkowska, U.; Kaczmarczyk, K.; Liana, J. Birch sap exudation: Influence of tree position in a forest stand
on birch sap production, trunk wood anatomy and radial bending strength. Silva Fenn. 2019, 53. [CrossRef]

16. Horna, V.; Schuldt, B.; Brix, S.; Leuschner, C. Environment and tree size controlling stem sap flux in a
perhumid tropical forest of Central Sulawesi, Indonesia. Ann. For. Sci. 2011, 68, 1027–1038. [CrossRef]

17. Jeong, S.J.; Lee, C.H.H.; Kim, H.Y.; Lee, S.H.; Hwang, I.G.; Shin, C.S.; Lee, J.; Jeong, H.S. Quality characteristics
of the white birch sap with varying collection periods. J. Korean Soc. Food Sci. Nutr. 2012, 41, 143–148.
[CrossRef]
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