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Abstract: Understanding the tree growth process is essential for sustainable forest management.
Future yields are affected by various forest management regimes such as thinning; therefore, accurate
predictions of tree growth are needed under various thinning intensities. This study compared the
accuracy of individual-level distance-independent diameter growth models constructed for different
thinning intensities (thinning intensity-dependent multiple models: TDM model) against the model
designed to include all thinning intensities (thinning intensity-independent single model: TIS model)
to understand how model accuracy is affected by thinning intensity. We used long-term permanent
plot data of Japanese cedar (Cryptomeria japonica) stands in Japan, which was gathered from four
plots where thinning was conducted at different thinning intensities: (1) intensive (41% and 38% of
trees removed at 25 and 37 years old, respectively), (2) moderate (38% and 34%), (3) light (32% and
34%), and (4) no thinning. First, we specified high interpretability distance-independent competition
indices, and we compared the model accuracy both in TDM and TIS models. The results show that
the relative spacing index was the best competition index both in TDM and TIS models across all
thinning intensities, and the differences in the RMSE (Root mean square error) and rRMSE (relative
RMSE) in both TDM and TIS models were 0.001–0.01 cm and 0.2–2%, respectively. In the TIS model,
rRMSE varied with thinning intensity; the rRMSE was the lowest for moderate thinning intensity
(45.8%) and the highest for no thinning (59.4%). In addition, bias values were negative for the TIS
model for all thinning intensities. These results suggest that the TIS model could express diameter
growth regardless of thinning intensities. However, the rRMSE had varied with thinning intensity
and bias had negative values in the TIS model. Therefore, more model improvements are required for
accurate predictions of long-term growth of actual Japanese cedar stands.

Keywords: individual-tree model; distance-independent competition index; thinning; relative spacing
index; long-term growth model

1. Introduction

Yield predictions are essential for sustainable forest management. Generally, future yields are
affected by different forest management regimes, site conditions, other climate factors, and species [1,2].
Such growth processes are described by growth models [3]. Growth models can be classified into
stand-level and individual-level models. The stand-level model, as the basis of growth prediction,
has been studied for a long time [2]. This model can characterize yield and growth with a little
information about the stand; therefore, many researchers have adapted this model for a variety of
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stands [4,5]. Individual-level models predict single-tree growth processes. These models incorporate
flexible tree growth processes; thus, this model is robust in predicting tree growth under various
conditions [3]. In addition, in contrast to the stand-level model, the individual-level model can predict
the volume and other parameters of each diameter class within a stand by summarizing individual-tree
estimates [6–11].

Individual-level models are further classified into distance-dependent and distance-independent
models. Tree growth in a stand is restricted by stand age, stand condition, and competition with
adjacent trees for light, water, and nutrients. This competition is measured by the competition index.
Distance-dependent models account for distance between the subject tree and adjacent trees, so the
model needs information regarding the trees’ positions in the stand. Generally, the distance-dependent
competition index is defined as the weighted distance of competitor trees that are located within a
certain distance from the subject tree. The distance-independent model uses a competition index that
does not require the spatial information of trees. Rather, in this model, size ratios and stand density
are used as a substitute for competition. In general, the accuracy of the distance-dependent model is
higher than the distance-independent model because the distance-dependent model includes distance
information regarding competitor trees [9,12–14]. On the other hand, some studies have indicated that
the accuracy of the distance-dependent model is the same as the distance-independent model regardless
of target species and region [15–19]. Therefore, the distance-independent model may sufficiently
explain tree growth. The distance-dependent model is cost intensive and labor demanding because
the competition index in the model needs detailed tree location information to generate calculations.
If the distance-independent model, which does not require detailed tree location information, can
sufficiently predict individual-tree growth, the yield prediction can be conducted in a cost-effective
and labor-saving manner.

We should consider the effect of thinning on tree growth when predicting long-term tree growth.
Several studies created diameter growth models under different thinning intensities [12,20,21]. For
example, Uzoh and Oliver [20] designed a single diameter growth model using the site density index
(SDI) and the basal area of larger trees than the subject tree (BAL). If a single model can explain the
response of tree growth under different thinning intensities sufficiently well, we could make more
efficient predictions. It is known that the dynamics of tree growth change under different thinning
intensities [22–25]. For example, Mäkinen and Isomäki [22] reported that the tree height and diameter
growth of Scots pine (Pinus sylvestris L.) were better in stands with higher thinning intensity. Thus, the
effect of thinning intensity on tree growth may change under multiple thinning intensities. Model
accuracy may differ under different thinning intensities; therefore, we need to construct a growth
model for each thinning intensity. Previous studies have developed a single-tree growth model under
different thinning intensities [22,23]; however, few studies have independently developed multiple tree
growth models for each thinning intensity and then compared the prediction accuracies of single and
multiple tree growth models. Even if a single model can predict tree growth under different thinning
intensities, the model may not have the same precision and bias for stands with different thinning
intensities. In such cases, the substantial precision and bias may differ between predicted and observed
values when the model is applied to actual stands. Therefore, we need to examine the accuracy of both
single and multiple models.

Our main objective is to compare the accuracy of the individual-level distance-independent
diameter growth model constructed with each thinning intensity (thinning intensity-dependent
multiple models: TDM model) to the accuracy of the model constructed with all thinning intensities
(thinning intensity-independent single model: TIS model). To achieve this objective, we did the
following: (1) selected the model effective among six distance-independent competition indices for
predicting diameter growth of Japanese cedar (Cryptomeria japonica), (2) compared the accuracy of
the best TDM and TIS models, and (3) examined how the accuracy of the best model changes under
different thinning intensities.
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2. Materials and Methods

2.1. Data Collection

The data used in this study were obtained from Kudarukawa national forest, located in Kochi
prefecture, western Japan (33◦23’ N, 133◦10’ E) (Figure 1). The study site is located in areas with
an inclination of 5◦–10◦ at an elevation of 500 m. In 1972, four permanent plots were established in
planted forests with different thinning intensities, which were: (1) intensive thinning, (2) moderate
thinning, (3) light thinning, and (4) no thinning [26]. Each plot included approximately 200 Japanese
cedar trees. The first thinning was conducted at 25 years old, and the second thinning was conducted
at 37 years old (Table 1). Trees’ heights and diameters at breast height (DBH) in each plot were
measured every 5–6 years from 14 years old to 61 years old. The DBH of each tree was measured at
breast height position (1.2 m) from two directions using a caliper, whereas tree height was measured
for approximately 30 selected trees with various DBH classes in each plot (Table 2). A tree number
and breast height line were painted for each tree when tree measurements were conducted. Before
our analysis, we compared the mean annual diameter growth for 47 years among four plots using a
multiple-comparison test. The mean annual diameter growth of the unthinned plot was significantly
smaller than that of the other thinned plots (Tukey–Kramer test, p < 0.05). Moreover, we estimated the
heights of unmeasured trees using the diameter–height equation, created using the data of measured
trees (R2 values in each thinning intensity were 0.88–0.99). To calculate the competition indices, we
assumed that thinning was conducted in prior measurement periods in this study. In total, we used
nine growing seasons of 1077 trees’ growth data.
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Table 1. Summary of thinning intensities in study plots.

Thinning Rate at 25 Years Old (%) Thinning Rate at 37 Years Old (%)

Volume Number of trees Volume Number of trees

(1) Intensive thinning 26 41 29 38
(2) Moderate thinning 22 38 23 34

(3) Light thinning 20 32 23 34
(4) No thinning - - - -

Table 2. Summary of measurement data in study site.

Age (Year)

14 19 23 29 34 40 45 51 56 61

(1) Intensive thinning (0.116 ha)
Mean height (m) 11.3 13.9 16.7 20.7 23.2 26.0 28.8 30.4 32.0 33.3
Mean DBH (cm) 14.5 17.2 18.8 25.5 27.6 32.3 34.4 37.3 38.9 40.8

Stand density (trees/ha) 2509 2509 2457 1241 1241 879 724 707 707 707
(2) Moderate thinning (0.123 ha)

Mean height (m) 10.4 12.9 15.4 20.9 22.7 25.8 28.5 30.3 31.6 33.6
Mean DBH (cm) 13.9 17.2 19.1 25.1 27.3 32.1 34.7 36.9 39.0 41.0

Stand density (trees/ha) 2236 2236 2154 1228 1228 919 805 805 780 780
(3) Light thinning (0.106 ha)

Mean height (m) 11.3 14.2 16.9 21.9 23.1 26.3 29.1 30.4 31.8 33.4
Mean DBH (cm) 15.6 18.9 20.7 26.2 28.0 33.1 35.6 37.5 38.6 40.6

Stand density (trees/ha) 2189 2189 2132 1349 1349 887 887 887 877 868
(4) No thinning (0.113 ha)

Mean height (m) 10.2 13.1 15.6 18.9 20.8 24.4 25.7 26.9 28.3 29.5
Mean DBH (cm) 14.1 16.9 18.8 21.0 23.4 25.8 26.7 28.4 30.4 31.8

Stand density (trees/ha) 2469 2469 2407 2248 2009 1770 1770 1681 1487 1416

Note: DBH, Diameter at breast height.

2.2. Individual-Tree Diameter Growth Model

We used the linear-mixed effects model to characterize Japanese cedar diameter growth. We defined
individual diameter growth of the TDM model as follows:

ln
(
GI, i, j+1

)
= α0 + α1DBHI,i, j + α2DBH2

I,i, j + α3AgeI, i, j + ϕi + εI,i, j, (1)

where GI,i, j is the growth of the subject tree i in the I th plot in the period between the jth measurement
and the subsequent measurement. DBHI,i, j and DBH2

I,i, j are DBH and the DBH squared, respectively,
and AgeI,i, j is the stand’s age. Generally, tree diameter growth is affected by individual diameter
size [27]. Moreover, tree diameter growth follows a sigmoid curve, indicating the existence of restraint
by aging and increasing DBH [3]. To express this restraint, we used a simple quadratic function of
DBH. α0, . . . , α3 are each parameters, and ϕi is a random parameter for subject tree i. εI,i, j is the error
term produced by the normal distribution with mean 0 and variance σ2 (εI,i, j ∼ Normal

[
0, σ2

]
). The

annual diameter growth in the period between two successive measurements was expressed using
DBH, DBH2, and the age at the beginning of the period. A full TDM model derived by adding each
distance-independent competition index CII,i, j is given by

ln
(
GI, i, j

)
= α0 + α1DBHI,i, j + α2DBH2

I,i, j + α3AgeI, i, j + α4CII, i, j + ϕi + εI,i, j, (2)

where α0, . . . ,α4 are fixed effects parameters, and CII,i, j is the distance-independent competition index
of the Ith plot in subject tree ith at jth measurements. We estimated the parameters of Equation (2) for
each of the four plots, with varying thinning regimes. Thus, we obtained a total of 20 fixed effects
parameters for the TDM model. Corresponding to Equations (1) and (2), the TIS model was defined
as follows:

ln
(
GI, i, j

)
= α0 + α1DBHI,i, j + α2DBH2

I,i, j + α3AgeI, i, j + ϕI + ϕI,i + εI,i, j, (3)
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ln
(
GI, i, j

)
= α0 + α1DBHI,i, j + α2DBH2

I,i, j + α3AgeI, i, j + α4CII, i, j + ϕI + ϕI,i + εI,i, j (4)

where ϕI,i is the random parameter for the Ith plot in subject tree i. The TIS model is a single model that
expresses diameter growth for all plots because the model includes the plot-level random effect ϕI. In
this study, we used six distance-independent competition indices as described in the following section.
The generalized liner mixed effects model was used in the lme4 package [28] in R version 3.6.0 [29].
Also, we used a Correction Factor (CF = exp((MSE)/2, where MSE is the mean square error) to predict
expected diameter growth. We applied the CF to correct bias occurring in the log transformation [30].

2.3. Distance-Independent Competition Index

We used six distance-independent competition indices: basal area of trees larger than the subject
tree (BAL), diameter ratio (DR), basal area ratio (BR), cumulative distribution function (CDF), relative
spacing index (Sr), and SDI according to the definition of Sun et al [11].

2.3.1. Basal Area of Trees Larger than the Subject Tree (BAL)

BAL is defined as
BALI,i, j =

∑ π
4

DBH2
c , (5)

where BALI,i, j is the sum of the basal area of competitor trees for subject tree i in Ith plot at the jth
measurement, and DBHc is competitor trees that have larger diameter than subject tree i in the Ith plot
at the jth measurement [14,31].

2.3.2. Diameter Ratio (DR)

DR is defined as

DRI,i, j =
DBHI,i, j

QMDI, j
, (6)

where DRI,i, j is the DR of Ith plot in subject tree i at the jth measurement. DBHI,i, j is the DBH of subject
tree i at the jth measurement, and QMDI, j is the quadratic mean diameter of the Ith plot at the jth
measurement [32].

2.3.3. Basal Area Ratio (BR)

BR is defined as

BRI,i, j =
BAI,i, j

BAI, j
=

DBH2
I,i, j

QMD2
I, j

, (7)

where BRI,i, j and BAI,i, j are the BR and BA of the Ith plot in subject tree i at the jth measurement,
respectively. BAI, j is the mean BA of the Ith plot at the jth measurement. In this study, we used the
square of Equation (5) [11].

2.3.4. Cumulative Distribution Function (CDF)

CDF is usually used to express the diameter distribution in the stand. Also, CDF expresses the
relative position

(
FI,i, j

)
of the Ith plot in subject tree i at the jth measurements as follows:

ln
(
FI,i, j

)
=

k− 0.5
NI, j

, (8)

where k is the rank of the size of subject tree i ordered from smallest to largest in the Ith plot. NI, j is the
number of trees per hectare in the Ith plot at the jth measurement.
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2.3.5. Relative Spacing Index (Sr)

Sr is a stand density index that is calculated as the ratio of distance between stand trees and mean
height as follows:

SrI, j =
1002

HI, j
√

NI, j
, (9)

where SrI, j and HI, j are Sr and mean height in the Ith plot at the jth measurement, respectively [33].

2.3.6. Site Density Index (SDI)

Similarly, SDI is expressed by the number of trees in the stand and quadratic mean diameter as
follows [34]:

SDII, j = NI, j

(QMDI, j

25

)c

, (10)

where c is a constant defined by a self-thinning model. In this study, we used c = 1.486, which was
evaluated in a Japanese cedar stand [35,36].

2.4. Model Fitting and Evaluation

We evaluated the goodness of the fit of the model for each competition index based on the marginal
R2, conditional R2, Akaike’s information criteria (AIC), and ∆AIC. Marginal R2 and conditional R2

were calculated using observed and predicted diameter growth. Marginal R2 was calculated with only
the fixed effect, and conditional R2 was calculated with both fixed and random effects [37]. ∆AIC is the
difference between the AIC of the best model and each other model. Larger values of marginal R2 and
conditional R2 indicate better model accuracy; conversely, a lower value of AIC indicates better model
accuracy. Additionally, to evaluate the effectiveness of the competition indices under different thinning
intensities, we calculated the root mean square error (RMSE), relative RMSE (rRMSE), bias (mean error),
and variance error using the best model. rRMSE is calculated as RMSE divided by mean diameter of
observed diameter growth, and a smaller rRMSE indicates better prediction accuracy [38]. Accuracy is
higher when bias is closer to 0. Negative bias values indicate underestimation, and vice versa.

3. Results

3.1. The Goodness of Fit for Distance-Independent Competition Index

In the TDM model, the best model included Sr for each thinning intensity based on marginal R2,
conditional R2, AIC and ∆AIC (Table 3). Then, the marginal R2 and conditional R2 of each thinning
intensity were 0.36–0.49 and 0.62–0.70, respectively (Table 3). The second-best model included BAL in
intensive and light thinning, and SDI in moderate thinning and no thinning (Table 3). Coefficients of
the TDM model in all thinning intensities showed that DBH, DBH2, age, and Sr were 0.174 to 0.213,
−0.002 to −0.001, −0.056 to −0.030, and 0.161 to 0.209, respectively (Table 4). The TIS model showed
that the best model included Sr (Table 5). Then, for the best model, marginal R2 and conditional R2

were 0.42 and 0.67, respectively (Table 5). Also, the coefficients of the best model showed that DBH,
DBH2, age, and Sr were 0.177, −0.002, −0.040, and 0.163, respectively (Table 6).

3.2. Comparison of Model Accuracy between TDM Model and TIS Model

Visual assessment of the relationships between actual and predicted DBH growth showed little
difference in prediction performance between TDM and TIS models of each thinning intensity (Figure 2).
RMSE and rRMSE also differed little for both TDM and TIS models of all thinning intensities (Table 7).
The differences in RMSE and rRMSE among TDM and TIS models were 0.001–0.01 and 0.2–2%,
respectively (Table 7). The bias of the TDM and TIS models specifically differed in no thinning, with a
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difference of 0.032. Variance decreased with decreasing thinning intensity, and the lowest variances for
no thinning in both TDM and TIS models were 0.039 and 0.033, respectively.

Table 3. Evaluation of thinning intensity-dependent multiple (TDM) models using each
distance-independent competition index.

Marginal R2 Conditional R2 AIC ∆AIC

(1) Intensive thinning
Null 0.29 0.53 2611 126
BAL 0.35 0.63 2523 38
DR 0.33 0.56 2569 83
BR 0.31 0.56 2602 117

CDF 0.29 0.53 2618 133
Sr 0.36 0.62 2485 0

SDI 0.32 0.59 2546 61
(2) Moderate thinning

Null 0.30 0.59 2596 247
BAL 0.37 0.67 2475 126
DR 0.34 0.61 2553 204
BR 0.33 0.61 2585 236

CDF 0.30 0.59 2602 253
Sr 0.42 0.70 2349 0

SDI 0.36 0.65 2463 114
(3) Light thinning

Null 0.28 0.57 2481 230
BAL 0.38 0.70 2317 66
DR 0.36 0.62 2396 144
BR 0.33 0.62 2441 189

CDF 0.28 0.57 2488 237
Sr 0.41 0.69 2251 0

SDI 0.34 0.63 2371 119
(4) No thinning

Null 0.35 0.58 3957 363
BAL 0.43 0.68 3749 155
DR 0.42 0.65 3824 230
BR 0.38 0.62 3934 340

CDF 0.35 0.58 3964 371
Sr 0.49 0.68 3594 0

SDI 0.48 0.68 3614 20

Note: BAL, Basal area of trees larger than the subject tree; DR, Diameter ratio; BR, Basal area ratio; CDF, Cumulative
distribution function; Sr, Relative spacing index; SDI, Site density index.

3.3. Model Accuracy under Different Thinning Intensities

For the TDM model, the lowest RMSE value was 0.203 for no thinning, and the highest RMSE
value was 0.249 for intensive thinning (Table 7). rRMSE was the lowest for moderate thinning (47.8%),
and the highest for no thinning (60.6%). Bias values were negative for all thinning intensities, indicating
that the predicted values were underestimated compared with the observed values. For the TIS model,
RMSE values showed that the lowest value was 0.199 for no thinning, and the highest value was
0.250 for intensive thinning (Table 7). rRMSE values were lowest for moderate thinning (45.8%), and
highest for no thinning (59.4%). Bias values were negative for all thinning intensities, indicating that
the predicted values were underestimated compared to the observed values.
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Table 4. Summary of parameter estimation using the relative spacing index (Sr) for the TDM model.

Parameters Description Estimate SE p-Value

(1) Intensive thinning
α0 intercept −5.571 0.340 <0.001
α1 DBH 0.200 0.014 <0.001
α2 DBH2 −0.002 0.000 <0.001
α3 Age −0.056 0.003 <0.001
α4 Sr 0.161 0.013 <0.001

(2) Moderate thinning
α0 intercept −6.260 0.346 <0.001
α1 DBH 0.174 0.012 <0.001
α2 DBH2 −0.001 0.000 <0.001
α3 Age −0.043 0.003 <0.001
α4 Sr 0.200 0.012 <0.001

(3) Light thinning
α0 intercept −6.650 0.368 <0.001
α1 DBH 0.199 0.014 <0.001
α2 DBH2 −0.002 0.000 <0.001
α3 Age −0.044 0.003 <0.001
α4 Sr 0.209 0.013 <0.001

(4) No thinning
α0 intercept −6.801 0.307 <0.001
α1 DBH 0.213 0.014 <0.001
α2 DBH2 −0.002 0.000 <0.001
α3 Age −0.030 0.003 <0.001
α4 Sr 0.195 0.010 <0.001

Table 5. Evaluation of the thinning intensity-independent single (TIS) model using each
distance-independent competition index.

Marginal R2 Conditional R2 AIC ∆AIC

Null 0.33 0.58 11578 803
BAL 0.40 0.67 11080 305
DR 0.36 0.62 11393 618
BR 0.35 0.61 11504 729

CDF 0.33 0.58 11587 811
Sr 0.42 0.67 10775 0

SDI 0.37 0.63 11205 430

Table 6. Summary of parameter estimation using Sr for TIS model.

Parameters Description Estimate SE p-Value

α0 intercept −5.587 0.156 <0.001
α1 DBH 0.177 0.007 <0.001
α2 DBH2 −0.002 0.000 <0.001
α3 Age −0.040 0.002 <0.001
α4 Sr 0.163 0.005 <0.001
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Table 7. Evaluation of TDM and TIS models using Sr under different thinning intensities.

RMSE (cm) rRMSE (%) Bias (cm) Variance (cm)

TDM TIS TDM TIS TDM TIS TDM TIS

(1) Intensive thinning 0.249 0.250 54.2 54.4 −0.092 −0.104 0.054 0.052
(2) Moderate thinning 0.230 0.220 47.8 45.8 −0.074 −0.068 0.047 0.044

(3) Light thinning 0.237 0.228 51.1 49.1 −0.078 −0.071 0.050 0.047
(4) No thinning 0.203 0.199 60.6 59.4 −0.049 −0.081 0.039 0.033

4. Discussion

4.1. Model Selection for TDM and TIS Models

Several studies that used distance-independent competition indices showed that the best
competition indices were BAL, SDI, and CDF [6,10,20]. Goodness of fit of competition indices
may be species-specific. In this study, Sr was the best competition index both in the TDM and TIS
models (Tables 3 and 5). This result indicates that individual level competition is expressed as other
explanatory variables such as DBH and DBH squared because Sr is expressed as stand level competition.
Moreover, a previous study showed that Sr was related to crown length [39]. Tree crown is widely
used for predicting tree growth, and there is high correlation between crown and tree growth [9,40].
Sr may indirectly reflect information of the tree crown; therefore, the best models might perform well.
Moreover, tree height is suited to express site productivity. Sr could reflect differences in productivity
among each study plot, therefore increasing the accuracy of the model. In the TDM model, the
second-best models were different for each thinning intensity (Table 3). BAL was selected in intensive
and light thinning, and SDI was selected in moderate and no thinning. This result suggests that
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BAL and SDI may also be possible to express diameter growth of Japanese cedar under different
thinning intensities.

4.2. Diameter Growth Model Accuracy for TDM and TIS Models

Previous studies evaluated model accuracy using indexes such as RMSE, rRMSE, and AIC [9,10,41].
For example, Palahí et al. [41] constructed an individual-tree distance-independent diameter growth
model for Scots pine (Pinus sylvestris L.) in northeast Spain using long-term growth data. They
calculated model accuracy using rRMSE, and the rRMSE in their model was 64.1%. On the other hand,
in our study, the rRMSE values of TDM and TIS models were 45.8–60.6% (Table 7). Thus, our model
accuracy was not inferior in comparison with previous studies.

There was little difference in RMSE and rRMSE among TDM and TIS models (Table 7). Also, the
best competition index was the same for both TDM and TIS models (Tables 3–6). These results indicate
that the TIS model can explain diameter growth under different thinning intensities. If the TIS model
can explain the response of diameter growth under different thinning intensities, even a single model
could estimate tree growth in stands with various thinning intensities. rRMSE showed that there were
differences in the TIS model under each thinning intensity (Table 7). Specifically, the rRMSE values for
the model of intensive thinning and no thinning were higher than those of other thinning intensities,
indicating low model accuracy. The model may not suit specific thinning intensities, because the
TDM model had a similar tendency. On the other hand, both rRMSE and bias were smallest with
moderate thinning; therefore, the model can roughly predict DBH growth for forests with moderate
thinning intensities.

There were not significant differences in diameter growth among three thinned plots in our dataset,
as shown in “2.1. Data Collection”. Therefore, our analysis could not examine in detail the behavior of
TDM and TIS models under conditions in which there are large differences in diameter growth. On the
other hand, there were significant differences in diameter growth among thinned plots and no thinning
plot in our dataset. In addition, the TIS model accurately predicted diameter growth in thinned and no
thinning plots, suggesting that the TIS model is effective for the multiple plots with largely different
diameter growth. However, this suggestion is not based on actual data from the multiple plots with
largely different diameter growth. Thus, the discussion here requires further analysis.

4.3. Application for Forest Management

Our results suggest that the TIS model can express diameter growth under various thinning
intensities. In this study, the model predicts individual-tree diameter growth. When the model is
applied to actual stands, the diameter size is predicted based on tree diameter sizes in the prior
period. The long-term growth is repeatedly predicted. In addition, stand-level growth is predicted by
accumulating individual tree-level growth. If the error is large, such as in intensive and no thinning,
error will propagate. The more we predict long-term growth, the more the error will increase between
actual stands and predicted values. Also, bias values were negative for all thinning intensities in the
TIS model, indicating the predicted diameter growth was underestimated (Table 7). Underestimation
of tree diameter is problematic for optimal operation planning, such as determining thinning intensity.
Stands with low tree diameter usually require intensive thinning to allow residual trees to grow well;
thus, underestimated tree diameter may lead to unnecessary thinning intensity. For those reasons,
we need to improve models in which the error is constant with thinning intensity and bias values are
not negative.

5. Conclusions

This study compared the model accuracy of TDM and TIS models with different thinning intensities.
For both the TDM and TIS models, the selected competition index was the same and there was little
difference in model accuracy. These results suggest that the TIS model could express diameter growth
regardless of thinning intensity. This result contributes to yield prediction techniques for various
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thinning intensities. There are little differences in diameter growth among thinned plots in our study
site. We need to consider model construction under the variety of thinning intensities. On the other
hand, the TIS model had varying error under each thinning intensity, and the model accuracy was low
in intensive thinning and no thinning. Also, bias values were negative; thus, predicted diameter size
may be underestimated when the model is adapted to actual stands. These results suggest that our
model has limitation regarding adaptation in unusual thinning intensities or other sites. Therefore,
we need to improve the model to generate accurate predictions of the long-term growth of actual
stands. We focused on individual tree growth in terms of tree competition in this study. Recently,
some researchers have mentioned that site productivity is affected by climate change [42,43]. Thus, we
need to consider factors such as temperature, precipitation, and carbon concentration when predicting
long-term individual or forest stand growth.
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