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Abstract: Hydrothermal and climatic conditions determine vegetation productivity and its dynamic
changes. However, the legacy effect and the causal relationships between these climatic variables and
vegetation growth are still unclear, especially in the dry regions. Based on multi-statistical methods,
including bivariate correlation analysis and composite Granger causality tests, we investigated the
correlation, causality, and lag length between temperature/precipitation and the vegetation growth
(Normalized Difference Vegetation Index, NDVI) in three typical sub-watersheds in the Luanhe River
Basin, China. The results show that: (1) Precipitation and temperature are the Granger causes of
NDVI variation in the study catchment; (2) temperature and precipitation are not strictly positively
correlated with NDVI during growing seasons along with the whole sequence, and excessive warmth
and precipitation inhibits vegetative growth; (3) the lag length of vegetation growth in response to
temperature/precipitation was shorter in agriculture areas (~2 months) than the forest-dominant
area, which have indicated 3–4 months lag length; and (4) anthropogenic disturbance did not result
in notable negative effects on vegetation growth at the Luanhe River Basin. Our study further
suggests that use of these multi-statistical methods could be a valuable approach for comprehensively
understanding the correlation between vegetation growth and climatic variations. We have also
provided an avenue to bridge the gaps between stationary and non-stationary sequence, as well as to
eliminate pseudo regression problems. These findings provide critical information for developing
cost-efficient policies and land use management applications for forest conservation in arid and
semi-arid area.

Keywords: NDVI; precipitation; temperature; Copula; Granger causality test; semi-arid area; Luanhe
River Basin

1. Introduction

Precipitation and temperature are recognized as the two major climatic factors determines the
vegetation biophysical processes [1]. To quantify how climatic factors affect vegetation growth
at larger scale, the Normalized Difference Vegetation Index (NDVI), derived from infrared and
near-infrared spectral band [2], has been widely applied as a proxy of vegetation growth [3].
The climate–vegetation–runoff correlation has been discussed based on the NDVI at the semi-arid
watershed, Luanhe River Basin, China [4], where the vegetative activities are strongly affected by
seasonal precipitation and temperature [5,6]. However, the relative importance and causal relationships
between precipitation and temperature on vegetation growth are still unclear. Therefore, understanding
the relationship between the changes of climate factors and vegetative growth is essential for further
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improvement of our understanding on ecosystem response to climate change and for the forest
conservation management [5].

Previous studies reported that the annual vegetation growth showed a positive relationship with
climate warming in most parts of China [6], but the response sensitivity differed by seasons [7] and
vegetation types [8]. Similar findings have been found around the world. For example, Lamchin
has pointed out that in most of Asia temperature is the main factor promotes vegetation growth [9],
and the same relationship has been found for the majority of the Nigeria [10]. Admittedly, these studies
have mainly focused on the correlative relationships between climatic factors and NDVI using
classical mathematical methods, for example Pearson and Spearman correlation coefficients.
However, these mathematical methods were introduced to reveal the general trend of the whole time
sequence data, and require the sequence to be monotonous [11]. Therefore, whether the relationship
between vegetation and climatic factors is positive or negative among the whole sequence or only
within a specific range have not been fully discussed.

Because of the complexity of the ecosystem and its biochemical processes, the NDVI and climatic
factors are often characterized as nonlinear or non-stationary sequence. Therefore, the classical
mathematical method is not sufficiently applicable to reveal the nonlinear characters of ecosystem.
Researchers have applied algorithms such as the Mann–Kendall test [12] that divide the non-stationary
time sequence into several stationary stages to study the nonlinear trend of ecosystem. While the
Copula method, which has been widely applied in econometrics to analyze the correlation between
different variables, can be used to analyze the non-stationary sequence [13], the approaches and
attempts for the researchers who are discerning more general principles of the holistic relationship
between the two sequences is still lacking.

Additionally, correlation analysis is not identical with the causal relationship, and the legacy effect
of climatic variables on the corresponding vegetation growth needs to be further explored. For example,
temperature, precipitation and relative humidity have been recognized to be associated with vegetation
changes of 26%, 49%, and 23%, respectively, in China, on the loess plateau [14]. However, the legacy
effect of the response time has not been widely discussed. The Granger causality test, which was
pioneered by Clive W. J. Granger [15], provides an approach to test the causal relationship between
climate variables and its consequences. The Granger causality test is concerned with not only the
correlation between different sequences but also the causal relationships of one factor to the other [16].

In this study, the Luanhe River Basin (LRB), which is located at a semi-arid climate region and
characterized as an ecological conservation area, was selected as the study catchment. The Copula
method and a composite Granger causality test (with Engle–Granger cointegration test and vector
autoregression model) were used to fully describe how vegetation responded to the changes in
temperature and precipitation. The aims of this study are to (1) address the reliability of the
multi-statistical method in ecology; (2) quantify the correlation and causal relationship between
vegetation and climatic variables; (3) test for difference of these correlations and causality in different
seasons and vegetation types. Based on these findings, some suggestions are proposed for policymakers
and stakeholders who have focused on ecosystem restoration and forest conservation.

2. Study Area and Data Sets

2.1. Study Area

The Luanhe River Basin (LRB), covering a total area of 44,793.51 km2, as shown in Figure 1, was
selected as the study catchment. The LRB is located northeast of Beijing, China (115◦30′ E–119◦45′ E,
39◦10′ N–42◦40′ N), and is characterized as an important ecological barrier to alleviate the effect
of sandstorms from Mongolia and conserve water resources for the Beijing–Tianjin–Hebei region.
The Luanhe River is not a tributary of the Hai River, but an independent river following the Hai
River into the sea. The elevation ranges from 3 to 2241 m and decreases from the mountainous areas
in the northwest to a plain in the southeast. The LRB is situated in a typical temperate continental
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monsoonal zone with semi-arid climate [17], where is more sensitive to climatic and anthropogenic
disturbance. The study catchment has an annual temperature fluctuating from 0 ◦C to 9.0 ◦C and
478.5 mm of average annual precipitation. Heavy rainfall and relatively high temperature occur in
summer, and less rainfall and low temperature occur in winter.
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Figure 1. Location and the environmental condition of the Luanhe River Basin: (a) Location of the
Luanhe River Basin; average (b) Normalized Difference Vegetation Index (NDVI) value, (c) precipitation
and (d) temperature between 1982–2015.

To provide more specific ecological conservation management strategies based on the
characteristics of vegetation types in the study catchment, sub-watersheds with different landscapes
should be considered. Therefore, three sub-watersheds were identified based on the landcover
characters: Upstream (6405 km2, 15.25% of the total area), midstream (18,394 km2, 43.57% of the total
area), and downstream (19,807 km2, 41.18% of the total area) (Figure 1).

In particular, agricultural land in the upstream (31.33% in 1980 and 32.38% in 2015) had the greatest
contribution among the sub-watersheds. As part of the ecological conservation area, the midstream
and downstream were mostly covered by forest and herbaceous vegetation and did not change during
1980–2015. The forest covers about 45% and 44% at midstream and downstream, respectively, and the
herbaceous covers about 29% in both these two sub-watersheds. The urban area was mainly situated
in the downstream area, with 1.64% in 1980 and 2.27% in 2015 (Figure 2). These three sub-watersheds
can be categorized by their typical land use types as agriculture area (upstream), forest conservation
area (midstream), and forest–urban area (downstream).
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2.2. Data Sets

2.2.1. Data Source

LULC (land use and land cover) maps with a 1000 m resolution was provided by the Resource
and Environmental Data Cloud Platform of the Chinese Academy of Sciences (http://www.resdc.cn).
The monthly climatic data from ten meteorological stations, including precipitation and temperature,
from 1982 to 2015 was provided by the National Meteorological Administration of China
(http://data.cma.cn). The monthly Normalized Difference Vegetation Index (NDVI) data (0.05 degree
resolution) from 1982 to 2015 was obtained from the Advanced Very High Resolution Radiometer
(AVHRR) of US National Oceanic and Atmospheric Administration (NOAA) (https://nex.nasa.gov) to
quantify the variation of vegetative cover changes in the LRB.

In our research, the growth seasons include late spring (April to May), summer (June to August)
and early autumn (September to October). The winter has been ignored, because of the low vegetation
growth rate during chilly climate in the study catchment [18]. The average NDVI value during
summer, early autumn and late spring was 0.611, 0.459, and 0.354, respectively. The NDVI for the three
sub-watersheds from higher to lower is in the order of downstream, midstream and upstream, which
is directly opposite to the elevational change. Moreover, most of the NDVI in the LRB from 1982 to
2015 has shown an increasing trend in different sub-watersheds during the growing seasons, except
for the upstream during late spring (Figure 3). Meanwhile, the upstream also showed the smallest
increasing tendency compared to that of the other sub-watersheds during all three seasons (Figure 3).
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2.2.2. Data Pre-Treatment

In our study, we address the climate factors (precipitation and temperature) and the vegetation
growth (NDVI) at monthly scale in the three sub-watersheds. To achieve this research goal, the data
pre-treatment was procedure as follows: first, for the climate factors, we interpolate the monthly
precipitation and temperature data from the meteorological stations and re-summarized the climate
data as the average value for each sub-watershed; second, in order to match the format of climate
data, the raster NDVI was also categorized as the average value at monthly scale and calculated into
different sub-watershed using the GIS (zonal statistics tool).

3. Methods

A multi-statistical method is proposed in our study to characterize how vegetation changes in
response to temperature and precipitation. As the flowchart shows in Figure 4, the procedure is as
follows: (a) The collection and pre-treatment of vegetation and climatic data, (b) bivariate correlation
assessment by the tail features based on the different fitted copulas, (c) using composite Granger
causality test to detect both the causal relationship and legacy effect between NDVI-T/P, (d) take the
different sub-watersheds and growth seasons into consideration, we address several implications for
policymakers and stakeholders. The detailed instructions for the statistical methods are described in
the “Methods” section of supplementary information.
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Figure 4. The schematic of the multi-statistical flowchart for vegetation in response to temperature and
precipitation ((1) and (2) are the two components for multi-statistical method).

3.1. Copula Based Bivariate Correlation Assessment

The most commonly used Copula functions, which were designed to assess bivariate joint
dependence structures, have been divided into two families, elliptical (Gaussian and Student’s
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t-Copula) and Archimedean (Clayton, Gumbel, and Frank). Because elliptical Copulas are derived
from the well-known distribution types and widely used Pearson’s correlation, the elliptical Copula
has become popular in most fields. However, the elliptical is only able to reproduce an expression that
is symmetrical [19]. The Archimedean Copulas (Table 1), including the Gumbel, Frank, and Clayton
Copulas, have an explicit formula and are quite popular given their ability to capture a wider variety
of joint dependence structures [20].

Table 1. Equations for the Archimedean Copula functions, where u and v are defined as two marginal
distribution and θ is the dependence parameter.

Family C (u, v) Parameter

Clayton (u−θ + v−θ − 1)−1/θ 0 ≤ θ

Frank −
1
θ ln(1+ (e−θu

−1)(e−θv
−1)

e−θ−1 ) θ , 0

Gumbel e[(− ln u)θ+(− ln v)θ]
1/θ

1 ≤ θ

In our study, we use Akaike information criterion (AIC) and Root Mean Square Error (RMSE) to
select best fitted Archimedean Copulas. The smaller the AIC and RMSE value, the better results for the
Copula to interpret the correlation between vegetative growth and climatic factors. Moreover, we use
diverse tail features of different Archimedean Copula to detect the bivariate correlation between NDVI
and climatic factors (Figure 4). For each Archimedean Copula, the distribution shows unique features.
If two variables can be described by the Clayton Copula, there is a strong correlation between the
variables at the lower tail, while the variables are gradually independent at the upper tail. In contrast to
the Clayton Copula, the Gumbel Copula shows a strong correlation between variables at the upper tail,
while at the lower tail the variables are gradually independent. The Frank Copula has symmetrical tail
characteristics, which means it cannot capture the asymmetrical tail characteristics between random
variables. The correlation coefficient of the variables at the tail is zero, which indicates that the variables
at both tails are gradually independent [19].

3.2. Composite Granger Causality Test for Legacy Effect and Casual Relationship

Originally, the stationary sequence has been required to operate the Granger causality test.
To extend the Granger causality test to fit a more general data sequence, Engle–Granger cointegration
test (EG test) has been regarded as an irreplaceable premise to broaden the scope of applicability in
our study [21]. The Engle–Granger cointegration test can be used to prove two non-stationary data
sequences may have stationary relation over long time period. In order to examine whether the data
sequence has passed the EG test, the Durbin–Watson (DW) coefficient was introduced, when the DW
approaches 2, the data sequence would be recognized to obey the normal distribution and can be
recognized to have stationary relation. In addition, the vector autoregression (VAR) model [22] has
been applied to investigate the legacy effect between NDVI and climatic factors, using the Akaike
information criterion (AIC). Although the Granger causality test can be used on any lag length between
these sequences, the significance of the Granger causality test is better based on the optimal lag length
which was indicated by the minimum AIC.

The overall processes are listed in Figure 4: (1) The sequences have been first tested by the
Augmented Dickey–Fuller Test (ADF) for stationarity, (2) the non-stationary sequence has to been
further examined by Engle–Granger cointegration test, while the stationary sequence can be analyzed
by the VAR model directly to disclose the legacy effect, and (3) the optimal leg length detected by the
VAR model would be used to conduct the Granger causality test.
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4. Results

4.1. Nonlinear Bivariate Correlation between NDVI and Precipitation/Temperature

When the most appropriate marginal distribution has been determined, the Root Mean Square
Error (RMSE) and Akaike information criterion (AIC) were used as two criteria to quantify the deviation
between these data sequences. The most appropriate Copulas from Archimedean family (including
the Clayton, Frank, and Gumbel Copulas) was selected to identify the relationship between seasonal
NDVI-P and NDVI-T. The results of Copula selection are listed in Table 2. And the results of the premise
process for identifying the marginal distribution has been mentioned in the supplementary Table S1.

Based on the AIC and RMSE values, the Clayton and Frank Copulas are the most appropriate
Copulas in fitting the joint distribution of seasonal NDVI-P and NDVI-T. Particularly, the RMSE and
AIC values of the Frank Copula in fitting the NDVI-T series during the late spring and summer are the
lowest, indicating that NDVI-T can be well described by the Frank Copula during this period. Likewise,
the Clayton Copula showed better agreement with the joint distribution of NDVI-T during early
autumn in the upstream. Whereas, different from the homogeneity of the Copula for NDVI-T during
late spring and summer, the Copulas varied by seasons and sub-watershed for NDVI-P. For NDVI-P,
the Frank Copula was better to fit the joint distribution for all three sub-watersheds during the summer.
In contract to the other sub-watersheds, the Frank and Clayton Copula was employed to describe the
relationship between NDVI-P in upstream during the late spring and early autumn, respectively.

Table 2. The Root-Mean-Square Error (RMSE) and Akaike Information Criterion (AIC) of Frank,
Clayton, and Gumbel copulas.

Season Sub-Watersheds Series
Frank Clayton Gumbel

RMSE AIC RMSE AIC RMSE AIC

Late Spring

Upstream NDVI-P 0.067 −4.403 0.068 −4.365 0.074 −4.219
NDVI-T 0.024 −6.460 0.027 −6.253 0.056 −4.767

Midstream
NDVI-P 0.108 −3.457 0.105 −3.498 0.119 −3.258
NDVI-T 0.046 −5.168 0.045 −5.213 0.095 −3.705

Downstream
NDVI-P 0.138 −2.966 0.133 −3.032 0.153 −2.751
NDVI-T 0.059 −4.778 0.061 −4.604 0.118 −3.268

Summer

Upstream NDVI-P 0.060 −4.633 0.063 −4.530 0.060 −4.629
NDVI-T 0.055 −4.787 0.057 −4.733 0.060 −4.636

Midstream
NDVI-P 0.039 −5.493 0.040 −5.449 0.040 −5.424
NDVI-T 0.039 −5.502 0.043 −5.279 0.044 −5.246

Downstream
NDVI-P 0.047 −5.108 0.048 −5.072 0.048 −5.086
NDVI-T 0.049 −5.027 0.051 −4.952 0.052 −4.901

Early
Autumn

Upstream NDVI-P 0.087 −3.797 0.086 −3.885 0.091 −3.792
NDVI-T 0.039 −5.465 0.039 −5.477 0.079 −4.068

Midstream
NDVI-P 0.108 −3.454 0.111 −3.393 0.115 −3.329
NDVI-T 0.051 −4.966 0.057 −4.712 0.106 −3.496

Downstream
NDVI-P 0.095 −3.698 0.101 −3.575 0.106 −3.488
NDVI-T 0.059 −4.667 0.064 −4.496 0.097 −3.662

Note: The bold letters represent the most appropriate RMSE and AIC for determining the Copulas.

4.2. Granger Cause and Legacy Effect

4.2.1. Time Series Sequence Identification

The premise of the composite Granger causality test is that the data sequence needs to be
stationary or have two data sequences that are of the same order to meet the requirement of a
cointegration relationship [23]. If the vegetation and climatic data sequence passes the ADF test, then



Forests 2020, 11, 340 8 of 15

the sequence has been recognized as stationary. However, if the sequences do not pass the ADF test,
then the Engle–Granger cointegration test is introduced to determine whether there is a cointegration
relationship between the NDVI and precipitation/temperature. The time sequence identification results
for the NDVI, precipitation and temperature are listed in Table 3. The highlighted NDVI sequence in
the midstream is non-stationary with a p-value greater than 0.05, while the other sequence for these
three factors is stationary.

Table 3. Results of Augmented Dickey–Fuller Test (ADF) test for vegetation and climatic sequence.

Sub-Watersheds Factors ADF Coefficient t-Statistic p Conclusion

Upstream
NDVI −3.914 −3.421 0.012 Stationary

T −3.701 −3.422 0.023 Stationary
P −4.31 −3.421 0.003 Stationary

Midstream
NDVI −2.727 −3.421 0.066 Non-stationary

T −3.791 −3.422 0.018 Stationary
P −4.434 −3.421 0.002 Stationary

Downstream
NDVI −3.309 −3.421 0.046 Stationary

T −3.774 −3.421 0.018 Stationary
P −4.302 −3.421 0.003 Stationary

To identify whether the non-stationary sequence of the NDVI has a cointegration relationship
with precipitation or temperature, the Engle–Granger cointegration test was conducted (Figure 5).
The Durbin–Watson (DW) coefficient for NDVI-P and NDVI-T is 1.56 and 1.89, respectively. The specific
statistical results are listed in supplementary Table S2. The criteria for whether there exists a cointegration
relationship, depends on whether the DW coefficient is closer to 2 [24]. According to Figure 5, the
NDVI-P has a relatively weak cointegration relationship in the midstream. Therefore, there would be
no obvious causal relationship at the midstream between NDVI-P.

Figure 5. Results of the Engle–Granger cointegration test for the non-stationary sequence between
NDVI-P (a) and NDVI-T (b) in the midstream.

4.2.2. Optimal Lag Length and Granger Causality

After confirming the stationary and Engle–Granger cointegration relationship between the
sequences of the variables, the Granger causality test can be used to discriminate the interactive
relationship among the variables. In our study, the optimal lag length between the NDVI-T and
NDVI-P was identified before the Granger causality test was carried out by the VAR model.

Notably, the minimum AIC value for detecting the optimal lag length varied between
sub-watersheds for the NDVI-T/P (Figure 6). The optimal lag length of the NDVI-T between the
upstream, midstream and downstream is 2, 4, and 4 months, respectively. Because the result for the
precipitation either shows a stationary or cointegration relationship with NDVI in the midstream,
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the lag length for NDVI-P has only been identified in the upstream and downstream with 2 and
3 months, respectively.

The Granger causality test was conducted at the 95% confidence level. The null hypothesis for
each NDVI-T/P in different sub-watershed is that “the climate factors/NDVI is not the Granger cause
of the NDVI/climate factors”. When p-value is less than 0.05, the null hypothesis would be rejected.
The results in Table 4 indicate that for all three sub-watersheds with stationary or modified climate
and NDVI data sequences, the temperature/precipitation has been identified as the Granger cause of
the NDVI.
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Table 4. The Granger causality test results for different sub-watersheds at the optimal lag length.

Sub-Watershed Optimal Lag Length H0 (Null Hypothesis) F-Statistics p-Value Conclusion

Upstream 2
NDVI is not the Granger cause of Precipitation 3.078 0.1011 Accept
Precipitation is not the Granger cause of NDVI 12.6634 0.0031 Reject

Downstream 3
NDVI is not the Granger cause of Precipitation 1.5953 0.2464 Accept
Precipitation is not the Granger cause of NDVI 5.0371 0.028 Reject

Upstream 2
NDVI is not the Granger cause of Temperature 0.132 0.9383 Accept
Temperature is not the Granger cause of NDVI 13.3876 0.0001 Reject

Midstream 4
NDVI is not the Granger cause of Temperature 0.8006 0.6574 Accept
Temperature is not the Granger cause of NDVI 22.8862 0.0012 Reject

Downstream 4
NDVI is not the Granger cause of Temperature 0.9745 0.5788 Accept
Temperature is not the Granger cause of NDVI 35.8145 0.0007 Reject

5. Discussion

5.1. NDVI Response to Temperature

In most cases, the correlation between temperature and NDVI obeys the Frank Copula, which
has no significant features for tail distribution. This consistency among different sub-watersheds and
seasons suggests that temperature within the specific range in the study catchment has a direct effect
on the vegetation growth rate [25]. The features showing no obvious upper or lower tail indicates that



Forests 2020, 11, 340 10 of 15

different from humid regions where a strictly positive relationship between the NDVI and temperature
was found [26], the vegetation growth in a semi-arid area is not strictly positive along with the
temperature, while a partially positive correlate relation has been noticed. The possibly reasons are
listed below: first, due to the lack of rainfall, excessive warming may accelerate evaporation of soil
water content and result in drought, which may lead to a negative effect on the biophysical process
of plants.; second, given the excessive temperature, vegetation will prevent its own water loss by
reducing leaf area and light saturation point, finally resulting in a decrease in vegetative cover [27];
third, an increase in temperature may promote autotrophic respiration and the transpiration rate,
which may result in accelerating the consumption of organic matter and causing a decrease in the net
productivity of vegetation [28]. Therefore, we conclude that vegetation growth in this semi-arid area
present higher sensitivity to temperature than in humid areas.

Notably, different Copula patterns were found between the upstream (Clayton Copula) and
midstream/downstream (Frank Copula) in early autumn. A larger and significant correlation coefficient
was found at the upstream where the temperature and NDVI are both relatively low, which obey
the Clayton Copula. This may result from the differences in land use type. The upstream region
covers a large amount of cropland (>30%), where the NDVI has been largely reduced along with the
temperature during early autumn by the agricultural activities, including harvesting and ploughing.

Furthermore, the two to four month lag length of NDVI in response to temperature for distinct
sub-watersheds reveals that the vegetation may not have a synchronous response to temperature
changes. As vegetation mainly accumulates nutrients and organic matter in spring and grows in
summer and autumn [29], the distinct dominant and diversity of the vegetation types would be
the main cause of different legacy effect for NDVI in response of the temperature. The agricultural
area (upstream) presented a faster responce to temperature than the forest conservation area in the
midstream and forest–urban mixed area in the downstream, which may be due to the short growth
cycle and rapid growth rate of the crops [30]. The mature forest, protected by the national and local
government, requires more energy to growth, which is produced from the photosynthetic processes [31]
and finally result in the slowest response rate in the forest-dominant area (midstream and downstream).

5.2. NDVI Response to Precipitation

During late spring, the correlation between NDVI and precipitation in the upstream not only
shows different fitting features (Frank Copula) to those of the midstream and downstream (Clayton
Copula) but also has a short response time (2 months), which indicates that the crops are more sensitive
to precipitation for growth in spring. When taking the longer lag length (3 months) for the NDVI
in response to precipitation in the downstream into consideration, the forest and herbaceous in the
forest–urban area (downstream) may retain a longer period for growth than the crops. These results
imply that, in semi-arid area, the crops may have a better ability to take advantage of the restricted
available water than forest to boost growth in spring [32]. However, the forest would present a longer
time to accumulate nutrient in spring and exhibit stable growing rate during the whole growth season
even in autumn [33].

In summer, the correlation between NDVI and precipitation was accumulated within a specific
range, following the Frank Copula, in all three sub-watersheds. In contrast to previous studies in
central Asia, which indicate a positive correlation between NDVI-P [34]. The fitted Frank Copula in the
study catchment suggested that excessive rain in summer can suppress plant growth by limiting root
respiration rates, and lead to the reduction on growth and coverage [35], in semi-arid area. Additionally,
similar to NDVI-T, the harvest work could be the key reason for reducing the leaf cover and a lower
tail relationship (Clayton Copula) between the NDVI and precipitation in the upstream, during the
early autumn. Furthermore, the utilization of ground water resource in the upstream could accelerate
the depletion of the available water for vegetation growth, especially in the autumn with less rainfall
to replenish the ground water in semi-arid area [36]. The lack of a causal relation for the midstream
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sub-watershed, may due to the great amount of ground water conservation ability, which could help
the vegetation to prevent drought or flood for a stable growth rate [30].

5.3. Implication

The multi-statistical methods, which expedite identification of the characteristics of the relationship
between the NDVI and climatic factors (temperature and precipitation), can be used to aid in
understanding the vegetation response to climate change, and thus be helpful for environmental
management or investment decisions. To better fulfill the expectation of residents for the natural
environment, national and local policy makers are anxious to find an effective way to balance
economic development and ecosystem service provision [37]. However, as a result of rapid
urbanization and population growth in China [38], it is difficult to establish a pure national park
or conservation area without anthropogenic disturbance. Our mathematical work provides several
potential clues for identifying a method for proposing cost-effective regulation, in order to better
enhance or restore ecological conservation areas. According to the composite Granger causality test,
temperature/precipitation has a considerable contribution to the vegetation compared to the impact of
the vegetation on the regional temperature/precipitation. Therefore, the proposals for the conservation
management are mainly based on the factors, which can be handled by humans to alleviate the negative
impact of climate change on vegetation growth, such as the water supply and regulation criteria.

Our research suggests that, compared to the forest conservation and forest–urban mixed area,
in the agricultural area in the upstream an important priority is to ensure the crops can acquire
sufficient water in spring, especially when drought occurs. In addition, ground water resources play a
critical role in vegetation growth, especially in the semi-arid area. Ground water conservation can
well stimulate vegetation growth, when there is less rainfall. However, ground water deficits would
largely affect agricultural efficiency [39]. Therefore, measures, such as utilization of groundwater and
surface water for irrigation, as well as the development of a backup water source, should be regulated,
in order to guarantee the growth of the crops. Different from forest and herbaceous, crops are more
sensitive to water supply to promote growth, more water can motivate the dynamic processes in
nutrient and mineral solution in the soil, which can be absorbed by vegetation under water-soluble
conditions to yield more organic matter [40]. Then, physiological and biochemical processes such
as photosynthesis and transpiration of crops can promote the growth rate [41]. Therefore, further
researches and experiments regarding how to quantify the needed water for distinct plants should
proceed for agricultural management in future.

Besides the climate factors, anthropogenic disturbance has been identified to be another key driver
for vegetative growth [42]. It is acknowledged that over-grazing and over-cultivation were two major
causes of reduced vegetative growth, especially in semi-arid areas, where the ecosystem is fragile [43].
Over-grazing would threaten vegetation species composition, variety and richness [44], while the
over-cultivation may significantly deplete ground water for both human and crops [36]. In our study
catchment, owing to the Grain for Green Program and environmental protection regulation since 1962,
grazing and cultivation activities have been limited. In order to honor the great efforts for environmental
protection, the LRB is internationally known for the Saihanba National Forest Park, who has won the
award for Champions of the Earth in 2017 from the United Nations Environment Programme [45].
Some policymakers think that the ecological immigration, which aims at moving the local people to
other regions would be a reliable measurement to regulate the nonnegligible anthropogenic disturbance
in the National Park. However, the national and local policy makers and stakeholders can benefit
from our findings to carry out more cost-effective regulations for better conserving the ecosystem
services. Two indicators in our study have indicated that, for the policy makers, a more cost-efficient
regulation to alleviate the negative effects of human activities in the conservation area or a national
park would be to provide effective limitations to regulate human activities rather than migrate all
residents outside of the conservation area. One indicator is that, as shown in Figure 2, the difference in
the NDVI between the midstream and downstream is relatively narrow, which may be mainly due to
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the altitude gradient. With an increase in altitude, the temperature, atmospheric pressure and partial
pressure of CO2 would decrease [46], which result in the lower organic synthesis rate [31]. The other
indicator is the consistency of the NDVI change trend, fitted Copula function and the same lag length
identification between the midstream and downstream. These facts may be among the indicators that
when appropriate regulation has been carried out, limited urbanization or anthropogenic disturbance
would not have largely negative effects on the conservation area. Several researches have indicated
that the limited and regulated urbanization processes, including low impact development, would
strengthen the resistant ability for residential areas and reduce the negative impact on ecosystems [47].
Therefore, how to quantify and control the accepted human activities and urbanization should be
further discussed.

To conclude, the multi-statistical methods proposed in this study provide a general measure to
bridge the data gaps between stationary or non-stationary sequence and reject the pseudo regression.
In addition, this method can be applied to not only identify the relationship between the NDVI and
climatic factors but also detect the legacy effect and causal relationship. Our methods would be suitable
for both researchers and policymakers with different intentions. For policy makers, our study implies
that (1) the agriculture area should be ensured to have plenty of water prior than the forest-dominant
area; and (2) the restricted regulation to limit human activities would be more cost-effective to protect
the forest ecosystem in study catchment. For researchers, our research could be meaningful in following
aspects: (1) The multi-statistical methods may improve the understanding of the relationship between
two sequences, (2) the further studies on water demand for specific crops would help policy makers to
carry out appropriate irrigation measures; and (3) how to quantify the accepted human activity in
forest–urban mixed area would help local residents to achieve sustainable goals.

5.4. Limitation and Uncertainty

In our study, temperature and precipitation data have been analyzed as independent variables
to affect the vegetation growth. However, in the natural ecological system, the temperature and
precipitation-related climatic variables generally interact and determine plant growth. The independent
indicator using in our study may therefor generate uncertainty regarding influences of precipitation
and temperature on vegetation growth. Therefore, the interactive indices, such as combination of effect
of relative air humidity, soil water content, evaporation rate, and (bio)climatic index, merit further
studies, especially experimental studies, for vegetation growth.

6. Conclusions

This study provides a multi-statistical assessment method to address the characteristics of the
NDVI and climatic factors (temperature and precipitation). This methodology transferring from
economics to the environmental sciences field is promising and provides a comprehensive and simpler
applicable approach to indicate a basis for evaluating the relationship and casualty between vegetative
growth and climatic factors. The conclusions of this study are as follows:

(1) Except for the NDVI-P in the midstream, which has no presented obvious causality relationship,
both temperature and precipitation were identified as the Granger causes for the NDVI changes in
most of the study area.

(2) The NDVI in semi-arid area is different with the other climatic zone that is not strictly positive
to temperature and precipitation change. The excessive warmth and precipitation would inhibit the
vegetative growth during the growing seasons.

(3) Crops show the two months lag length in response to temperature, while other forest-dominated
area has presented four months lag in response to the temperature. Thus, crops respond to temperature
faster than forest and herbaceous at the semi-arid area.

(4) Based on the NDVI change characteristics and assessment using these two statistical methods,
we found that limited human activities in the ecological conservation area would not result in major
negative effects on vegetative growth.
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