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Abstract: The normalized difference vegetation index (NDVI) is commonly used to detect
spatiotemporal changes of vegetation cover. This study modeled the spatiotemporal changes
of land cover on Pianosa Island, Italy, in the period 1999–2015, using the multi-temporal Landsat
images. Since the end of the 1990s, the natural vegetation has been re-colonizing an area of abandoned
agricultural land and the island is undergoing a process of re-naturalization in harsh (drought and hot)
environmental conditions. Hence, it is an ideal test site to monitor the effects of anthropogenic and
climatic stressors on vegetation dynamics under Mediterranean climate. In this work, we proposed
a new statistical approach based on a pixel-by-pixel analysis of multi-temporal Landsat images.
Mean (µ) and standard deviation (σ) values of the NDVI images taken in 2015 were used for the
determination of the pixel thresholds (µ ± 3σ). The evaluation of land cover change was carried out
by comparing the µ value of a single NDVI pixel for 2015 with the same pixel of different years of the
study period. The results indicate that surface reflectance (SR) Landsat images are more suitable in
detecting the vegetation dynamics on the island than the top of atmosphere (TOA) ones and highlight
an increasing trend of vegetation cover on Pianosa Island, mainly during the early seven years
following the land abandonment in all the main land cover classes: abandoned crops and pastures,
Mediterranean macchia, and woodland. However, the abandoned agricultural and pasture areas
showed a higher increase in the vegetation cover and a shift in the shape of the normalized frequency
distribution of the SR NDVI data during the study period, suggesting that a colonization process
from other vegetation classes is occurring (i.e., Mediterranean macchia and trees are colonizing
the abandoned land, partly replacing herbaceous species). Our data highlight that the statistical
approach applied in this study is suitable for detecting vegetation cover changes associated with
anthropogenic and climatic drivers in a typical Mediterranean environment and could be proposed
as a new methodological approach in several other land monitoring studies.

Keywords: NDVI; vegetation change detection; remote sensing; land use change; abandoned
agricultural land

1. Introduction

The Mediterranean Basin is considered as one of the most vulnerable regions to future climate
change due to the foreseen increase in temperature to approximately double compared to the
average global warming and decrease in precipitation, leading to potentially harmful impacts on
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its hydrological and biological resources [1]. Although representing only 0.8% of the world’s ocean
surface, the Mediterranean Sea is one of only 34 global biodiversity hotspots, testimony of its incredible
importance for the biological wealth of our planet [2]. On the other hand, this region is currently subject
to considerable spatial and temporal changes in land use and vegetation cover, with consequent relevant
alterations in ecosystem composition and productivity [3]. As an example, the increasing abandonment
of agricultural practices in the Mediterranean rural landscape over the past five decades has profoundly
affected the vegetation dynamics in this region [4]. In addition, land use changes between agriculture
and forest can significantly affect the carbon budget and the sequestration capacity of ecosystems.
Hence, the detection of land use/cover changes is one of the major goals of future research and
monitoring for evaluating the effects of climatic and anthropogenic pressures on primary productivity
and carbon budget, biodiversity, and resilience of terrestrial ecosystems in the Mediterranean region.
Here, the ecological consequences of global changes are highly complex and insular ecosystems
can represent relevant natural study systems to investigate acclimation/adaptation mechanisms to
climatic and anthropogenic pressures of taxa or communities. Such islands can represent potential
“sentinels” for studying the effects and interactions of climate change and vegetation dynamics in
the Mediterranean region [5]. In particular, the use of such “sentinels” might allow an improved
understanding of the rate of environmental and vegetation changes under global warming and hence
elaborate management planning and mitigate biodiversity loss.

Nowadays, optical remote sensing techniques are widely used for vegetation change detection [6]
and as an effective temporal monitoring tool for protected areas [7], where it is very difficult to obtain
time series of in situ information that is needed for ecological preservation planning [8]. The regional
and global land cover products are made possible by the synoptic and periodic surveys of Earth
Observation (EO) satellite missions. Civilian global land-cover EO started with the launch of Landsat
1 on 23 July 1972 [9]. The increased availability of EO data, especially from the Landsat archive, coupled
with improved computing and storage capacity with novel image compositing approaches, have
resulted in the availability of large-area and gap-free annual remote sensing data [10]. Several vegetation
indices are commonly used to monitor the Earth’s photosynthetic vegetation performance in support of
phenological observations and biophysical interpretations [11]. In this framework, vegetation change
detection is one of the most important topics in environmental monitoring [6]. Remote sensing data
provide an estimate of the vegetation status and its spatiotemporal changes using the traditional
normalized difference vegetation index (NDVI) [12,13]. Site-based and remote sensing methods are
effective tools for mapping and monitoring vegetation and ecosystem health conditions from local to
regional scale [14], with possible up-scaling integration to global level [15]. Although widely used,
the interpretation of satellite images and derived thematic maps is strongly limited by the presence
of clouds, shadows, and hazes, which all reduce the number of usable observations for a detailed
analysis, both within and across years [16]. For this reason, there is a strong need to develop new
methodological approaches to correctly interpret and homologate the temporal variations of satellite
data using the existing databases. Since 2008, the Landsat data archive has become freely available to
the scientific community [17]. This offers a unique data source to monitor the global land surface at a
high spatial resolution (30 m). Hence, with more than 40 years of data, the Landsat archive is a highly
valuable dataset for analyzing long-term land surface dynamics [18].

In a review paper, Galidaki et al. [19] discussed optical and active remote sensing at various
spatial scales for estimating forest biomass in Mediterranean climate regions. They highlighted that
literature on the Mediterranean biome is limited with a significant research gap in knowledge and,
therefore, there is a need for reducing uncertainties of remote-sensing-based biomass estimates over
these areas. Further development of image processing methods is needed for operational regional and
national forest biomass assessment over Mediterranean areas.

In the study of land use change and vegetation cover, several threshold identification methods
including fuzzy, neural networks, expert systems, change vector analysis, and Bayes theory have
been applied (e.g., [10,20–29]). Nevertheless, due to its simplicity, the image thresholding methods
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based on standard deviation are the most commonly used tools for monitoring vegetation changes [3].
The land cover detection methods typically employ medium spatial resolution Landsat imagery [26].
The most common approach is a bi-temporal change analysis through a comparison of pairs of images
or characterizations [30] or multi-temporal change detection using more imagery.

The present study aimed to detect the spatiotemporal changes in vegetation cover in Pianosa
Island (Tuscan Archipelago National Park, Italy, Figure 1a) during the period 1999–2015 using data from
multi-temporal Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+), and Operational
Land Imager (OLI). Pianosa is an ideal Mediterranean test site due to its recent history of land use
change. Indeed, this island is a typical Mediterranean ecosystem where, after the abandonment of
agricultural practices in previously cultivated land, natural vegetation is currently re-colonizing and
the land is undergoing a process of re-naturalization or secondary succession [5,30]. Hence, this
insular site may be considered a typical “sentinel” of the impact of climate change and anthropogenic
disturbances on plant communities in a Mediterranean environment, also providing useful information
on their interactions and feedbacks in terrestrial ecosystems [5,31]. Finally, a novel land cover change
detection approach, based on a pixel-by-pixel statistical analysis of multi-temporal Landsat images,
is developed and evaluated.
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Figure 1. (a) Geographic location of Pianosa Island, Italy. (b) Land cover classes of Pianosa Island. (c) 
Google Earth image of Pianosa Island with the indicated three representative areas for woodland 
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(yellow circle). (d) Example of seasonal variation of Moderate Resolution Imaging Spectroradiometer 
(MODIS) normalized difference vegetation index (NDVI) values in the three types of ecosystems 
identified with a colored circle in Figure 1c. Each data point is the interannual average of the MODIS 

Figure 1. (a) Geographic location of Pianosa Island, Italy. (b) Land cover classes of Pianosa Island.
(c) Google Earth image of Pianosa Island with the indicated three representative areas for woodland
(light green circle), Mediterranean macchia (dark green circle), and abandoned crops and pastures
(yellow circle). (d) Example of seasonal variation of Moderate Resolution Imaging Spectroradiometer
(MODIS) normalized difference vegetation index (NDVI) values in the three types of ecosystems
identified with a colored circle in Figure 1c. Each data point is the interannual average of the MODIS
NDVI data among the 17 years of the 2000–2016 period (MODIS product type Mod44/Myd44, data
source Terra and Aqua, Global Agriculture Monitoring Project, 2016).



Forests 2020, 11, 334 4 of 18

2. Materials and Methods

2.1. Study Area

Pianosa Island (Figure 1) has an area of 10.2 km2 and a coastal perimeter of approximately
20 km. The highest elevation is 29 m above sea level (a.s.l.), with an average of about 18 m a.s.l.
The flat morphology of Pianosa prevents condensation of moist air and thus the mean annual
rainfall is very low. Moreover, due to the high permeability of the soils, the rain is usually quickly
drained. Based on a historical meteorological dataset (1951–2009), the mean air temperature is
15.8 ◦C and the mean annual rainfall is 496.6 mm, ranging between a minimum of 176.2 mm in
1999 and a maximum of 716.2 mm in 1984. Precipitation shows the typical seasonal pattern of the
Mediterranean environment, with a maximum between October and December and a minimum
between July and August. The meteorological data for the years under study were obtained from the
regional meteorological service of Tuscany, Italy (Environmental Modeling and Monitoring Laboratory
for Sustainable Development —LaMMA—Consortium). Values of daily precipitation, cumulative
precipitation, and temperatures are reported in Figure S1 (Supplementary Materials). The island was a
penal colony from the mid 19th century to the late 1990s. The agricultural activities of the penal colony
strongly affected the land use and the vegetation composition of Pianosa [31]. All agricultural and
pastoral activities were then interrupted in the late 90s, following the transfer of the jail to another island.
Hence, for more than 20 years, the anthropogenic pressure on land management has ceased or at least
has been significantly reduced. The land previously used for crops and pastures is no longer managed
and is now colonized by a plant community typical of the degraded soil of abandoned agricultural land
in the Mediterranean region [30]. Dominant species are herbaceous therophytes. The Mediterranean
shrubland vegetation covering other portions of the island is typical of calcareous soil and is dominated
by Rosmarinus officinalis l., Cistus spp., and Juniperus phoenicea l. [32]. Additionally, there are also small
woodlands with Pinus halepensis mill., Quercus ilex l., Arbutus unedo l., and a few Eucalyptus globulus labill
trees. Therefore, three main types of ecosystems have been identified at Pianosa: (i) abandoned crops
and pastures that are currently undergoing a process of re-naturalization; (ii) Mediterranean macchia;
and (iii) woodlands. The in situ land cover information is as of 2004 [33]. In total, the three types of
ecosystems account for more than 90% of the entire island area (Figure 1b). The abandoned crops and
pastures are the main ecosystems in terms of area (52%), followed by macchia (33%), and woodland
(15%), while the Mediterranean macchia is the main ecosystem in terms of biomass (61%), followed by
abandoned crops and pastures (26%) and woodland (13%). Among these ecosystems, Mediterranean
macchia showed the highest above-ground net primary productivity per surface unit.

2.2. Acquisition of Long-Term Multi-Temporal Image Data

A flowchart of the methodological approach used in this study is shown in Figure S2
(Supplementary Materials). The first step was the identification of the time period for dataset
collection in the study area. With this aim, a preliminary study on vegetation cover changes in the three
main ecosystem types of Pianosa Island was carried out at a coarse spatial resolution of 250 m using
the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data for the period 2000–2016
(MODIS product type Mod44/Myd44 [34]; Figure 1c,d). Figure 1d shows the seasonal variation of the
interannual average values of the MODIS NDVI data during the 2000–2016 period. Each data point is
therefore the average among the 17 years under study. Subsequently, a higher spatial resolution study
(30 m) was performed by means of the Landsat top of atmosphere (TOA) and surface reflectance (SR)
images. All the images were collected during the late spring–summer from day of year (DoY) 153 to
DoY 281 (i.e., the seasonal period during which the MODIS NDVI data showed the lowest values
and evidenced a clear distinction among the three studied ecosystems, Figure 1d). This period was
also chosen because it is the less affected by cloud cover and simultaneously the most sensitive to
vegetative activities in all ecosystems, as determined by our in situ studies.
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Landsat TOA and SR orthorectified images (path 192–193, row 030–031) were acquired from the
United States Geological Survey (USGS), Land Satellite Data Systems (LSDS) Science Research and
Development (LSRD) [35]. To detect the spatiotemporal changes of land cover in the period 1999–2015,
we acquired twenty-four data images: two from Landsat-5 TM, ten from Landsat-7 ETM+, and twelve
from Landsat-8 OLI (see Table 1 for more details on the single data acquisition). All the data used for
this study were standard Level 1 terrain-corrected (L1T) products [36,37].

Table 1. Description of the multi-temporal data from Landsat-5 Thematic Mapper (TM),
Landsat-7 Enhanced Thematic Mapper (ETM+), and Landsat-8 Operational Land Imager (OLI)
used in this study.

Date Sensor Path/Row DoY Sun
Elevation [◦]

Sun
Azimuth [◦] Scene Identifier

11/07/1999 ETM+ 193/030 192 61.94 131.48 LE71930301999192EDC00
05/08/1999 ETM+ 192/030 217 54.69 140.38 LE71920301999217EDC00
21/08/1999 ETM+ 192/031 233 60.68 131.08 LE71920311999233NSG00
08/08/2003 TM 192/030 220 54.88 132.02 LT51920302003220MTI01
17/07/2007 ETM+ 193/030 198 60.68 131.08 LE71930302007198ASN00
02/08/2007 ETM+ 193/030 214 60.68 131.08 LE71930302007214ASN00
12/09/2007 ETM+ 192/030 255 46.83 148.56 LE71920302007255ASN00
19/07/2008 ETM+ 193/030 201 60.13 131.25 LE71930302008201ASN00
04/08/2008 ETM+ 193/030 217 57.11 135.26 LE71930302008217ASN00
13/08/2008 ETM+ 192/030 226 55.04 138.11 LE71920302008226ASN00
29/08/2008 ETM+ 192/030 242 50.76 143.66 LE71920302008242ASN00
30/09/2008 ETM+ 192/030 274 40.47 153.80 LE71920302008274EDC00
30/07/2009 TM 193/030 211 58.28 133.95 LT51930302009211MOR00
10/07/2010 TM 192/030 191 61.71 130.51 LT51920302010191MOR00
14/08/2011 TM 192/030 226 55.03 138.30 LT51920302011226MOR00
22/08/2011 ETM+ 192/030 234 53.52 142.77 LE71920302011234ASN00
05/06/2015 ETM+ 193/030 156 64.08 136.78 LE71930302015156NSG00
16/07/2015 ETM+ 192/030 197 64.08 136.78 LE71920302015197NSG00
09/09/2015 ETM+ 192/031 252 48.78 151.27 LE71930302015252NSG00
06/06/2015 OLI 192/030 157 64.11 136.48 LC81920302015157LGN00
13/06/2015 OLI 193/030 164 64.42 135.19 LC81930302015164LGN00
22/06/2015 OLI 192/031 173 65.12 131.18 LC81920312015173LGN00
29/06/2015 OLI 193/030 180 64.01 133.72 LC81930302015180LGN00
08/07/2015 OLI 192/030 189 63.20 134.02 LC81920302015189LGN00
24/07/2015 OLI 192/030 205 60.85 136.50 LC81920302015205LGN00
31/07/2015 OLI 193/030 212 59.51 138.24 LC81930302015212LGN00
09/08/2015 OLI 192/030 221 57.53 140.89 LC81920302015221LGN00
16/08/2015 OLI 193/030 228 55.79 143.16 LC81930302015228LGN00
25/08/2015 OLI 192/030 237 54.36 144.53 LC81920302015237LGN00
01/09/2015 OLI 193/030 244 51.28 148.61 LC81930302015244LGN00
10/09/2015 OLI 192/031 253 49.56 150.27 LC81920312015253LGN00

Seasonal changes can induce strong differences in vegetated scenes due to variations in
phenological stages (e.g., plant senescence), physiological activity (e.g., photosynthetic performance
and stomatal conductance), and canopy architecture development. Diurnal and seasonal differences
also affect sun azimuth and elevation [38]. For these reasons, all the data were acquired at the sun
azimuth from 131.18◦ to 150.27◦ and sun elevation from 46.83◦ to 65.12◦ (Table 1). The dominant
weather conditions can affect atmospheric transmission and scattering [16]. Consistent differences
in gross atmospheric conditions are often associated with seasonal changes. Hence, to reduce the
influence of the atmospheric condition and the presence of clouds, the pixel quality assessment was
carried out based on the CFMask (Function of Mask Algorithm) file and only the “clear” pixels (free
of water, snow, clouds, cloud shadows, and cirrus) were used for the calculation of the seasonal
variability of NDVI index. For this purpose, a decision tree based on the CFMask file was applied to
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each Landsat dataset used in this study (Table 1 and Table S1) and only pixels equal to 0 (i.e., “clear”
pixels) value were used for the subsequent analyses [39]. Moreover, due to a scan line corrector off

(SLC-off) problem for the ETM+ data starting from the year 2003 [40], the decision tree was able to
identify and remove pixels affected by the original data gaps in the primary SLC-off scene (i.e., pixels
coded with number 255).

2.3. Calculation of the Normalized Difference Vegetation Index (NDVI)

The NDVI value for each TM, ETM+, and OLI image used in the present study was calculated as:

NDVI = (ρnir − ρred)/(ρnir + ρred), (1)

where ρred and ρnir are the reflectance values acquired in the red and near-infrared regions, respectively,
for both TOA and SR.

2.4. Image Pre-Processing

A pre-processing step of co-registration of the multi-temporal images was necessary. For this
purpose, one Landsat 8 image (OLI 2015, DoY 180) was selected and used as a reference (i.e., master
image) to register all the other images (i.e., slave images). A simple error-minimization routine was
used to provide the relative geo-referencing, matching each image to the reference one by means of
vertical and horizontal shifts. The subsequent processing steps were conducted on a region of interest
(ROI) of 201 × 201 pixels.

All the data processing was carried out using the free software system for numerical computations
Octave, under the terms of the GNU General Public License as published by the Free Software
Foundation (https://www.gnu.org/software/octave/).

2.5. Landsat Data Continuity across Multi-Temporal NDVI Series

The Landsat data continuity across multi-temporal NDVI series was assured through specific
quantitative spectral reflectance transformation functions [37] to compensate the relative spectral
response (RSR) differences among the three Landsat sensors (TM, ETM+ and OLI; Figure 2 and
Figure S3). For this aim, NDVI sensor transformation functions were derived by linear regression
analysis comparing one NDVI image from Landsat 5 TM (2011, DoY 226) with one NDVI image from
Landsat 7 ETM+ (2011, DoY 234), and subsequently, two NDVI images from Landsat 7 ETM+ (2015, DoY
156 and 252) with two NDVI images from Landsat 8 OLI (2015, DoY 157 and 253). The linear regression
equations and the coefficient of determination (R2) values are reported in Figure 2b,c (TOA NDVI),
Figure 2d,e (SR NDVI) and Figure S2 (TOA ρred, SR ρred, TOA ρnir, and SR ρnir). These coefficients
were then applied for the harmonization of Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI images
across the study period.

https://www.gnu.org/software/octave/
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Figure 2. (a) Relative spectral response (RSR) of Landsat Thematic Mapper (TM), Enhanced Thematic 
Mapper (ETM+), and Operational Land Imager (OLI) sensors for the corresponding reflectance bands 
used in this study. Linear relationships between (b) top of atmosphere (TOA) normalized difference 
vegetation index (NDVI) Landsat 5 TM and 7 ETM+; (c) TOA NDVI Landsat 7 ETM+ and 8 OLI; (d) 
surface reflectance (SR) NDVI Landsat 5 TM and 7 ETM+; (e) SR NDVI Landsat 7 ETM+ and 8 OLI. 

Figure 2. (a) Relative spectral response (RSR) of Landsat Thematic Mapper (TM), Enhanced Thematic
Mapper (ETM+), and Operational Land Imager (OLI) sensors for the corresponding reflectance bands used
in this study. Linear relationships between (b) top of atmosphere (TOA) normalized difference vegetation
index (NDVI) Landsat 5 TM and 7 ETM+; (c) TOA NDVI Landsat 7 ETM+ and 8 OLI; (d) surface reflectance
(SR) NDVI Landsat 5 TM and 7 ETM+; (e) SR NDVI Landsat 7 ETM+ and 8 OLI. The regression equation
and determination coefficient (R2) are shown. The black lines show a 1:1 relationship and the red and blue
lines are the linear regression lines of best fit for TOA and SR data, respectively.
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2.6. Seasonal Vegetation Change Detection

Seasonal changes of vegetation cover on the Island were detected by adopting a new statistical
approach based on a pixel-by-pixel analysis of the multi-temporal time series. Mean (µ) and standard
deviation (σ) values of the OLI TOA and SR NDVI images (from 06/06/2015 to 20/09/2015; DoY: 157, 164,
173, 180, 189, 205, 212, 221, 228, 237, 244, 253) were used for the determination of the pixel thresholds
(µ ± 3σ; Figure 3). For each pixel of the ROI, we calculated a mean (µij, with intervals i = 1201 and
j = 1201) and standard deviation (σij) on a minimum sample size of four DoY to a maximum of twelve
DoY, where i and j identify the pixel inside the ROI. Only the pixels (ith,jth) following the normal
distribution were considered for studying the vegetation change evolution during the time series.
The Shapiro–Wilk test values were performed [41], resulting in 91.9% of the ROI following a normal
distribution. It is well known that for random variables following a normal distribution, 99.7% of
probability is within ±3σ around µ [42].
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Figure 3. Surface reflectance (SR) normalized difference vegetation index (NDVI) Operational Land
Imager (OLI) images for the year 2015. The (a) mean (µ) and (b) standard deviation (σ) values of the SR
NDVI images were calculated from 06/06/2015 to 20/09/2015 (day of year (DoY): 157, 164, 173, 180, 189,
205, 212, 221, 228, 237, 244, and 253).

The temporal evolution of the vegetation cover was studied through a pixel-by-pixel analysis,
comparing the µ value of a single NDVI pixel for 2015 with the same pixel of a previous reference
year of the selected time series (NDVI_year; where the reference year corresponds to 1999, 2003,
2007 and 2011, respectively). Each NDVI_year is a mean seasonal value of ROI for the reference year.
For example, the NDVI_1999 was calculated as a mean value of three ETM+ images collected at DoY
192, 217, and 233. As previously explained, each pixel used for the calculation of NDVI_year (see
Table 1) was clear and not affected by the SLC-off problem. The difference between the 2015 OLI NDVI
and the NDVI of the reference years (NDVI_year) was evaluated for each pixel using a threshold
value, defined as µ ± 3σ. In detail, because 2015 was the reference image to which we compared
years prior, if the pixel showed a value of NDVI_year lower than µ − 3σ, it was classified as an area
of increasing vegetation cover (gain in vegetation). Conversely, if the NDVI_year value was higher
than µ + 3σ, the pixel was classified as an area of decreasing vegetation cover (loss in vegetation).
Finally, if the NDVI_year was included within the µ ± 3σ range, the pixel was classified as an area
where the vegetation did not show any significant change during the time interval under study (stable
in vegetation).

3. Results and Discussion

The interannual average values of MODIS NDVI for the entire time series 2000–2016 (n = 17 years)
in the three main types of ecosystems (woodland, Mediterranean macchia, and abandoned crops and
pastures) showed a typical seasonal trend, with a decrease during the late spring-summer period (DoY



Forests 2020, 11, 334 9 of 18

153–281, Figure 1d) due to the harsh (dry and hot) Mediterranean environmental conditions of the
site [5]. During the summer period, all of the ecosystems under study showed a low phenological
and environmental variability and reached the lowest NDVI values, most likely because of the limited
water availability and high temperature leading to stress conditions (i.e., stomatal closure and possible
molecular effects) and reduced photosynthetic activity [5]. The decrease in NDVI during this period
was especially evident in the abandoned agricultural land because of the presence of herbaceous species
(therophytes) that are more sensitive to environmental stresses compared to Mediterranean sclerophyll
species of the macchia and woodland [5]. Therefore, during summer in the abandoned cropland,
the photosynthetic activity of herbaceous species is decreasing more than that of Mediterranean shrubs,
whose contribution to the spectral NDVI signal is, hence, increasing.

Hence, this index allows for distinguishing between the three types of ecosystems during the
selected period, with the Mediterranean macchia showing the highest interannual average (±standard
deviation) value of NDVI (0.61 ± 0.03), followed by woodland (0.57 ± 0.03) and abandoned crops and
pastures (0.42 ± 0.04), in this order, in agreement with the differences observed in the above-ground
net primary productivity per surface unit. Figure 2 shows the µ and σ values of the SR NDVI OLI
images for 2015. Figure 4 shows the multi-temporal SR NDVI images and the relative changes in
vegetation cover during 1999–2015. The spatiotemporal changes in vegetation cover was estimated
by a pixel-by-pixel comparison of the OLI NDVI 2015 with the NDVI images of the reference years
(NDVI_years). In Figure 4, the pixels showing an increase (gain), a decrease (loss), or absence of changes
(stable) in vegetation cover are marked in green, red, and blue, respectively. Figure 4a,c,e,g report
the SR NDVI images for the years 1999, 2003, 2007, and 2011, respectively, while in Figure 4b,d,f,h,
the relative gain or loss in vegetation referring to the comparison with the OLI NDVI 2015 images
(Figure 3) are shown. Similar but not equal results were also obtained for the TOA NDVI images (data
not shown). Moreover, to validate our statistical approach, the ETM+ NDVI images for 2015 (Figure 4i)
were compared with the OLI NDVI images relative to the same year (Figure 4l). The close agreement
between the 2015 NDVI data from the two platforms (OLI and ETM+) supports the reliability of the
implemented pre-processing procedures, assuring that the proposed approach is not affected by the
different Landsat sensors and by possible noise-based (not vegetative) variations.

The quantitative results of this methodological approach are summarized in Tables 2 and 3
for the TOA and SR images, respectively. These tables show the changes in vegetation cover (gain,
loss, or stable) expressed as both surface (km2) and percentage (%) for the years 1999, 2003, 2007,
and 2011, with respect to the reference year 2015. The results indicate a natural expansion of the
vegetation in the study area during the period 1999–2015, with an increase in vegetation cover (gain)
in 2015 with respect to the years 1999, 2003, and 2007. During this period, the maximum gain for
TOA (2.73 km2, 26.01%; Table 2) and SR (2.46 km2, 23.48%; Table 3) data was observed by comparing
the 2015 images with those of 2003 and 1999, respectively, while the loss of vegetation was generally
negligible. Subsequently, the vegetation cover remained almost unchanged, which emerged in the
comparison between 2011 and 2015. A more detailed temporal analysis covering the time interval
2008–2010 was carried out by comparing images of the year 2015 with those relative to the years 2008,
2009, and 2010 (Tables 2 and 3). This analysis indicates only minor changes in vegetation cover during
these years. Hence, our results clearly demonstrate a steep increase in vegetation cover during the
years right after the time of agricultural land abandonment (1999), until 2007, followed by a period of
more stable vegetation cover in the subsequent years and until 2015.
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Figure 4. Multitemporal surface reflectance (SR) normalized difference vegetation index (NDVI) images
(left, panels a, c, e, g, i) and relative changes in vegetation cover (right, panels b, d, f, h, l) during the
years 1999 (a,b), 2003 (c,d), 2007 (e,f), 2011 (g,h), and 2015 (i,l). Changes in vegetation cover were
determined by a pixel-by-pixel comparison of the Operational Land Imager (OLI) NDVI 2015 (see
Figure 3) with the Enhanced Thematic Mapper (ETM+) NDVI images of the reference years 1999 (a,b),
Thematic Mapper (TM) 2003 (c,d), ETM+ 2007 (e,f), TM 2011 (g,h), and ETM+ 2015 (i,l). In panels b,
d, f, h, and l, the pixels showing an increase (gain), a decrease (loss), or absence of changes (stable) in
vegetation cover are marked in green, red, and yellow, respectively.
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Table 2. Relative changes in vegetation cover for the time series 1999–2015, determined by a pixel-by-pixel
comparison of the top of atmosphere (TOA) Landsat images from 2015 with those of the years 1999, 2003,
2007, and 2011, respectively. In the table are reported the relative increases (gain) and decreases (loss) in
vegetation cover expressed as both surface (km2) and percentage (%) compared to 2015.

Year Gain (km2) Loss (km2) Gain (%) Loss (%)

2015 vs. 1999 2.40 0.00 22.88 0.06
2015 vs. 2003 2.73 0.02 26.01 0.22
2015 vs. 2007 1.48 0.01 14.15 0.12
2015 vs. 2008 0.17 0.12 1.63 1.16
2015 vs. 2009 0.01 0.06 0.15 0.60
2015 vs. 2010 0.00 0.32 0.00 3.06
2015 vs. 2011 <0.01 0.04 0.05 0.44

Table 3. Relative changes in vegetation cover for the time series 1999–2015, determined by a pixel-by-pixel
comparison of the surface reflectance (SR) Landsat images of the year 2015 with those of the years 1999,
2003, 2007, and 2011, respectively. In the table are reported the relative increases (gain) and decreases (loss)
in vegetation cover expressed as both surface (km2) and percentage (%) compared to 2015.

Year Gain (km2) Loss (km2) Gain (%) Loss (%)

2015 vs. 1999 2.46 0.00 23.48 0.06
2015 vs. 2003 2.14 0.02 20.40 0.27
2015 vs. 2007 1.94 0.01 18.48 0.15
2015 vs. 2008 0.13 0.17 1.24 1.62
2015 vs. 2009 0.01 0.11 0.14 1.07
2015 vs. 2010 0.00 0.58 0.00 5.51
2015 vs. 2011 <0.01 0.08 0.07 0.79

To investigate the spatiotemporal dynamic of vegetation cover on the island, a pixel-by-pixel
analysis of the sequential change of NDVI was conducted during the study period, highlighting with
different colors the last year during which a change was observed (Figure 5). By means of these maps,
it is possible to identify the areas subjected to natural vegetation expansion for use in the ground-truth
validation. A comparison between the TOA and SR NDVI maps revealed a significant difference in
the western area of Pianosa Island dominated by the Mediterranean macchia, where the TOA map
highlighted a more consistent increase in vegetation cover than the SR NDVI map.

To further validate the appropriateness and reliability of our statistical threshold approach in
detecting possible vegetation cover changes in the study area and to compare TOA and SR reflectance
data, two sub-areas subject to vegetation expansion were identified and compared to the ground-truth
observations obtained by the analysis of digital aerial orthophotos (2000–2013 by Regione Toscana–SITA:
Cartoteca [43], Figures 6 and 7). These sub-areas were chosen because they are highly representative
of the ecosystem types of the island and of the land-use changes occurring during the study period.
In particular, in the first orthophoto image (Figure 6), a circular sub-area (marked in green) indicates
a clear gain in vegetation during the 2000–2013 period, in agreement with the TOA and SR NDVI
maps (Figure 5a,b). In the second orthophoto image (Figure 7), two circular sub-areas were selected: a
sub-area (marked in blue) where the vegetation showed only limited changes during the 2000–2013 time
interval, and another one (marked in green) showing an increase in vegetation cover. The comparison of
these orthophotos with the TOA and SR NDVI images (Figure 5a,b), indicated a strong agreement with
the SR NDVI, whereas the TOA NDVI was less related to the ground-truth observations. Hence, it can
be concluded that in this study, the SR NDVI was more suitable to distinguish vegetation cover changes
occurring in these two sub-areas, as suggested by Roy et al. [17]. In particular, these authors highlighted
that SR reflectance is needed to derive consistent geophysical and biophysical products because the impact
of atmospheric gases and aerosols on optical wavelength radiation is variable in space and time. For these
reasons, SR reflectance can be considered a more suitable index in detecting vegetation dynamics than TOA.
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Table 4 shows the partitioning of the chronological gain/loss of vegetation for the different land
cover classes (Mediterranean macchia, woodland, and abandoned crops and pastures) using the SR
NDVI data. An increase in vegetation cover occurred following the year of crop abandonment in
all three main ecosystem types on Pianosa Island. However, the abandoned crop and pasture areas,
as expected, showed the highest vegetation gain. These variations in vegetation cover are mainly due
to land use changes, although variability in precipitation and temperature regimes can also play a
role in the observed inter-annual variations [44]. Accordingly, Maselli et al. [44] reported increasing
fluxes of both carbon and water in the macchia ecosystem during the decade of 2001–2010, mainly
depending on a similarly increasing spring rainfall. It is also worth noting that in 2015, a slight loss
in vegetation cover compared to 2010 was recorded (Table 4), which was related to differences in
thermo-pluviometric regimes between the two years (Figure S1). In fact, 2010 showed much more
frequent rainy events and distributed throughout the growing season compared to 2015. This likely
prolonged the vegetative season, especially in the abandoned crop sites, leading to the increased NDVI
values (Table 4). Indeed, these areas are mainly colonized by therophyte herbaceous species, with
relatively low water-use efficiency, and therefore strongly affected by the precipitation regime during
the vegetative season [5]. Finally, Figure 8 reports the temporal change in the frequency distribution of
SR NDVI for the analyzed period in the three land cover classes. The results indicate a clear change
in pixel distribution within each class from the years 1999–2007 to 2011, with a general upward shift
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of the mean SR NDVI values supporting the increasing trend of vegetation cover during the study
period. However, both Mediterranean macchia and woodland classes did not show a substantial
change in the shape of frequency distribution curves from 2011 to 2015, while in the abandoned crops
and pastures, a progressive change in the frequency distribution shape occurred between 2007 and
2011. These data suggest that the increase in the mean SR NDVI in woodland and Mediterranean
macchia is probably mainly due to a natural expansion of the preexisting vegetation during the study
period, while the change in the shape of frequency distribution in the abandoned crops and pastures
may be explained by the re-colonization process from other vegetation classes that is actually occurring.
It is noteworthy that the shape and frequency distribution in the latter vegetation class in recent years
have become more similar to that of woodland and/or Mediterranean macchia, which would indicate a
recolonization of shrubs and bushes replacing, in part, herbaceous species.

Table 4. Relative changes in vegetation cover for the time series 1999–2015 in woodland (w),
Mediterranean macchia (m), and abandoned crops and pastures (a). The relative increase (gain)
and decrease (loss) in vegetation cover was expressed as a percentage (%) by comparing the surface
reflectance (SR) Landsat images of 2015 with those of the years 1999, 2003, 2007, and 2011, respectively.

Gain (%) Loss (%)

Year w m a w +m + a w m a w +m + a

2015 vs. 1999 2.03 5.60 12.05 19.68 0.00 0.00 0.00 0.00
2015 vs. 2003 2.67 4.71 10.38 17.76 0.00 0.00 0.00 0.00
2015 vs. 2007 1.50 3.97 9.97 15.24 0.00 0.00 0.01 0.01
2015 vs. 2008 0.27 0.21 0.57 1.05 0.03 0.13 0.88 1.04
2015 vs. 2009 0.00 0.00 0.13 0.13 0.01 0.12 0.28 0.41
2015 vs. 2010 0.00 0.00 0.00 0.00 0.08 0.44 2.79 3.31
2015 vs. 2011 0.00 0.00 0.06 0.06 0.01 0.05 0.17 0.23
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The original vegetation of the island, dominated by a mixture of evergreen and deciduous trees,
bushes, and grasslands [45], was greatly affected by the agricultural activities of the penal colony until
its abandonment. Subsequently, a progressive secondary succession is currently undergoing after
abandonment and the land previously used for agriculture is now covered by a plant community
typical of degraded Mediterranean agricultural soil [5]. In particular, Scartazza et al. [5] showed
an increase in the frequency of Cistus spp., a typical opportunistic semi-deciduous shrub species of
Mediterranean environments that can play a relevant role in colonizing the degraded abandoned
land of Pianosa. Furthermore, this secondary succession would favor the diffusion of Mediterranean
species characterized by a higher water-use efficiency. Hence, it is possible that some species of the
original Mediterranean macchia have an advantage with respect to others, leading to a novel plant
association. Accordingly, the present data confirm that a natural expansion of vegetation is occurring
on degraded and drought-prone soils of Pianosa. Abandonment of agriculture and pastoral practices
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in the Mediterranean rural landscape over the past five decades will have strong repercussions on the
vegetation dynamics and biodiversity of these areas [4]. Due to its ecological interest and extreme
drought environment, Pianosa Island could be a “sentinel” of climate change and anthropogenic
pressure in the Mediterranean region, providing relevant information on biodiversity loss risks and
vegetation dynamics as well as possible management strategies to preserve these extremely fragile
ecosystems. Our statistical methodological approach can represent a useful tool for studying the
vegetation dynamics in this and other unmanaged ecosystems. This methodology can take advantage
of in-situ observations to study the ecological process of re-naturalization and the species involved.
In situ data are available in Pianosa for the years studied [5,33]. In future studies, the remote sensing
technique using pixel-by-pixel analyses of multi-temporal Landsat data represents a potential tool
for monitoring these processes in complex and variegated ecosystems such as those of Pianosa,
in combination with accurate image pre-processing steps and ground-truth observations.

4. Conclusions

This study aimed to detect the spatiotemporal changes of vegetation cover of Pianosa Island
(Italy) in the period 1999–2015 by a comparative analysis of TOA and SR NDVI Landsat maps.
The results show that the SR NDVI data are more suitable to evaluate the spatiotemporal land cover
changes, indicating an intense increasing trend in vegetation cover in the period 2011–2015. The total
change in vegetation cover over the selected period was about 2.46 km2, more than one fifth of the
overall island surface. Most of this change occurred during the early seven years following the
agricultural abandonment and the sharp decrease in human presence, in the three main vegetation
classes: Mediterranean macchia, woodland, and abandoned crops and pastures. However, in the latter
vegetation class, the NDVI trend suggests that an increase in vegetation cover is currently in progress.
If such an increasing trend continues, it is very likely that Mediterranean vegetation, as expected, will
colonize the abandoned agricultural land and will undergo a process of re-naturalization in the near
future. This will have a significant impact on carbon budget and carbon sequestration, both in the
above ground and in the soil organic C. Furthermore, a new methodological approach for vegetation
change detection was applied by using a descriptive statistical analysis of the selected multi-temporal
NDVI data series. This statistical approach employed a pixel-by-pixel image comparison analysis
throughout the time series and was proven to be effective in monitoring the vegetation dynamics on the
island. This insular ecosystem in the Tuscan Archipelago National Park has turned out to be a valuable
test site, highly representative of several Mediterranean environments where the vegetation dynamic
is strongly affected by anthropogenic land use and climatic drivers; hence, due to its recent history,
environmental conditions, and geographical position, it could represent a “sentinel” for monitoring
vegetation cover changes and biodiversity in the Mediterranean region. Accordingly, the method
used in this study may prove useful in studying land cover changes in several other environmental
conditions and world ecosystems as well as other aspects of land monitoring.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/3/334/s1,
Figure S1: Meteorological data; Figure S2: Flowchart of the methodological approach; Figure S3: Linear
relationships between spectral reflectance bands. Table S1: Number and percentage of pixel masked out in each
datasets of Pianosa Island.
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