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Abstract: A clear understanding of the dynamics of photosynthetic capacity is crucial for accurate
modeling of ecosystem carbon uptake. However, such dynamical information is hardly available
and has dramatically impeded our understanding of carbon cycles. Although tremendous efforts
have been made in coupling the dynamic information of photosynthetic capacity into models, using
“proxies” rooted from the close relationships between photosynthetic capacity and other available leaf
parameters remains the popular selection. Unfortunately, no consensus has yet been reached on such
“proxies”, leading them only applicable to limited cases. In this study, we aim to identify if there are
close relationships between the photosynthetic capacity (represented by the maximum carboxylation
rate, Vcmax) and leaf traits for mature broadleaves within a cold temperature deciduous forest.
This is based on a long-term in situ dataset including leaf chlorophyll content (Chl), leaf nitrogen
concentration (Narea, Nmass), leaf carbon concentration (Carea, Cmass), equivalent water thickness
(EWT), leaf mass per area (LMA), and leaf gas exchange measurements from which Vcmax was derived,
for both sunlit and shaded leaves during leaf mature periods from 2014 to 2019. The results show
that the Vcmax values of sunlit and shaded leaves were relatively stable during these periods, and no
statistically significant interannual variations occurred (p > 0.05). However, this is not applicable
to specific species. Path analysis revealed that Narea was the major contributor to Vcmax for sunlit
leaves (0.502), while LMA had the greatest direct relationship with Vcmax for shaded leaves (0.625).
The LMA has further been confirmed as a primary proxy if no leaf type information is available.
These findings provide a promising way to better understand photosynthesis and to predict carbon
and water cycles in temperate deciduous forests.
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1. Introduction

Photosynthesis is one of the main drivers of the carbon flux and plays a critical role in climate models
across various scales from individual to global [1–3]. Currently, carbon uptake is popularly estimated
using a well-established biochemical model of photosynthesis developed by Farquhar et al. [4,5],
requiring leaf photosynthetic capacity parameters as key inputs. Hence, a clear understanding of
leaf photosynthetic capacity is indispensable for predicting responses of carbon flow in ecosystems
to climate change [6] and for modeling biosphere-atmosphere interactions at local and regional
scales [7,8]. Leaf photosynthetic capacity is often described by the maximum rate of carboxylation
(Vcmax), determined by the amount, activity, and kinetics of the enzyme ribulose 1,5-bisphosphate
carboxylase/oxygenase (Rubisco) [4].
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The model-simulated photosynthetic rate of terrestrial biosphere models is highly sensitive to
Vcmax [3,9], which has been traditionally treated as a constant. However, Vcmax in general varies
widely across species, plant functional types, and environmental conditions [10–14]. In addition,
seasonal variations of it are also apparent [15–17], further complicating the situation and suggesting
that the constant-treatment of the parameter in the models is inadequate. Unfortunately, the traditional
approach of inferring Vcmax by model inversion from photosynthesis measurements [18,19] is so
time-consuming and cannot provide highly frequent dynamical information of the parameter required
by models.

Tremendous efforts have hence been made to provide spatiotemporal dynamics of the parameter.
Searching potential correlations between leaf photosynthetic capacity and other easily measurable
quantitative parameters has become a popular practice in recent years, e.g., using nitrogen (N)
content on an area basis [20,21] or a mass basis [22], or chlorophyll [23], as “proxies” for providing
spatiotemporal dynamics of the parameter, and is getting particularly important for parameterizing
terrestrial biosphere models [5,24,25].

However, it is vital to explore the mechanistic relationships between Vcmax and leaf parameters,
e.g., leaf mass per area (LMA), nitrogen concentration, or chlorophyll content, before this approach
can be widely applied. It has been well documented that Vcmax is highly correlated with leaf nitrogen
concentration either expressed on an area basis [20,21] or a mass basis [22], and it can therefore be
estimated using existing Vcmax-N relationships. Such associations have widely been used in scaling
estimates of leaf photosynthesis to canopy level [26]. A possible reason for the association is that
nitrogen is the main component of Rubisco, accounting for a large proportion of the photosynthetic
machinery [27,28]. On the other hand, however, the use of the relationship has been criticized because
there is a wide range of Vcmax for a given value of Narea among different studies, and leaf ontogeny or
drought may have additional effects on the relationship, which in turn lead to substantial errors [18].
More critically, this relationship is still a subject of debate [28]. No strong relationship could have ever
been observed in several studies, e.g., van de Weg et al. [29] and Dusenge et al. [30], whereas more
studies claimed that the relationship is relatively stable and robust among different species [31] or
under different environmental conditions [27,32,33].

Comparatively, much fewer works have ever focused on using other leaf biochemical properties
such as chlorophyll content, or other leaf structural traits to derive Vcmax. The leaf chlorophyll content
is a key parameter directly linked to photosynthetic potential or primary production and may thus
provide valuable information on the physiological status [34,35]. Since the leaf chlorophyll content may
be derived from satellite data over different spatial and temporal scales [23], it may therefore provide
another promising potential proxy for Vcmax. Researches show that leaf chlorophyll distribution is
strongly correlated with leaf nitrogen content [36] because a large amount of leaf nitrogen is distributed
in chlorophyll pigments [37], suggesting a potential linkage between them. A previous study by
Niinemets et al. [38] has reported that the decline in leaf chlorophyll content would have resulted in
similar decreases in leaf photosynthetic capacity. Unfortunately, the variation of Vcmax in response to
the chlorophyll content has been poorly documented up to date, limiting its usefulness as a “proxy”
for Vcmax.

Previous researches have also shown that most of the variation in Vcmax could be explained by
the variation in leaf structural traits, usually quantified using LMA [39,40], although the effect of leaf
structure on Vcmax could be rather complex [41–44]. The LMA determines several leaf-scale processes,
including nitrogen and water use efficiency, integrates leaf morphology and composition, and is critical
for carbon sequestration and productivity [45]. Furthermore, LMA is a key parameter for plant growth
and an important indicator of plant strategies, although it has been used less so in plant physiology [42].
Unfortunately, the controlling function of LMA on photosynthetic capacity remains unclear [25].

Previous studies have further proved that the canopy-level flux is an integrated response in which
both sunlit and shaded leaf groups are involved, which respond differently to climate change [46,47].
As a result, most models have optimized the estimation of fluxes in carbon dioxide and water vapor by
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separating the canopy structure into sunlit and shaded leaf groups [48–52]. Unfortunately, most models
focused much more on sunlit leaves, ignoring the fact that most of the leaves within the canopy are in
the shade and that the shaded leaves have their specific photosynthetic characteristics. A recent study
by He et al. [47] clearly indicated that the shaded leaf group is particularly important in estimating gross
primary production and is not vulnerable to the effects of climate change, suggesting the importance
of including the dynamics of leaf photosynthetic capacity for this group in models. Consequently,
searching close relationships for providing dynamic information of leaf photosynthetic capacity for
shaded leaves is an inevitable step towards improving flux estimations further.

In this study, we focused on identifying the closest relationships for both sunlit and shaded leaves
of a typical temperature deciduous forest by assessing the relationships of photosynthetic capacity with
various biochemical and structural parameters. This is based on a long-term field-measured dataset
including both leaf photosynthetic capacity and associated biochemical and structural parameters for
the two leaf groups. The main objectives are: (1) to provide an overview of long-term (interannual) and
short-term (within leaf mature periods) variations in leaf photosynthetic capacity for both leaf groups;
(2) to explore potential close relationships between photosynthetic capacity and leaf biochemical and
structural parameters in different leaf groups.

2. Materials and Methods

2.1. Study Site

The study site is located at Nakagawane forest (138o06′ E, 35o04′ N) (Figure 1), one of the research
forests of Shizuoka University, Japan [53]. This research site has a typical alpine cold-temperate
climate with a mean annual air temperature of 16◦C and a mean annual precipitation of approximately
2500 mm [54], and an elevation from 390 to 1560 m.
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Figure 1. The location of the tower site used in this study: (a) inside Japan; (b) inside Shizuoka
Prefecture, Japan. (Boundary file was obtained from GADM - https://gadm.org/index.html).

2.2. Sample collection

Leaf gas exchange, as well as leaf biochemical and structural properties were measured for all
species accessible from the tower at the study site, consisting mainly of Fagus crenata, Betula grossa,
Carpinus tschonoskii, Stewartia monadelpha, and Acer shirasawanum. The tree canopies were separated into
the top layer of sunlit leaves and the bottom layer of shaded leaves as well as the middle layer with both
sunlit and shaded leaves. However, the samples taken from the middle layer were not included in the
analysis in order to avoid possible miscategorization of leaf groups. All samples were taken following

https://gadm.org/index.html
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the detached branch method [5] inside the tower of different directions at each layer. Three fully
expanded and apparent non-senescing leaves attached to the cut branches from each direction were
selected for each round of measurement. They were cut predawn and were immediately recut under
water for reestablishing the xylem water column [16,29,40]. After that, the sampled branches were
sealed in polyethylene boxes under dark and humid conditions and transported to the laboratory for
further determination. Samples were collected from mid-June to mid-September (DOY (Day of Year)
168 to DOY 258) in 2015, 2017, and 2018, while in mid-September (DOY 258) in 2014, and mid-August
(DOY 222) for both 2016 and 2019.

2.3. Leaf Gas Exchange Measurements

Leaf gas exchange was measured using the LI-6400 portable photosynthesis system (Li-Cor
6400, Li-Cor, Lincoln, NE, USA) during the maturation periods of 2014–2019 for sunlit leaves and
2014–2018 for shaded leaves. The chamber temperature was set to 25 ◦C, and the net photosynthetic
rate (A)–intercellular CO2 concentrations (Ci) (A-Ci) curves of light-saturated photosynthesis
(at 1000 µmol·m−2

·s−1) were obtained. Leaf photosynthetic capacity (maximum carboxylation
rate–Vcmax) on a leaf area basis was then inferred from the A-Ci curves using the R package
“plantecophys” [55].

2.4. Leaf Biochemistry and Structure Measurements

Leaf discs for chlorophyll content were punched on the same leaf samples after gas exchange
measurements and then were kept at 4 ◦C refrigerator prior to extraction with N, N-Dimethylformamide
(DMF) for 24 h. A dual-beam scanning ultraviolet-visible spectrophotometer (Ultrospec 3300 pro,
Amersham Biosciences, Piscataway, NJ, USA) was used to record absorption at different wavelengths,
while the Porra’s method was applied to calculate chlorophyll content (Chl) [56]. Leaf areas were
measured using digital photographs taken by a high-resolution scanner (EPSON GT-S600; EPSON,
Jakarta, Indonesia). Fresh weights of the same leaves were also taken before they were oven-dried for
48 h at 70 ◦C to constant weight for calculating equivalent water thickness (EWT) and leaf mass per
area (LMA). However, there were no EWT and LMA data available for 2015. Finally, the oven-dried
leaves were milled to a fine powder, from which leaf nitrogen concentration per unit area (Narea) and
per unit mass (Nmass), as well as carbon concentration per unit area (Carea) and per unit mass (Cmass)
were determined with a gas chromatograph (Sumigraph NC-95A, Shimadzu, Kyoto, Japan) (only for
the samples from 2017–2018).

2.5. Statistical Analysis

All photosynthetic, biochemical, and structural parameters were log10-transformed prior to
statistical analysis. Repeated measure analysis of variance (ANOVA) was performed to determine the
variations among the months and years (p < 0.05). The relationships of photosynthetic capacity with
biochemical and leaf structural parameters were analyzed by Pearson’s correlation, with the possible
direct and indirect effects of each parameter on the photosynthetic capacity being further identified by
path analysis [57–59]. Data analysis was conducted using the packages “plantecophys” and “agricolae”
in R 3.5.3.

3. Results

3.1. Long-term and Short-term Variations in Vcmax

Figure 2 shows the temporal variations of Vcmax in the leaf mature periods for both sunlit and
shaded leaves (from DOY 168 to DOY 258) for 2015, 2017, and 2018, respectively. For sunlit leaves,
Vcmax values in these 3 years slightly decreased from mid-June to July but rebound slowly until
mid-August (DOY 222) before they slightly declined towards mid-September (Figure 2a). However,
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statistical results revealed that there were no significant changes during the months (p > 0.5). Similarly,
Vcmax also tended to be stable within these months for shaded leaves (p > 0.5, Figure 2b).Forests 2020, 11, 318  5  of  14 
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Figure 2. Changes in Vcmax of sunlit (a) and shaded (b) leaves from DOY (Day of Year) 168 to DOY 258
in 2015, 2017, and 2018.

The mean Vcmax values of sunlit leaves from 2014 to 2019 and of shaded leaves from 2014 to 2018
were used to reveal their interannual variations (Figure 3). As shown in Figure 3, the mean Vcmax

values varied from 36.80 to 50.79 µmol m−2 s−1 in the sunlit leaves and from 25.28 to 32.26 µmol m−2

s−1 in the shaded leaves. The highest mean value of Vcmax of sunlit leaves was found for 2019 and of
shaded leaves was found for 2017 (50.79 and 32.26 µmol m−2 s−1, respectively). However, there was no
significant yearly variation in both sunlit and shaded leaves (p > 0.05).
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Species-specific temporal variations in Vcmax have also been examined. Two common species,
Fagus crenata and Acer shirasawanum were selected because their relatively large and continuous
sample numbers met with the statistical requirement. Contrary to canopy scale behaviors, significant
interannual variations in both sunlit and shaded leaves were identified for Fagus crenata. Its Vcmax in
2014 was significantly higher than in 2017 and 2018 for sunlit leaves (p < 0.001), and was significantly
higher than the other three years (2016–2018) for shaded leaves (p < 0.01). In contrast, there were
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no statistically significant interannual variations in Vcmax for both sunlit and shaded leaves of
Acer shirasawanum (p > 0.05) from 2014 to 2016, suggesting the behaviors can be very different among
different species.

3.2. Relationships of Vcmax with Leaf Biochemical and Structural Traits

Significant relationships of Vcmax with leaf biochemical and structural traits were detected in
all leaf samples (Figure 4). Variations in Vcmax were positively correlated with leaf biochemistry
(represented by nitrogen concentration and chlorophyll content in this study), showing a relatively
stronger relationship with Narea (r = 0.54, p < 0.001, Figure 4a) than with Chl (r = 0.46, p < 0.001,
Figure 4c). However, additional analysis revealed that there was no significant pairwise relationship
between Vcmax and Nmass (p > 0.05, Figure 4b) in terms of a mass base. On the other hand, besides leaf
biochemical properties, Vcmax was significantly correlated with leaf structural traits (represented by
LMA in this study) across all leaves (r = 0.53, p < 0.001, Figure 4d).
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LMA, leaf mass per area. Solid lines indicate significant results.

Further analysis based on a mass basis revealed that there were no significant correlations between
Vcmax and other leaf biochemical and structural traits, including Chl, Narea, and LMA (p > 0.05), for both
sunlit and shaded leaves.

Depending on the different leaf groups, Vcmax exhibited significant relationships with both Narea

and Chl (r = 0.38 vs. r = 0.37, p < 0.001), while a weak relationship with LMA (r = 0.30, p < 0.05) was
found for the sunlit leaves. On the contrary, the correlation between Vcmax and LMA proved to be
stronger (r = 0.56, p < 0.001) than that with Chl (r = 0.47, p < 0.001) and Narea (r = 0.45, p < 0.01) for
shaded leaves. Collectively, Vcmax was correlated less strongly with leaf biochemical and structural
traits in sunlit leaves than in shaded leaves (Figure 4).
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3.3. Direct and Indirect Effects of Leaf Biochemical and Structural Traits on Vcmax

Path analysis (Vcmax as the response variable and leaf biochemical and structural parameters as
the independent variables) was carried out to reveal the direct and indirect effects of leaf traits on
Vcmax. The results based on all samples and on different leaf groups are presented in Table 1.

Table 1. Direct and indirect effects of leaf biochemistry and structure on Vcmax in sunlit and
shaded leaves.

EWT Chl Narea Carea LMA n

EWT-total −0.164 0.073 0.221 −0.077 0.267 124
EWT-sun −0.037 0.182 0.331 −0.274 0.038 63
EWT-sh −0.197 0.019 0.026 −0.045 0.238 61
Chl-total −0.072 0.167 0.206 −0.079 0.238 170
Chl-sun −0.018 0.379 0.226 −0.252 0.035 88
Chl-sh −0.018 0.208 0.055 −0.138 0.363 82

Narea-total −0.102 0.097 0.356 −0.103 0.293 79
Narea-sun −0.024 0.170 0.502 −0.307 0.039 39
Narea-sh −0.051 0.117 0.099 −0.183 0.469 40

Carea-total −0.110 0.115 0.320 −0.115 0.339 79
Carea-sun −0.028 0.261 0.422 −0.365 0.050 39
Carea-sh −0.041 0.135 0.085 −0.213 0.544 40

LMA-total −0.122 0.110 0.288 −0.108 0.361 124
LMA-sun −0.026 0.250 0.366 −0.343 0.053 63
LMA-sh −0.075 0.121 0.074 −0.185 0.625 61

EWT, equivalent water thickness; Chl, chlorophyll content; Narea, leaf nitrogen concentration per unit area; Carea,
leaf carbon concentration per unit area; LMA, leaf mass per area; Vcmax, maximum carboxylation rate. Bold diagonal
values indicate direct effects; n is the number of leaf samples.

Among the examined variables, Chl, Narea, and LMA had positive effects on Vcmax in all leaves.
The variable that influenced Vcmax most significantly was LMA (0.361), followed by Narea (0.356).

For the sunlit leaves, path analysis showed that the maximum positive direct effect was from
Narea (0.502), followed by Chl (0.379) and LMA (0.053). Although LMA was strongly correlated with
Vcmax (r = 0.3, p < 0.05), its direct effect was surprisingly low (0.053, less than 0.100). However, LMA
exhibited an impressive positive indirect effect via Narea (0.366).

For the shaded leaves, LMA was the only variable that strongly correlated with Vcmax if considering
the direct effect. It exhibited a significant positive correlation (r = 0.56, p < 0.001) and an ever-higher
direct path coefficient value (0.625) with Vcmax. Although correlation analysis suggested that Chl, Narea,
and Carea also had high and significant relationships (r = 0.47, 0.45, and 0.51, respectively) with Vcmax,
their direct effects on Vcmax, however, were relatively low (path coefficient = 0.208, 0.099, and −0.213,
respectively). Nonetheless, high indirect effects on Vcmax were detected for each of them through LMA,
following the order Carea (0.544), Narea (0.469), and Chl (0.363).

4. Discussion

4.1. Intra-annual and Interannual Variations in Vcmax

Similar to Niinemets et al. [38], the result obtained in this study confirmed that no statistically
significant variation can be distinguished for Vcmax during the leaf maturity period, irrespective of
the leaf group. The Vcmax stabilized from the middle of June (around DOY 168) to the middle of
September (around DOY 258), suggesting there is a platform of Vcmax values surrounding the peak
values, termed as “leaf maturity period”. However, such values should be used with caution, since they
were obtained from canopy-layer-scale statistics rather than from specific species. There are apparent
seasonal variations of leaf photosynthetic capacity beyond this period [16,32,60,61]. Up to now, most
eco-physiological studies mainly focus on mature leaves and show that the photosynthetic apparatus
is essentially constant in the mature period (e.g., Niinemets et al. [38]). Such adaptationconstancy
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of photosynthetic mechanism on one hand greatly simplifies the estimation of the carbon balance,
while on the other hand, unfortunately, it dramatically increases simulation deviation, as previous
researches proved that only emphasizing on measuring mature leaves ignores the demographics of
the leaves [17], leading to an overestimation of the photosynthetic productivity [62,63]. Furthermore,
Vcmax also varies across species and locations [3]. Consequently, the traditional treatment of constant
Vcmax in gas exchange models might be applicable only to the leaf maturity period.

Our results indicate that the mean values of Vcmax in the time of leaf maturation did not vary
significantly among years, leading to no interannual variations in the context of statistics. This finding
is rather inconsistent with those observed in previous studies [16,18,64,65]. Again, our canopy-layer
approach of statistics has explained the discrepancy, since a further species-specific examination
revealed that there existed statistically significant interannual variations in different species within the
canopy. Furthermore, according to [18], the interannual variations of Vcmax are primarily caused by
water stress. Whereas no water stress has been confirmed in our research site and may have further
explained the discrepancy.

Taken together, the results obtained in this study should be interpreted with caution since they
were rooted in canopy scale statistics. Even so, our results indicated that there were relatively constant
Vcmax within leaf mature periods across years and may thus provide a feasible modeling approach from
leaf functional types, rather than from distinctive species, for understanding canopy scale performance.

4.2. Relationships of Vcmax with Leaf Biochemical and Structural Traits for Both Leaf Groups

In general, Vcmax is proportional to leaf nitrogen concentration when expressed on an area basis
(Narea) and has been confirmed for a wide range of species or plant functional types around the
world [8,39,66,67]. The results obtained in this study again indicate that there are stronger relationships
for the area-based than the mass-based approaches, but all relationships were strongly affected by LMA.
This confirms that the functional interpretation of the Vcmax-Narea relationship requires the analysis of
the parallel variation of LMA [68]. More directly, a significant correlation between Vcmax and LMA
was found during leaf maturation for all leaves, similar to those reported by other studies [16,18,39,40].
However, our results suggest that LMA is positively correlated with Vcmax, inconsistent with previous
claims that thick leaves should have low photosynthetic rates [66]. Such discrepancy reminds us that
the relationship between photosynthesis and LMA could be rather complex and requires a detailed
understanding of how this physiological process relates to plant strategy or environmental conditions
case by case. Even so, our results at least suggest that both LMA and Narea are useful parameters for
estimating photosynthetic capacity, as claimed by Han et al. [69].

Since the relationship determined only by simple correlation analysis may limit the prediction of
selection responses, it is therefore of necessity to partition direct and indirect cause-and-effect [70] in
order to identify more accurate and robust relationships.

Path analysis demonstrated the importance of Narea as the primary indicator of Vcmax in the sunlit
leaves, with Chl and LMA being less important. A stronger direct effect of Narea than of Chl with Vcmax

in this leaf group suggests that leaf Narea is of greater importance in controlling Vcmax than Chl, which
is in disagreement with Croft et al. [35], in which chlorophyll exerted a strong influence over Vcmax and
the use of chlorophyll as a proxy to model Vcmax was recommended. Our finding, nevertheless, was in
accordance with the results of Wright et al. [66] and Han et al. [69], where indicated that leaf nitrogen
concentration was most suitable to predict photosynthetic capacity. Clearly, the strong correlation
between Vcmax and Narea has a physiological basis, which can be explained by the high proportion
of nitrogen in leaves stored in Rubisco [71], and the proportion is largely constant [72]. The results
again suggest that Narea, rather than Chl, is more closely related to Vcmax, at least for sunlit leaves.
This finding, thus, should have important implications for canopy integration schemes when used to
calculate photosynthesis in gas exchange models.

On the other hand, path analysis clearly indicated that LMA was the single factor that directly
affected Vcmax most in the shaded leaves. Even though significant positive correlations of Vcmax with Chl
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and Narea were also obtained, they were attributed preliminarily to the indirect effects of the parameters
through LMA. Previous studies have shown that the growth of shaded leaves is mainly restricted by
carbohydrate supply [73], leading to a significant positive relationship between photosynthetic capacity
and LMA, which is commonly reported for shaded leaves (e.g., Poorter et al. [42]). It is clear that LMA
is associated with resource investment in structural components [74], while leaf photosynthetic capacity
is related to biomass investment, making LMA the main driver of the photosynthetic capacity in the
shaded leaves. Further, variations in LMA can be attributed to light acclimation, which in turn drives
leaf photosynthetic capacity in response to the light environment [75]. The importance of exploring
the relationship between Vcmax and LMA has also been pointed out by Grassi and Bagnaresi [68]
by providing a functional interpretation of acclimation and elucidating the role of physiological
plasticity. The results obtained in this study indicate the importance of leaf structure in determining
photosynthetic capacity during leaf maturation, which is critical information that needs to be included
in gas exchange models.

Furthermore, significant positive relationships of LMA with Chl (Figure 5a) and Narea (Figure 5b)
were identified, all suggesting that the structural traits of fully mature leaves are important in
determining photosynthetic capacity.
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4.3. Implications for Understanding Gas Exchange and for Climate Models

Our results demonstrate that Vcmax is closely correlated with Narea, at least for sunlit leaves,
challenging the results reported by Croft et al. [35], in which reported chlorophyll instead of Narea

should be used as a reliable proxy to model photosynthetic capacity. Theoretically, the strong correlation
between photosynthetic capacity and nitrogen concentration in the leaves can integrate the influence
of differences in the light environment during the growth process [76] and has been implemented
in physiologically-based gas exchange or carbon cycle models. We confirm the robustness of the
relationship and suggest that Narea can be used for estimating Vcmax. Since the reliable ways to estimate
leaf nitrogen concentration from remote sensing data are supported by the relationships between
vegetative indices and nitrogen concentration [77–80] even at a large scale, we predict that Vcmax may
be retrieved from remote sensing information via the bridge of Narea.

On the other hand, an increasing number of studies have indicated that the shaded leaves account
for half the total increase in gross primary production and hence play a critical role in global carbon
and water cycling [47], calling the attention to the contributions from shaded leaves. Previous studies
also concluded that differently shaded portions might have altered the relationships between remote
sensing indices (e.g., photochemical reflectance index and light use efficiency) [81]. As a result, future
gas exchange models should have the ability to encompass both sunlit and shaded leaves, with the
later much less been studied yet. Our results clearly indicate that the photosynthesis of shaded leaves
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is mainly determined by structural properties rather than by biochemical constraints. Accordingly,
LMA, rather than Narea or Chl, should be used for retrieving Vcmax for this group of leaves. Hence, leaf
structure therefore not only plays a major role in optical properties but also may serve as an easily
measured accurate index for photosynthetic capacity and productivity. For this reason, it should be
incorporated into models to better understand carbon dynamics in terrestrial ecosystems.

Although statistically significant, moderate correlations of LMA with Vcmax nevertheless prevent
the recommendation of using it as a sole proxy, suggesting further studies on this topic are required.
There is increasing evidence that leaf phosphorus content plays a role in determining photosynthetic
capacity, as significant positive relationships were observed [5,40,44,82]. Even so, identifying potential
close relationships between leaf traits and photosynthetic capacity should be a promising step for
including dynamic information of it to gas exchange models.

5. Conclusions

Our results reveal that leaf nitrogen concentration and LMA are more closely related to
photosynthetic capacity in the sunlit leaves and shaded leaves, respectively, based on long-term
field-measured data in a typical cold temperature deciduous forest. The results are important for
understanding carbon uptake across a wide range of environmental conditions, carbon, or climate
models, and deserve close attention. In the future, gas exchange models should be coupled with the
dynamic information of Vcmax for different leaf groups, and their spatiotemporal variations should be
provided by the respective proxies.
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