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Abstract: The agricultural and forestry sector is constantly evolving, also through the increased use
of precision technologies including Remote Sensing (RS). Remotely biomass estimation (WaSfM)
in wood production forests is already debated in the literature, but there is a lack of knowledge
in quantifying pruning residues from canopy management. The aim of the present study was to
verify the reliability of RS techniques for the estimation of pruning biomass through differences
in the volume of canopy trees and to evaluate the performance of an unsupervised segmentation
methodology as a feasible tool for the analysis of large areas. Remote sensed data were acquired on
four uneven-aged and irregularly spaced chestnut orchards in Central Italy by an Unmanned Aerial
Vehicle (UAV) equipped with a multispectral camera. Chestnut geometric features were extracted
using both supervised and unsupervised crown segmentation and then applying a double filtering
process based on Canopy Height Model (CHM) and vegetation index threshold. The results show that
UAV monitoring provides good performance in detecting biomass reduction after pruning, despite
some differences between the trees’ geometric features. The proposed unsupervised methodology
for tree detection and vegetation cover evaluation purposes showed good performance, with a low
undetected tree percentage value (1.7%). Comparing crown projected volume reduction extracted by
means of supervised and unsupervised approach, R2 ranged from 0.76 to 0.95 among all the sites.
Finally, the validation step was assessed by evaluating correlations between measured and estimated
pruning wood biomass (Wpw) for single and grouped sites (0.53 < R2 < 0.83). The method described
in this work could provide effective strategic support for chestnut orchard management in line with a
precision agriculture approach. In the context of the Circular Economy, a fast and cost-effective tool
able to estimate the amounts of wastes available as by-products such as chestnut pruning residues
can be included in an alternative and virtuous supply chain.

Keywords: unmanned aerial vehicles; precision agriculture; biomass evaluation; image processing;
Castanea sativa

1. Introduction

Remote Sensing (RS) is one of the technologies that has been currently most employed in the
forestry sector for monitoring, inventorying, and mapping purposes. RS techniques with the aim to
obtain information on large areas can be conducted at different levels of precision, according to the
different goals to be achieved. The choice of the RS platform to be employed, and consequently the
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sensors installed and operating on-board that specific platform will depend on the processes under
investigation and the level of detail required for a particular analysis [1].

RS platform as satellite systems, aircraft platforms and unmanned aerial vehicles (UAVs) have
features that differ in terms of spatial resolution, surface covered, temporal resolution, operational
procedures, and costs. Satellite solutions remain a fundamental tool for long-term and extensive
monitoring and surveillance forestry activities against fire events [2], pests attack [3], illegal logging [4]
and more generally, to assess the health and structure of forests’ cover [5]. Aircraft platforms provide a
better image resolution, returning a higher level of detail compared to satellite, against a higher effort
in flight planning and relevant operational costs [6]. UAVs are flexible small platforms characterized
by low operational costs, high spatial and temporal resolution [7] but suitable to cover only limited
areas. Comparisons among different platforms have been made both in the agricultural [8] and in the
forestry field [9].

The use of UAV in precision forestry has exponentially increased in recent years, as demonstrated
by the large number of papers published between 2018 and 2019; more than 400 references were found
when searching for “UAV” + “forest” and considering articles, conference proceedings and books [10].

Authors have dealt with several research topics involving applications in forest monitoring,
inventorying, and mapping both with multirotor and fixed-wing unmanned platforms equipped
with a wide series of optical technology sensors [11–18]. These studies took into account forestry
UAV applications mainly within two forest types: the first one included planted, pure and even-aged
forests [19–24] and the second one included natural, mixed and uneven-aged forests where the spatial
variability of vegetation was very high [25–29].

Within natural, mixed and uneven-aged forests research, UAVs have been employed most
commonly for (i) estimation of dendrometric parameters such as dominant height, stem number, crown
area, volume and above-ground biomass (Wa) using RGB (Red–Green–Blue bands camera) [30–34],
multispectral near red green (NRG) [35,36] and laser scanning [37,38] sensors. This is the top research
topic because reliable information on the status and trends of forest resources is the basis for the
decision-making process for forest management and planning [39]; (ii) tree species classification and
invasive plants detection for forest inventories and monitoring of biodiversity using RGB [40,41],
multispectral [42,43], hyperspectral [29,44] and laser scanning [45] sensors; (iii) flight plan ad RGB
sensor settings to improve imagery products accuracy [26,46–49] (iv) forest health monitoring and
diseases mapping using different sensors (RGB [50], multispectral [51], hyperspectral [52], thermal [15])
to provide data for supporting intervention decisions in the management of forests; (v) recovery
monitoring after fire events or conservation interventions through UAV equipped with RGB [53] and
multispectral [2,17] cameras.

By providing key forest structural attributes such as tree crown centers and boundaries, UAV
imagery tree segmentation is used for stem counting [32,54], extrapolation of further dendrometric
parameters (i.e., Wa) [55–59], species recognition [42], and pathogens detection and mapping [60].

Regarding Wa estimation, there are two main strategies adopted for Digital Aerial Photogrammetry
(DAP) and Airborne Laser Scanning (ALS)-based analysis in forestry inventories: (i) the Area-Based
Approach (ABA), a distribution-based technique which provides data at stand level using predictive
models developed with co-located ground plot measurements and RS data that are then applied to the
entire area of interest to generate estimates of specific forest attributes [61]; and (ii) Individual Tree
Crown segmentation (ITC) delineation, in which individual tree crowns, heights and positions are
the basic units of assessment and where specific algorithms are used to identify the location and size
of individual trees from raster images or high-density point clouds [62]. Previous research papers
dealt with biomass estimation both at the stand and at tree level. Biomass at stand level is evaluated
by comparing the effects of flight settings, sensor type and resolution in tropical woodlands [55], the
influence of plot size in dry tropical forests [58] or by taking into account different mangrove species in
South China wetlands [59]. Concerning tree-level biomass estimation, Guerra-Hernandez et al. [57]
and Guerra-Hernandez et al. [56] used, respectively, UAV-DAP point clouds in open Mediterranean
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forest of coniferous Pinus pinea (Central of Portugal) and DAP and ALS data in evergreen Eucalyptus
spp. plantation (North of Portugal). The latter two studies are important references for modeling SfM
individual tree diameters and SfM-derived individual tree biomass (WaSfM) and volume (VSfM) from
the canopy height model (CHM) in Mediterranean forest plantation.

Segmentation of individual tree crowns is difficult, particularly in broadleaf, mixed, or
multi-layered forests. This is generally due to an inability to determine the appropriate kernel size to
simultaneously minimize omission and commission error with respect to tree stem identification [63].
In the literature, several unsupervised segmentation approaches have been proposed: the most widely
used is the watershed segmentation algorithm [20,23,34,64–67] and its variants [16,54,68]. Other
techniques are multiresolution segmentation algorithm [27,69], large-scale mean-shift algorithm [35],
semantic-level segmentation using a Convolutional Neural Network (CNN) [70] and more complex
approaches with two or more integrated algorithms [37,63,71]. Some authors associated the
above-mentioned unsupervised approaches to manually drawn individual tree crown polygons
from on-screen interpretation to compare and validate results or provide a reference for the accuracy
assessment of an automatic procedure [72–74].

Among the papers that adopted both manual and unsupervised tree segmentation, only a few
research works included ground data collection [42,72,75–77] with a tree sample size ranging from 109
to 2069 trees. None of those presented wood biomass in-field data. For natural, mixed and uneven-aged
forest, Mayr et al. [75] gathered tree height in dry savannah and used an implementation of the watershed
segmentation algorithm provided by System for Automated Geoscientific Analyses-Geographic
Information System (SAGA-GIS) while Franklin and Ahmed [42] utilized the multi-resolution
segmentation procedure with the ENVI software system and they collected tree height and crown
dimensions in a mixed maple, aspen, and birch forest. Concerning planted, pure and even-aged forests,
Ganz et al. [72] used a multiresolution segmentation algorithm and measured tree height within stands
of Norway spruce and common beech while Apostol et al. [77] utilized the watershed algorithm and
collected tree height and stem diameter in an even-aged Douglas fir stand. By taking tree height
as ground-truth data in a chestnut plantation, Marques et al. [76] segmented trees by combining a
vegetation-index based algorithm with the Otsu method.

Chestnut (Castanea sativa Mill.) orchards are a type of multifunctional tree cultivation used
worldwide that represent a relevant income for rural populations. In Italy, sweet chestnut groves
cover 147,568 hectares (ha) of the whole Italian forested territory [78]. Only a few research papers used
UAV in chestnut plantations and dealt with phytosanitary problem detection and monitoring of tree
health [76,79,80], automatic classification and segmentation of chestnut fruits through Convolutional
Neural Networks (CNNs) [81], and insects damage rate detection and pest control methods [82].
However, there is no research available that tried to estimate the amounts of residues coming from tree
tending by using UAV techniques and comparing their information with ground truth. In the present
study, the authors applied RS techniques (UAV) to collect data on uneven-aged and irregularly spaced
chestnut (Castanea sativa Mill.) orchards. The aim of the present study was to verify the reliability of RS
techniques for the estimation of pruning wood biomass (Wpw) through differences in the volume of
canopy trees calculated with supervised extraction and to evaluate the performance of an unsupervised
segmentation methodology as a feasible tool for large-area analysis. In the context of the Circular
Economy, a fast and cost-effective tool able to estimate the amounts of residues available as by-products,
such as chestnut pruning material, can be included in an alternative and virtuous supply chain.

2. Materials and Methods

2.1. Experimental Sites

The study took place within the Amiata mountain region (Tuscany, Italy) between 2017 and 2018.
Four sites located into three different chestnut orchards were selected as representative of this area in
terms of variety and management practices (Figure 1).
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bucket or a pitchfork and weighed by means of portable scales (model WWSD6T, Nonis s.r.l., Biella, 
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comparisons were made on a dry matter basis, avoiding uncontrollable variability due to wood 
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Figure 1. Experimental sites map.

The experimental sites’ characteristics are shown in Table 1. The chestnut orchards under study
were uneven-aged and irregularly spaced (Figure 1), mainly due to replacements of dead trees that
occurred over time. For this reason, they were equated to irregular forests.

Table 1. Experimental sites’ description.

ID Site A Site B Site C Site D

Location 42◦53′18.22” N
11◦33′41.57” E

42◦53′17.19” N
11◦33′41.75” E

42◦52′11.71” N
11◦30′28.55” E

42◦52′18.59” N
11◦30′29.65” E

Altitude (m ASL) 960 1085 780 755
Surface (ha) 0.55 0.32 0.36 0.32

Chestnut variety Cecio Cecio Bastarda Rossa Bastarda Rossa
Density (trees ha−1) 72.57 114.60 110.10 111.73
Canopy cover (%) 82.50 86.47 90.19 87.80

2.2. Pruning Wood Biomass Ground Measurement

At the beginning of March 2017, 30 chestnut trees per plot (A, B, C, D) were selected and the
diameter at breast height (DBH) was callipered. The choice of the sample trees was made by identifying
plants representative of each site in terms of size (DBH). Sample trees were georeferenced at high
resolution (0.02 m) with a differential GPS (Leica GS09 GNSS, Leica Geosystems AG). In February 2018,
the previously selected trees were pruned, their branches severed and grouped in two sets: “wings”
(pieces below 4 cm in diameter) and “wood” (pieces over 4 cm in diameter). The first group had
no commercial use while the second could follow two different destinations: sold as firewood after
being seasoned in the field or sold to the industry for tannins extraction. These two raw materials
were separately loaded on a tractor equipped with a bucket or a pitchfork and weighed by means of
portable scales (model WWSD6T, Nonis s.r.l., Biella, Italy). Every five weighing the scales’ accuracy
was checked by weighing the tractor unloaded. From every site, Wpw samples were collected and
weighed fresh, then oven-dried according to the standard UNI EN ISO 18134-2:2017 to measure their
moisture content. The following analyses and comparisons were made on a dry matter basis, avoiding
uncontrollable variability due to wood samples size, initial moisture conditions or seasoning.



Forests 2020, 11, 308 5 of 20

2.3. UAV Platform and Data Processing

Remote sensed data were acquired to characterize the intra-plot variability in terms of plant
vigor and Wpw. Two flight campaigns were performed on 2 August 2017 and on 25 July 2018 at the
same phenological stage using a modified multi-rotor Mikrokopter (HiSystems GmbH, Moomerland,
Germany) described in Matese and Di Gennaro [83] equipped with a multispectral camera Tetracam
ADC Snap (Tetracam Inc., Chatsworth, CA, USA). The second flight was performed immediately after
the canopy pruning management to enable a comparison between ground truth and UAV results.
Multispectral image acquisition was planned flying at 60 m above ground level at midday, yielding a
ground resolution of 0.05 m pixel−1 and a 70% overlap in both directions. The images were recorded
in clear sky conditions. The radiometric calibration processes were realized by acquiring, during
the flight, images from three OptoPolymer (OptoPolymer-Werner Sanftenberg, Munich, Germany)
reference panels, with 95%, 50%, and 5% reflectance, respectively.

The data processing workflow is described in Figure 2. Multispectral or NRG images with
three broad bands (Near-infrared–Red–Green bands) acquired by UAV were processed using Agisoft
Metashape Professional Edition 1.5.2 [84], which allows to generate the dense cloud and the orthomosaic
of each experimental site. During this process, any ground control points (GCPs) were used due to the
irregular and dense canopy cover. The spatial variability in the chestnut orchard was evaluated in
terms of vigor and assuming the correspondence between NDVI and vigor [85,86]. NDVI was used as
a further filter threshold, as described in Section 2.4.

The dense cloud obtained was normalized using a digital elevation model (DEM) from the
automatic classification of ground points from photogrammetric software and subsequently imported
into QGis software [87] to develop, by means of the LAStools toolbox [88], the CHM relative to the
canopy height of each sample tree. The resolution chosen for this model was 0.05 m.

The next processing step concerned the creation of a chestnut crown mask through a two-fold
approach: supervised and unsupervised segmentation. The supervised method consisted of manually
drawing each chestnut crown one by one within the experimental plot, visualizing together the
CHM and the NRG orthomosaic in the QGis software. The unsupervised approach used a script
called ‘rLIDAR’ (version 0.1.1) [89] in R programming language (version 3.6.0), which allows to
generate a vector format file relative to the position and the crown dimension of each sample tree.
First, CHM smoothing was performed to eliminate spurious local maxima caused by tree branches.
Then, the location and height of individual trees were automatically detected using the CHM and
the Local maxima method (rLiDAR: FindTreesCHM function) by sequentially searching the moving
window through a Fixed Window Size (FWS) set to 9x9 pixels. In this step, we used a lower CHM
resolution (0.25 m/pixel) to generate the mask with the unsupervised method, due to the fact that the
workflow with native resolution (0.05 m/pixel) required to many computing resources. However, the
segmentation provided enough accuracy with respect to the supervised segmentation. The threshold for
the lowest tree height (minht) was fixed at 3.0 m to avoid the misdetection of forest undergrowth as trees.
For unsupervised crown segmentation, the ForestCAS function (cf. rLiDAR) based on the watershed
method was applied to automatically detect crown boundaries. The threshold for the maximum crown
radius (maxcrown) was set to 15.0 m, according to chestnut dendrometric characteristics.

Finally, the obtained dataset was analyzed to perform a spatial estimation of the potential pruning
biomass (Figure 2). The tree crown volume was calculated at the pixel level by integrating the volume
of all the individual pixels that were positioned below each tree. This choice was made to deal with
the irregular shape of every tree and consequently, to reduce the error usually produced in empirical
estimations due to the inexact assimilation of trees to regular solids. Therefore, as suggested by
Torres-Sanchez et al. [90], the height and area of every tree pixel were multiplied to obtain the pixel
volume; subsequently, the crown projected volume was derived by adding the volume of all the pixels
below each chestnut tree.

For identifying the volume change between the two years (before and after pruning), the tree
mask generated both in the supervised and unsupervised method for the 2017 dataset was chosen
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as the reference and also used in 2018 (QGis Software) to correct the XY shift of the camera GPS
between the two flights. This operation avoided an overestimation of the segmented crown area in
2018 following pruning, especially with R software. The Wpw estimation was performed on the basis
of the crown volume reduction in the post-pruning survey with respect to the first flight. A linear
regression model between the Wpw measured on the ground and estimated by UAV was applied to
evaluate the performance of the UAV approach.

Since the aim of this work was Wpw estimation from remote sensing data, for ground truth
measurements, we focused on a very large number of pruning wood sampling (30 trees/site), while
only the DBH parameter was meausured as geometric field data for sample trees selection. As a
consequence, the geometric data evaluation was related only to the comparison between the supervised
and unsupervised methods on the structure from the motion dataset, without any field data as ground
truth (tree height or crown dimension).
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2.4. Double Filtering Approach

Several authors reported on the improvement in tree crown segmentation when vegetation indices
analysis is applied in discriminating between vegetation targets [76,90]. However, in our study, the
discrimination between canopy and no canopy pixels was ensured by the CHM thanks to the higher
tree height which was more than double the regular plantation sites observed in other works [76,90].
Although the spectral data were not used to improve the segmentation of the crowns from the soil, in
our study, they were used to improve the measurement of volume reduction from the CHM.

In detail, the elaboration of crown volume data from the pruned tree (2018 survey) accounted also
for no canopy information of the small holes within the canopy undetected by the 3D reconstruction
process performed with Agisoft Metashape but clearly visible in the orthomosaic. To solve these
problems, we applied a double filtering process: the first one based on canopy height (CHM) and the
second based on a vegetation index (NDVI) threshold to remove no vegetation pixels within the crown
(Figure 3). The results presented in this work were obtained from a dataset filtered with an NDVI
threshold of 0.3.
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2.5. Puning Wood Biomass Estimation

Reference segmentation masks of sample trees were manually created for each experimental site.
The supervised method was applied to develop a linear model between ground truth Wpw and crown
projected volume reduction extracted by the reference segmentation mask. The linear model was
then applied to calculate the estimated Wpw from the unsupervised segmentation method following
Equation (1):

Y = β (X1 − X2) + γ (1)

where Y is the dependent variable (Wpw), X1 to X2 are independent variables related, respectively, to
crown-projected volume before and after pruning management, β is the multiplicative parameter and
γ is the intercept. The coefficient of determination (R2) and Root Mean Square Error (RMSE) were
computed between the measured correlations, between supervised and unsupervised segmentation
approaches for UAV geometric data extraction, and between ground-truth measured and estimated
Wpw data.

The adjusted coefficient of determination (Equation (2)), the relative root mean square error
(Equation (3)) and the percentage bias (Equation (4)) to determine the accuracy of unsupervised
segmentation for estimating Wpw using crown projected volume reduction are as follows:

adjR2 = 1 − ((n − 1)
∑

(yini = 1 − ŷi)2(n − p)
∑

(yini = 1 − yi)2) (2)

rRMSE = RMSEy (3)

PBias = 100*(
∑

(ŷi − yini = 1)n) (4)
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where n is the number of trees, yi is the field measured Wpw i, y is the the mean observed value of
Wpw and ŷi is the estimated value of Wpw derived from the linear regression model. A statistical
analysis was performed using R software.

3. Results

3.1. Wpw Ground Measurement

In Table 2 are presented the ground data of measured Wpw per tree, per site (sample of 30 trees)
and per surface unit.

Table 2. Pruning wood biomass (Wpw) produced per tree (Avg. and Std. dev.), per plot, and per surface.

SiteTitle DBH (cm) Wpw per Tree
(kgdw)

Wpw per Site
(kgdw)

Wpw per Surface
(Mgdw ha−1)

A 84.21 ± 26.55 625.01 ± 590.48 18750.28 24.92
B 63.24 ± 11.97 243.69 ± 90.42 7310.85 8.94
C 49.77 ± 11.75 97.37 ± 63.99 3115.84 3.86
D 53.38 ± 15.5 113 ± 76.39 3390.00 4.05

Note: dw = dry weight.

The yield of Wpw per hectare was comparable with the data presented in a former study [91],
where three chestnut groves produced from 22 up to 33 Mg ha−1, but this result matches only with site
A. In fact, although site A was different from the other three sites presented in the aforementioned
study, showing an even bigger DBH on average compared to them, it had a similar pruning intensity.
Compared to site A, the number of pruning residues produced in the other three sites investigated in
the present study turned out to be noticeably lower, probably caused here—as in other case studies—by
differences in trees age, site density, and pruning intensity. The results of sites C and D were very
similar and still comparable to site B in terms of wood biomass recovered after pruning, despite the
different chestnut varieties.

The proportion of “wood” compared to “wings” was equal to 311.9% at site A, 55.7% at site B and
51.7% at site D. At site C, it was not possible to separate the two fractions due to operative reasons.

3.2. Supervised Data Extraction

Table 3 shows the geometric characterization of each experimental site arising from supervised
segmentation before (2017) and after pruning (2018). Maximum tree height, crown mean height, crown
area, and crown projected volume are mean values of each site. Crown area and crown projected
volume per site are also showed to provide a general overview of biomass reduction after pruning.
These values derive from a single tree crown area and projected crown volume, respectively, multiplied
by the total number of trees for each site.

The decrease in heights after pruning is not significantly different. However, considering crown
mean height and crown area, biomass reduction between the two years detected by UAV is relevant.
In fact, it ranges from 8.8% in site A to 14.2% in site B, referring to the crown mean height and
from 6.5% in site B to 15.1% in site A, considering the crown area values. In sites C and D, these
two parameters show intermediate but comparable variations, reflecting the geomorphological and
vegetational similarities of the two sites, in detail: crown mean heights of 11.0% (C) and 11.6% (D), and
crown areas of 13.1% (C) and 11.8% (D).

The tree geometric characteristic that best shows the effects of pruning is crown projected volume,
whose values have the strongest variations between 2017 and 2018. The highest percentage of biomass
reduction was found at site C (21.4%) while site A has the maximum decrease (298 m3), confirming
ground measurements (see Table 2).



Forests 2020, 11, 308 9 of 20

Table 3. Geometric characterization of each experimental site.

Year Site Tree Height
(m)

Crown Mean
Height (m)

Crown Area
(m2)

Crown
Projected

Volume (m3)

Crown Area
per Site (m2)

Crown Projected
Volume per Site

(m3)

2017 A 18.07 ± 2.8 14.69 ± 2.67 93.97 ± 49.56 1401.66 ± 807.53 3006.89 44,853.18
B 15.19 ± 1.38 12.90 ± 1.09 59.44 ± 20.32 767.61 ± 267.9 1902.10 24,563.55
C 9.63 ± 0.98 7.65 ± 0.94 61.19 ± 18.69 472.7 ± 170.34 1958.17 15,126.38
D 11.23 ± 1.36 8.91 ± 1.15 63.06 ± 18.70 575.36 ± 216.96 1954.86 17,836.20

2018 A 17.63 ± 2.66 13.40 ± 2.58 79.74 ± 45.82 1103.71 ± 751.49 2551.80 35,318.81
B 14.63 ± 1.36 11.07 ± 1.56 55.57 ± 20.56 620.82 ± 248.39 1778.20 19,866.23
C 9.44 ± 1.12 6.81 ± 1.04 53.16 ± 19.55 371.31 ± 164.53 1700.97 11,882.00
D 11.08 ± 1.68 7.88 ± 1.33 55.62 ± 22.97 460.28 ± 226.76 1724.20 14,268.58

3.3. Unsupervised Data Extraction

Table 4 reports the segmentation results of the proposed unsupervised methodology. Following
Marques et al. [76]’s study, the evaluation of the automatic segmentation accuracy applied in this
work was assessed by comparing it with a manual crowns’ segmentation. In line with the different
site conditions in terms of trees age and dimension, the proposed methodology provides a different
response in terms of accuracy. Site A presented the lowest accuracy value (46.7%) due to the highest
presence of both over and under detection cases. In detail, the irregular and oversize crown (mean
values over 90 m2) caused elevated crown shape fragmentation (33.3%), while the high overlap crown
level led to 20.0% of merged cases. Sites B and D, characterized by a lower overlap level, showed the
best accuracy performances, respectively 83.3% and 76.7%. Site D presented a lower accuracy value
due to the 20.0% of merged crowns in a circumscribed zone with close trees with similar crown heights.
An intermediate accuracy performance was found in the C site (63.3%), where the lowest values and
variability in terms of height and some irregular shape cases caused an overestimation of 26.7% crown
shape segmentation. The methodology provided the optimal results in terms of undetected tree crown,
with 1.7% mean accuracy considering the overall dataset (four sites).

Table 4. Report of the trees’ detection accuracy with the number of estimated trees and its detection
type in the four sites.

Site Reference Crowns Matched Split Merged Missed

A 30 46.7% 33.3% 20.0% 0.0%
B 30 83.3% 3.3% 10.0% 3.3%
C 30 63.3% 26.7% 6.7% 3.3%
D 30 76.7% 3.3% 20.0% 0.0%

Dataset 30 67.5% 16.7% 14.2% 1.7%

3.4. Geometric Data Comparison between the Supervised and the Unsupervised Approach

Figure 4 presents the comparison results between supervised and unsupervised segmentation
approaches to perform tree geometric characterization from the structure of motion products. Taking
into account the presence of split and merged cases in the unsupervised approach, the dataset was first
analyzed not tree-by-tree but by means of the aggregation per site of each polygon identified by both
segmentation methodologies. Each XY graph shows the comparison of geometric data related to four
sites in both years (2017–2018). The height estimation both for tree height and crown mean height was
correctly described from the proposed unsupervised method, providing R2 = 1.00 correlation coefficient
and a good accuracy in terms of values RMSE = 0.25 m and RMSE = 0.24 m, respectively. Considering
the estimation of the crown area mean value per site, no correlation was found from the application
of the proposed methods (R2 = 0.01), with a high difference between the values (RMSE = 21.47 m2).
The crown-projected volume shows a lower correlation (R2 = 0.54) than pure height-derived variables
(tree height and crown mean height), but a discrete error in the absolute values (RMSE = 274.64 m3).
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Regarding full site characterization in terms of canopy cover area and crown projected volume, the
unsupervised method provided very high correlations: R2 = 0.93 and R2 = 0.99, respectively.
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A deep analysis was performed taking into account a larger dataset obtained by the unsupervised
segmentation to evaluate the performance of the proposed method as a feasible tool for Wpw evaluation
on large scale areas. The unsupervised dataset was created with about 67.5% matched polygons,
potentially available to investigate correlation tree-to-tree with measured ground truth Wpw and
supervised geometric data per tree. The dataset was then increased by adding the 16.7% of split
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cases considered as single-tree data by the merging of the sub-polygons in which a sample tree was
fragmented by the unsupervised approach. Figure 5 reports the correlations (R2 and RSME) related to
crown volume reduction of the proposed methodology versus the manually segmented mask.
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Figure 5. Comparison between crown projected volume reduction extracted by means of the supervised
and unsupervised approach within each site (a, b, c, d). The dataset was made of both correctly
segmented crown (matched) and fragmented crown (split) as a sum of each sub-polygon of the
fractionated crown described in Table 4.

The unsupervised method showed a high accuracy performance in crown segmentation, providing
high R2 values ranging between 0.76 and 0.95, and good precision in term of absolute values, with
RMSE ranging between 79.16 m3 and 117.48 m3. The scatterplots show results close to the 1:1 line
between supervised and unsupervised segmentation methods.

3.5. Wpw Estimation

Table 5 presents the correlation results (equations and R2) between crown projected volume
reduction (X-independent variable) and pruning wood biomass (Y-dependent variable), in which a
linear regression model was applied to the dataset extracted with the manually reference masks and
the ground truth Wpw measurements. All sites show representative results with higher correlation
coefficients for the A site (R2 = 0.78), intermediate value in site C and D (R2 = 0.71 and R2 = 0.69
respectively) and lower in site B (R2 = 0.60). Considering the similar tree ages and dimensions in the
close sites C and D, Table 5 also reports the good correlations obtained by oganising the two sites as a
single dataset (R2 = 0.65). The linear regression analysis applied to the overall dataset provides good
results but lower than the values at the single-site level (R2 = 0.33).
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Table 5. Regression analysis between ground truth Wpw data (X-independent variable) and estimated
projected crown volume reduction (Y-dependent variable) obtained by the application of supervised
segmentation. Linear regression results (equation and R2) calculated for each site (A, B, C, D) and
aggregated dataset (C + D and A + B + C + D). All liner regressions provided significance results
(p < 0.001).

Segmentation Site Equation R2

Supervised

A y = 1.2566x − 201.4442 0.78
B y = 0.2729x + 143.1937 0.60
C y = 0.3549x + 25.1030 0.71
D y = 0.2028x + 64.0793 0.69

C + D y = 0.2393x + 53.1303 0.65
A + B + C + D y = 0.6664x + 56.446 0.33

Concerning the Wpw validation, the estimated Wpw values obtained using the calibration realized
in each site with the manually segmented mask were compared with ground-truth Wpw measurements.
Figure 6 shows the linear regression results within every single site and with the aggregated dataset
(C + D and all dataset), which are similar to the trend found in Table 5.
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Table 6 reports the statistic results of the methodology suggested as Wpw estimation approach.
Site A presents a higher accuracy in Wpw estimation (R2 = 0.83) but RMSE = 221.26 kg is very high,
while site B presents lower correlations (R2 = 0.53 and RMSE = 46.99). Sites C and D show good
correlations with R2 = 0.54 and R2 = 0.67 respectively, and similar values in terms of RMSE 47.38 kg
and 43.08 kg, respectively. Combining the C and D datasets, the results obtained show similar behavior
to the separate dataset analysis (with R2 = 0.61 and RMSE = 45.28 kg). The correlations identified using
the overall dataset present a lower correlation coefficient (R2 = 0.49) than the other sites, but similar to
sites B and C. As reported in Table 6, the unsupervised methodology provides rRMSE values between
44.10% (site A) and 71.60% (site B), and presents very low PBias values with a minimal tendency of
understimation in sites B, C, D (mean value −3.0%). Site A presents an overestimation tendency with a
bias value of 12.60%.

Table 6. Statistic results (R2, adjR2, RMSE, rRMSE (%) and PBias (%) calculated for each site (A, B, C,
D) and aggregated dataset (C + D and A + B + C + D).

Site R2 adjR2 RMSE rRMSE (%) PBias (%)

A 0.83 0.82 221.26 44.10 12.60
B 0.53 0.50 46.99 71.10 −2.50
C 0.54 0.52 47.38 66.20 −2.30
D 0.67 0.65 43.08 58.10 −4.40

C + D 0.61 0.60 45.28 62.70 −3.40
A + B + C + D 0.49 0.48 217.54 71.60 −1.20

4. Discussion

This work aimed to evaluate the accuracy performance of supervised and unsupervised
methodologies to estimate pruned biomass. To carry out this objective, an experimental design
was planned by taking into account four sites with different conditions of vegetative growth in terms of
DBH dimension, trees density and height. Site A presented the highest vegetative growth conditions,
site B an intermediate level, C and D, the lowest dimensions. Those different vegetative conditions
directly affected the geometric estimation provided by the UAV data analysis, so it was necessary to
divide the dataset into three different groups of trees according to age and therefore, size.

Pruning intensity varied among sites as the tender’s choice normally depends on the trees’ growth,
health conditions and age. The heavier intervention carried out with restoration purposes, as in site A,
corresponded to a higher wood production, in line with analogous cases. In orchards where pruning
is conducted on a long timespan (8–10 years) the amount of wood residues available for industrial
purposes can be relevant (from 51.7% to 311.9% in the present study) and an early survey can provide
useful information for planning the supply.

The results show that UAV monitoring has a good performance in detecting the biomass reduction
after pruning, despite the differences between the trees’ geometric characteristics mentioned in
Section 3.1. The tree height decrease was weakly detected, mainly due to some branches not being
pruned in 2017, which therefore attenuated the height reduction with their vigorous growth in 2018.
Considering crown mean height and crown area, the biomass decrease is evident because they are
more representative features of the whole canopy. By analyzing the data shown in Table 3, it can be
stated that the crown projected volume is the best tree geometric characteristic with which biomass
variation can be monitored. In site C, the highest volume decrease is not associated with the greatest
height decrease and this can be explained by the typical chestnut pruning method. This technique is
not characterized by a uniform topping and hedging but by the cutting of whole branches, so there is
no marked height reduction. This led to the formation of crown holes whose presence can be clearly
detected only by analyzing tree volume.

In the present work, the chestnut orchard condition strongly affected the segmentation accuracy.
The high variability due to irregular spacing between trees, ages and dimensions, irregular crown
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shape, absence of isolated tree cases, high overlap crown conditions and minimal presence of free
space around each tree crown caused a lower accuracy performance in tree segmentation with respect
to elevated tree detection results described in other valuable works such as those suggested by
Marques et al. [76] and Jorge Torres-Sánchez et al. [90]. The large number of oversized tree crowns in
the site A led to an increase in the percentage of split and merged cases, while in sites C and D, the
lowest values of DBH and trees’ height affect the segmentation accuracy providing 26.7% of split and
20% of merged cases respectively. Concerning the feasibility of large areas canopy cover scouting,
the method proposed provided similar results as those reported by Marques et al. [76] related to an
undetected tree percentage value (1.7%).

The evaluation of the accuracy of the unsupervised method applied in this study was realized by
the comparison of a geometric dataset for each site in each year with the data extracted with the reference
mask manually drawn. The proposed method provides a correct estimation of the mean height per tree
in terms of tree height with minimal difference in absolute values (RMSE = 0.25 m), confirming the
good performance as a height estimation tool for that type of survey on large areas. The mean crown
area per tree within each site presents poor correlations and a high RMSE value, as a consequence
of the wide value range derived from the split and merge cases of the unsupervised segmentation
polygons. The crown projected volume shows a better performance in terms of correlations than the
crown area due to the positive influence of the well estimated height but still with a high RMSE value.
The analysis of the total canopy cover and the total crown projected volume per site provides optimal
results, confirming the method as a powerful tool for fast detection in large areas. A focus elaboration
on the projected crown volume reduction between the two years as a consequence of the pruning
management practice was performed by increasing the dataset of the matched crowns with the sum
of the sub-polygons in which some crowns were divided, reported as “split cases”. The improved
dataset shows the highest correlation coefficients (mean R2 = 0.86) and a low difference in values (mean
RMSE = 99.75 m3) with respect to manually segmented crowns.

The validation of the method was carried out after a calibration step, a model was created using a
regression analysis between Wpw and volume variation extracted with the reference mask manually
drawn on the crown profile. Subsequently, the model identified was applied to the segmentation
results obtained with the proposed method. The estimated Wpw per crown was finally correlated
with the measured Wpw in order to define the accuracy in terms of correlation coefficient and RMSE.
In the case of a full dataset analysis, the approach obtained good correlation (R2 = 0.33 for calibration
and R2 = 0.49 for validation) but the clustered nature of the dataset with different tree conditions
implied a lower performance, confirming the application of a site-by-site approach as the most correct
choice. The method proposed showed the high coefficient of correlation (R2 = 0.83) for site A, but
with a very high RMSE since this site was extremely modified in terms of Wpw removed more
than the others. Despite showing a lower accuracy in Wpw estimation (R2 = 0.53), site B presented
an acceptable RMSE = 46.99 kg. The factors that strongly reduced the segmentation success were
the higher tree density within the site and an elevated overlap level between adjacent crowns, as
reported in Table 3. In fact, this site is characterized by high tree and DBH values (close to the
biggest in site A), but the lowest mean crown area with respect to all other sites. The application of
the proposed methods in sites C and D characterized by similar tree conditions provided high and
concordant performances, suggesting that they should be considered as a single dataset (R2 = 0.61).
This result strongly encourages the hypothesis of the feasibility of this method as a site-specific tool for
large-scale monitoring. The PBias indicates an overall tendency of minimal understimation, while
in site A, characterized by very different conditions in term of Wpw harvested and tree ages, the
unsupervised segmentation approach shows a low overstimation of the Wpw with respect to ground
truth meausurements.

In the literature, there are no studies regarding chestnut Wpw estimation using UAV. Nevertheless,
there have already been recent studies that specifically derived individual biomass and VSfM at tree
level with ITC segmentation. Among these, important references in the Mediterranean environment
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were represented mainly by Guerra-Hernandez et al. [57] and Guerra-Hernandez et al. [56], who used
a fixed-wing UAV equipped with an RGB camera to evaluate (i) WaSfM in Pinus pinea regular forest
plantation (10 x 16 m regular spaced, open canopy, fairly flat terrain, no understory) and (ii) VSfM

in Eucalyptus regular forest plantation (3.7 × 2.5 m regularly spaced, steep terrain). Comparing our
results with the aforementioned studies, it worth noting that the RMSE could only be compared with
Guerra-Hernandez et al. [57], who used the same unit (kg) and reported a value of 87.46 and 117.80
kg for 2015 and 2017, respectively. These values are lower than the overall aggregated dataset RMSE
(217.54 kg, Table 6) and the difference could be partially explained by the regular characteristics of
the stand investigated by the reference study (spacing, tree age, field management). Thereafter, it is
of pivotal importance to compare different remote sensed tree biomasses through statistic indexes
that facilitate comparison between datasets or models with different scales, as rRMSE and adjR2.
Guerra-Hernandez et al. [57] in P. pinea plantation gained good results in the estimation of WaSfM

in comparison to measured Wa (0.85 < adjR2 < 0.87 and 11.44% < rRMSE < 12.59% in two different
years and model approaches) while Guerra-Hernandez et al. [56], in a Eucalyptus plantation, got
slightly worse performances (R2 = 0.43 and rRMSE = 20.31%). However, the current work presents
lower correlation values (except in one case) and lower rRMSE (Table 6) with respect to the literature
references, mainly due to orchard characteristics (uneven-aged and irregularly spaced) and fine pruning
evaluation purposes with respect to growth monitoring. As for Guerra-Hernandez et al. [57], who
focused on canopy management study in fruit production crop, our method falls within precision
agriculture applications while most of the literature focused on precision forestry.

A strong point of this method was that the dataset was acquired with a low-resolution multispectral
camera, which provides both geometric information from the CHM reconstruction and spectral data
to calculate the NDVI layer used as a filtering approach to improve the quality of the dataset. As a
consequence, the weight of the products to be processed were much lower, allowing faster data
processing and requiring less computing power.

5. Conclusion

In the context of the Circular Economy envisaged as a “regenerative system in which resource input
and waste, emission, and energy leakage are minimized by slowing, closing and narrowing material
and energy loops” [92], it is important to estimate the amounts of wastes available as by-products for
industrial purposes. In this specific case, chestnut pruning and their periodical availability can be
forecasted and included in supply chain planning to benefit both producers and industrial users.

The unsupervised segmentation method proposed in this work made it possible to realize an
accurate estimation of chestnut geometric characteristics from high-resolution CHM layers in four
study sites. The results obtained are strongly in line with those extracted with a reference manually
segmented mask. Applying a calibration performed on supervised UAV data extraction, the method
reports a high accuracy in terms of R2 and RMSE values, suggesting this approach as a fast and
cost-effective tool for fast monitoring of large areas. The dataset was acquired before and after a
pruning management practice in four study sites identifying three different DBH classes (around
~0.50 m, ~0.60 m, ~0.80 m). The results obtained allow for us to conclude that the method provides
generally good performance, but to achieve the best Wpw estimation, is necessary to choose the correct
calibration curve in the function of the DBH. This input information could be easily provided by the
orchard owner, making the proposed method a useful tool for fast Wpw estimation purposes.

A future perspective could be to evaluate the potential of a combined approach analyzing also
the spectral data actually used only to improve data extraction accuracy, with the aim of finding the
described Wpw estimation performance by the contribution of information on vegetation indices.
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48. Brach, M.; Chan, J.C.W.; Szymański, P. Accuracy assessment of different photogrammetric software for
processing data from low-cost UAV platforms in forest conditions. IForest 2019, 12, 435–441. [CrossRef]

49. Tomaštík, J.; Mokroš, M.; Surový, P.; Grznárová, A.; Merganič, J. UAV RTK/PPK method-An optimal solution
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