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Abstract: This paper proposes a method to classify individual tree species groups based on individual
tree segmentation and crown-level spectrum extraction (“crown-based ITC” for abbr.) in a natural
mixed forest of Northeast China, and compares with the pixel-based classification and segment
summarization results (“pixel-based ITC” for abbr.). Tree species is a basic factor in forest management,
and it is traditionally identified by field survey. This paper aims to explore the potential of individual
tree classification in a natural, needle-leaved and broadleaved mixed forest. First, individual trees
were isolated, and the spectra of individual trees were then extracted. The support vector machine
(SVM) and spectrum angle mapper (SAM) classifiers were applied to classify the trees species.
The pixel-based classification results from hyperspectral data and LiDAR derived individual tree
isolation were compared. The results showed that the crown-based ITC classified broadleaved trees
better than pixel-based ITC, while the classes distribution of the crown-based ITC was closer to the
survey data. This indicated that crown-based ITC performed better than pixel-based ITC. Crown-based
ITC efficiently identified the classes of the dominant and sub-dominant species. Regardless of whether
SVM or SAM was used, the identification consistency relative to the field observations for the class
of the dominant species was greater than 90%. In contrast, the consistencies of the classes of the
sub-dominant species were approximately 60%, and the overall consistency of both the SVM and
SAM was greater than 70%.

Keywords: individual tree classification; LiDAR; hyperspectral; SVM; natural forest

1. Introduction

Tree species is a basic factor in forest inventories, and it is important for sustainable forest
management, forest biodiversity, forest ecosystem security. Traditionally, tree species is identified by
time consuming visual recognition by a specialist. However, tree species distribution in large area, like
a forest reserve, rather than a sample plot, are nearly impossible to be obtained just by fieldworks.
Relying on the characteristics of large-scale continuous coverage, remote sensing has become the
most efficient method to solve this problem [1]. In the past, a large number of researchers have used
visible and near-infrared remote sensing images to identify tree species, mostly with medium and
low resolution is dominant (from 30 m to 1 km), and the classification results are mixtures of tree
species [2]. Into the 21st century, high spatial resolution, high temporal resolution, and high spectral
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resolution remote sensing data make it possible to obtain individual tree species at large scale [3].
According to the data source used, the existing individual tree species identification can be divided
into five categories: multispectral data based, LiDAR data based, multispectral + LiDAR data based,
multi-spectral + hyperspectral based, hyperspectral + LiDAR based. The general workflow is to first
use ground surveys or high spatial resolution data or high-density LiDAR data to obtain individual
tree canopy, and then use universal classification methods to classify individual tree species [2,4].

The most common data source for individual tree species classification is high-resolution
multispectral data, including spaceborne, airborne and UAV-based data. Larsen [5] explored single
tree species classification with hypothetical high resolution multi-spectral satellite images. A decade
later, high resolution optical sensors, like Pleiades and Worldview-2/3, were successfully applied to
classify individual tree species [6–9]. However, compared to airborne and UAV based multispectral
data, the spatial resolution of satellite-based data is still insufficient. The airborne multispectral images
are most frequently used. Key et al. [10] classified individual tree species using multispectral and
multitemporal information based on an individual crown map drawn from ground survey data and
suggested that multispectral data performed better. Leckie et al. [11] carried out both individual
isolation and classification based on airborne multispectral images and indicated that “production of
individual tree species maps in complex forests will require judicious use of human judgment and
intervention”. Franklin et al. [12,13] used UAV-based multispectral data to classify coniferous and
deciduous tree species with object-based analysis and machine learning and the overall accuracy was
around 78%, which was consistent to some similar studies [14–16]. In urban area, where the tree
species are relatively simple, classification accuracy of over 80% could be achieve for major species [17].
There are two major limitations of individual tree species classification just using multispectral data
based on these studies, including individual tree crown mapping and insufficient spectral information.
As a result, LiDAR and hyperspectral data were imported to improve the classifications.

LiDAR provided very good individual tree information for the most dominant and subdominant
trees, due to the “up to down” data acquiring mechanism [18]. By providing high quality individual tree
crown information, LiDAR was frequently utilized for individual tree species classification. Both the
individual tree crown delineation and species classification are carried out based on three-dimensional
features of point cloud. Brandtberg [19] used LiDAR to classify individual tree species under leaf-off

and leaf-on conditions and the accuracy of major species are around 60%. Nguyen et al. [20] presented
a wSVM-based approach for major tree species classification at ITC level using LiDAR data in a
temperate forest and the accuracy was over 70%. Obviously, using LiDAR only is difficult to obtain
high quality individual tree species, but multispectral LiDAR largely improves this condition by add
spectral information to point cloud. Budei et al. [21] studied the genus or species identification of individual
trees using a three-wavelength airborne lidar system, and the accuracy of genus and species could be over
80% and 70%, respectively. Many researches also indicated that “the use of multispectral ALS data has great
potential to lead to a single-sensor solution for forest mapping” [22,23]. However, Kukkonen et al. [24]
pointed out that optical image features are beneficial in the prediction of species-specific volumes regardless
of the point cloud data source (unispectral or multispectral LiDAR).

Hyperspectral data, which provide detailed spectral information of ground objects and detect
minor differences in spectra, can greatly improve the classification ability [25,26]. Hyperspectral
data based individual tree species classification mostly was carried out combined with LiDAR.
Zhang et al. [27] developed a neural network-based approach to identify urban tree species at the
individual tree level from LiDAR and hyperspectral imagery and concluded that the integration of
these two data sources had great potential for species classification. Alonzo et al. [28] also located and
classified individual trees in an urban area. Both studies had accuracy greater than 80%, but were
carried out in urban forests, which have some limitations compared to a natural forest, such as low
density and easy terrain condition. Dalponte et al. [29,30] delineated individual tree crowns and
classified tree species with SVM and semi-supervised SVM in boreal forests using hyperspectral and
LiDAR data and proposed that higher classification accuracy could be obtained with individual tree
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crowns (ITCs) identified in hyperspectral data. They pointed out that the pixels in a tree crown
should be analyzed before classification. Lee et al. [31] conducted the same experiment on individual
tree classification in England from airborne multi-sensor imagery data using a robust PCA method,
and they found that classification at pixel scale (91%) had higher accuracy than individual tree scale
classification (61%). Maschler et al. [32] classified individual tree of 13 species based on hyperspectral
data and indicated the manual delineation crown-based classification had the highest accuracy rather
than the automatic method. Kandare et al. [33], Nevalainen et al. [34], and Dalponte et al. [35] all
applied LiDAR and hyperspectral data to classify individual trees by extracting individual tree spectral
information to employ classifiers.

Fassnacht et al. [2] indicated that the individual tree classification based on LiDAR and
hyperspectral data was an under-examined but powerful approach which should be further investigated.
However, the detail workflow of this approach still has some unclear points. One of them is that
if the individual tree species should be analyzed based on pixel-based classification results using
individual crowns, or classified based on individual tree crown-based spectrum features. And then,
what kind of tree species could be identified by the individual tree classification. This paper aims to
investigate an efficient way to classify tree species in temperate forest. The performances of individual
tree classification from crown-level (crown-based ITC) and pixel-level (pixel-based ITC) are compared.
Based on the better method, we are intending to analyze the accuracy of each class with individual tree
height and field survey data, to summarize the applicability of individual tree species classification
based on LiDAR and hyperspectral data.

2. Study Area and Data

The study area is located in the Liangshui National Reserve (47◦10′ N, 128◦53′ E), Heilongjiang
Province, northeast of China. The Liangshui National Reserve was established in 1980 to protect a
mixed forest ecosystem consisting of coniferous and broadleaved species. The major species with
relatively taller trees were Korean pine (Pinus koraiensis), Faber’s fir (Abies fabri), dragon spruce (Picea
asperata), Korean birch (Betula costata), Japanese Elm (Ulmus laciniata), and Amur linden (Tilia amurensis).

2.1. Acquiring Ground Survey Data

A mixed forest sample plot in the reserve was selected to test and validate our methods. The plot
is a 300 × 300 m square that is divided into 900 small 10 × 10 m quadrats [36]. The ground survey was
carried out between 23 July and 6 August 2009. Each individual tree with a DBH greater than 2 cm
was marked with an aluminium plate. The species, DBH, tree height, and position of these trees were
measured. DBH was measured using a diameter tape, tree height was measured using a laser altimeter,
and position was measured using the distance from tree stem at breast height to the boundaries of the
corresponding quadrat. The crown diameter was not measured. In total, 12,315 individual trees were
recorded, and the tree height and DBH distributions are shown in Figure 1. Most trees were supressed
small trees. The number of intermediate, co-dominant, and dominant trees formed a pyramid-like
distribution, which meant the tree count was inversely proportional to the tree height.

Ground spectrum measurements were synchronized with the flight that acquired the hyperspectral
data. The device used was a FieldSpec 3 Spectroradiometer (Malvern Panalytical, Egham, Surrey, UK)
with a spectral range of 350 nm to 2500 nm, a spectral resolution of 3 nm at 700 nm and 10 nm at
1400/2100 nm, a sampling interval of 1.4 nm at 350 nm to 1050 nm and 2 nm at 1000 nm to 2500 nm,
and a scanning interval of 0.1 second. Bright and dark objects and some typical ground objects were
measured for the atmospheric correction of the hyperspectral image.
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Figure 1. Distribution of the tree height and DHB in the sample plot. (a) Distribution of the tree height;
(b) Distribution of the DBH.

2.2. Acquiring Airborne Data and Pre-Processing

High-density airborne LiDAR data were acquired in August 2009. The LiDAR system was a
LiteMapper 5600, which included a Riegl LMS-Q560 laser scanner and a DigiCAM charge coupled
device (CCD) camera. LiteMapper 5600 provides full waveform analysis, which provide detailed
vertical structure of forest. The parameters of LiteMapper 5600 are listed in Table 1.

Table 1. Main technical parameters of LiteMapper 5600 system.

Device Type LiteMapper 5600

Pulse repetition frequency 100 kHz
Laser wavelength 1550 nm

Pulse length 3.5 ns
Laser beam divergence ≤0.5 mrad

Multiple target separation within single shot 0.6 m
Return pulse width resolution 0.15 m

Scan pattern Parallel scanning
Scan angle range 30◦

Ground sample spot diameter 0.5 m (with flight height of 1000 m)

The flight covered an area of 100 km2, with a flight height of 1022–1121 m, which was a relative
flight height above the canopy of approximately 1000 m. A total of 12 flight strips with side overlaps
of 90% were obtained. The point density was approximately 12 points/m2. Point classification, digital
surface model (DSM) generation, and digital elevation model (DEM) generation were conducted using
the TerraScan software (TerraSolid, Helsinki, Finland). The canopy height model (CHM) (Figure 2a)
was calculated using the difference between the DSM and the DEM at a resolution of 0.5 m. A digital
orthographic map (DOM) with a resolution of 0.2 m was generated based on the CCD images and
LiDAR-derived DEM using the TerraPhoto software (TerraSolid, Helsinki, Finland).
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Figure 2. CHM and hyperspectral image of the plot (R: 693.6 nm; G: 533.6 nm; B: 459.7 nm). (a) CHM;
(b) Hyperspectral image.

Hyperspectral data were also acquired in August 2009 using a CASI-1500 (Compact Airborne
Spectrographic Imager) (Figure 2b) with the same flight height as the LiDAR flight. The time of
acquisition was from 10:00 am to 14:00 pm, which was close to solar noon. CASI-1500 is a visible and
near-infrared (VNIR) pushbroom sensor, and its optimal parameters are shown in Table 2. CASI-1500
allows the user to select either the spectral mode or spatial mode. The spectral mode provides up
to 288 spectral bands, and the spatial mode, which was used in our experiment, provides a spatial
resolution of 0.5 m, with a swath width of 1484 pixels and 23 spectral bands. First, radiometric and
geometric corrections of raw CASI-1500 hyperspectral images were performed using Itres V1.2 (ITRES,
Calgary, AB, Canada) which result in the radiance images with a ground sampling distance (GSD) of
1 m. Then, empirical line calibration (ELC) [37] was utilized for atmospheric correction to calibrate the
radiances to the surface reflectance. After that, the ELC method assumes that a linear relationship
exists between the radiance recorded by the sensor and the corresponding site-measured spectral
reflectance, which requiring two or more bright and dark targets in the image coverage area. This study
selected a flat and open ground to position two black and white pieces of cloth, with sizes of 5 m × 5 m
(proportional to the pixel size of 0.5 m), to act as the dark and bright targets, respectively. The field
spectra of the dark and bright targets were measured simultaneously.

Table 2. Parameters of CASI-1500 images acquired in Liangshui.

Sensor Type VNIR Pushbroom Sensor

Spectral Range 380–1050 nm
Spectral Channels 23
Spatial resolution 0.5 m

Field of View 40◦

IFOV 0.49 mRad
Spectral Width 2.4 nm

Spectral Resolution <3.5 nm
Bands (nm) 459.7, 533.6, 608.8, 693.6, 798.5, 817.5, 830.6, 834.2,

868.6, 880.5, 887.6, 913.7, 927.9, 955.1, 961.0, 982.2,
990.5, 997.6, 1002.3, 1011.7, 1015.2, 1032.9, 1039.9

3. Methods

A flowchart of the method is summarized in Figure 3. Detailed information is given as follows:
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3.1. Registration and Individual Tree Isolation

Registration was required because the hyperspectral data and LiDAR data were acquired separately.
First, orthographic rectification was carried out based on the LiDAR-derived DEM to eliminate the
image warping in the hyperspectral data caused by topographic relief [25,32,38,39]. Then, registration
was executed by finding homonymous objects in the CHM, DOM, and hyperspectral data using
the polynomial method in the ENVI software (Harris Geospatial Solutions, Inc., Boulder, CO, USA).
The homonymous objects mainly included building corners, road intersections, and some small, clearly
visible objects.

The individual trees were isolated in the CHM using a morphological crown control-based
watershed algorithm, as proposed in our previous studies [18]. First, an invalid value filling method,
which was also proposed in our previous studies, was applied to the original CHM to fill abnormal or
sudden changes in the height values (i.e., invalid values) [38]. Then, the crown-controlled watershed
method for individual tree isolation was applied to the CHM to obtain the position, height and crown
diameter of individual trees. The morphological crown control, which approximates the real tree
crown area in the CHM and is used to limit treetop detection and watershed operation in the crown
area, was introduced to determine the crown areas. The local maxima algorithm identified potential
individual tree positions. Double watershed transformations, in which a reconstruction operation was
inserted, delineated the tree crowns. Finally, the individual trees were isolated, and their parameters
were extracted from the optimized watershed results (Figure 4a). The green square in Figure 4a shows
the plot boundary, the small black crosses represent individual tree positions, and the white boundaries
are the individual tree crown edges. The labelled image (Figure 4b), in which each segment had its
own label, was generated at the same time.

In total, 1847 individual trees were isolated from the plot, and the tree height distribution is
shown in Figure 5a. 97.13% of the isolated trees are shown to have a tree height greater than 15 m.
This situation is due to the CHM representing the upper surface of the canopy. The 2205 ground survey
trees with height greater than 15 m were used to validate the results. Manual comparisons between the
isolation results and the ground survey data were performed using the ArcGIS software. The validation
principle is based on position proximity and tree height similarity [18]. After validation, 1838 trees
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were correctly isolated by finding its corresponding ground survey trees, and the comparison between
LiDAR derived tree height and ground survey of the 1838 trees are shown in Figure 5b. The position,
tree height, and species of the validated trees were recorded.Forests 2019, 10, x FOR PEER REVIEW 7 of 20 
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3.2. Classes Determination and Sample Selection

Individual tree spectra were extracted by searching for the corresponding spectrum pixels in the
hyperspectral image based on the crown areas extracted from the individual tree isolation process
(Equation (1)).

Pi = H(IW=i) (1)

where Pi is hyperspectral pixels in basin i, W is the label image of the watershed, i is the unique label
of a different basin, H is the hyperspectral image, and IW=i is the index of label i in W. In this step,
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the boundary pixels of each basin were not included, to avoid the possible mixture of crown to the
background or another crown.

These pixels were merged to ensure that every tree is represented by one unique spectral curve,
which is used to directly identify tree species. The label image of individual tree detection became
a hyperspectral label image, that each label was marked by a mean spectral curve rather than the
watershed label. For two reasons, not all the pixels located in the tree area were vegetation pixels.
First, the registration accuracy between individual tree isolation results from LiDAR, and hyperspectral
data did not reach 100% because of the different data acquisition times. Second, the four-component
problem [26] resulted in shadow and ground pixels in the crown area. Thus, filtering should be carried
out to eliminate the non-vegetation pixels before merging. The reflectance of healthy vegetation in the
near-infrared and red bands is significantly different from the non-vegetation objects, according to the
spectral reflection characteristics. Radiation in the green portion of the spectrum is strongly absorbed,
whereas radiation in the near-infrared band is strongly reflected and penetrated [40]. Vegetation
indices (e.g., normalized difference vegetation index, NDVI) are often used to determine whether
a hyperspectral pixel is a vegetation pixel. The study area of the present paper is relatively small,
and the main ground objects included only vegetation and the ground. Thus, an empirical threshold
for the near-infrared band (798.5 nm) was used to directly distinguish vegetation from non-vegetation.
As a result, the pixels with reflectance at 798.5 nm band greater than 0.1 were considered to calculate
individual tree spectrum.

Spectrum merging was carried out by calculating the mean value of each band of the extracted
individual tree crown pixels (Equation (2)). Figure 6 shows the merged individual tree spectra.

SM = M(
→

Si) (2)

where
→

Si is the vegetation spectral pixels of the individual tree i, M() is the mean value calculation
function, and SM is the mean spectrum.Forests 2019, 10, x FOR PEER REVIEW 9 of 20 
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The CHM represents the canopy distribution of the upper surface of the forest, whereas the
ground survey includes nearly all the individual trees in the sample plot. Thus, the ground survey
data were filtered by tree height. Only trees with a height greater than 15 m were retained, as observed
in the CHM. There were 31 species in total, of which four were needle leaved species and 27 were
broadleaved species (Figure 7). To ensure the individual trees have pure crown spectrum, we only
selected trees which did not have other trees around them in a range of 5 m radius. The Figure 8
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showed that Aspen, Spruce, and Maple did not have enough eligible samples. As a result, the Korean
pine, Korean birch, Faber’s fir, Japanese elm, northeast China ash, acer mono, and amur linden were
considered for individual tree spectrum extraction to determine classes system. We collected all spectra
of the selected trees of the 7 species from Figure 7 based on the ground positions. Based on our previous
work [40], it was difficult to identify species in the study area with single temporal spectra. As a result,
the mean spectra of these species were checked and compared (Figure 8), the following observations
were generated:

(1) The spectrum of Korean pine was easily distinguished.
(2) The spectra of Faber’s fir and dragon spruce were very similar.
(3) The spectra of Korean birch, Acer mono and Amur linden were very similar.
(4) The spectrum of northeast China ash was relatively unique.
(5) The quantity of Japanese elm and the other broadleaved trees was small, and their spectra were

roughly similar.Forests 2019, 10, x FOR PEER REVIEW 10 of 20 
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As a result, a total of 6 classes with species or species groups were defined to cover as much detail
as possible:
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(1) A = Korean pine;
(2) B = Faber’s fir and dragon spruce;
(3) C = Korean birch, Acer mono and Amur linden;
(4) D = northeast China ash;
(5) E = Japanese elm, and the other broadleaved species;
(6) Background.

Thirty samples per class were selected for classes A–E from the pure crown spectrum according
their similarity to the average curve of each class, and another thirty samples were selected as the
background. Each sample was an independent spectra curve, which provided a mean value for the
vegetation pixels in a tree crown area.

3.3. Crown-Based ITC & Pixel-Based ITC

The crown-based ITC was then carried out with the 180 samples and spectra merged image
in ENVI software. In this step, the classifiers, SVM and SAM [41,42], were trained by the samples,
and then applied respectively to the spectra merged image. The classification results were classes
labelled maps, in which each individual tree crown was labelled with a classified class, and then the
species of each individual tree was obtained by extracting the unique class within its crown.

SVM is a classification system derived from statistical learning theory, which is very effective in
the classification with limited samples. It separates the classes with a decision surface that maximizes
the margin between the classes. The surface is often called the optimal hyperplane, and the data points
closest to the hyperplane are called support vectors. The support vectors are the critical elements of
the training set. SAM is a physically-based spectral classification that uses an n-dimensional angle
to match pixels to reference spectra. The algorithm determines the spectral similarity between two
spectra by calculating the angle between the spectra and treating them as vectors in a space with
dimensionality equal to the number of bands.

In the pixel-based ITC, the same classifiers, SVM and SAM, were firstly applied to the original
hyperspectral data with the same samples as used in crown-based ITC. The difference was that
each sample was a spectral set of all crown pixels in the sample area, rather than one curve.
Then, the individual tree isolation results were overlaid on the classification results. The class
information for each isolated tree was extracted, and a weighted classes analysis method was
applied to identify the class of the individual tree. In the weighted classes analysis, the weight of
each pixel in an isolated tree crown was determined based on the distance between the pixel and the
treetop, and the weight of the treetop pixel was 1, the farthest pixel was 0.5, while the other pixels
were distributed linearly based on their distance to the treetop. Then, the weighted sum of each class
was calculated, and the class with the largest sum was the class of the tree.

3.4. Validation & Analysing

The validation was carried out in two parts. First, 70% of the samples were randomly selected for
classification training, and 30% were using for verification to provide overall accuracy (OA; the OA
is calculated by summing the number of pixels classified correctly and dividing by the total number
of pixels) and Kappa coefficient (KC; KC is calculated by multiplying the total number of pixels in
all the ground truth classes (N) by the sum of the confusion matrix diagonals, subtracting the sum of
the ground truth pixels in a class times the sum of the classified pixels in that class summed over all
classes, and dividing by the total number of pixels squared minus the sum of the ground truth pixels
in that class times the sum of the classified pixels in that class summed over all classes). Then, this
procedure was repeated by 10 times to get a mean OA and KC.

After verification, the classification results were analysed by consistency between classification
result and ground survey data. A buffer was established for each individual tree according to its
extracted position and crown diameter. Individual trees identified in the ground survey that had a
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height greater than 15 m and that were located in the buffer, were compared with the classification
results obtained from remote sensing data. If the class of the highest tree or the classes of the dominant
trees with more than three individuals was the same as the classification result, then this tree would be
considered correctly classified; otherwise, it was incorrectly classified. The consistency was defined as
the ratio of correctly classified individual trees to the classified individual trees in each class.

Here, the buffer was imported to help find the corresponding ground survey trees rather than
the crown delineated from the CHM. This was mainly because some of the trees in the plot were
not vertical, which led to mismatches between the ground survey tree positions and the isolated tree
positions. In this plot, the buffer was set to 1.5 times the crown diameter derived from the LiDAR data.

4. Results

The hyperspectral image direct classification results of the SAM and SVM classifiers in ENVI software
are shown in Figure 9a,b. Overlays of the individual tree isolation results on the classification results are
shown in Figure 9c,d. The final classification results of the two methods are shown in Figure 10.Forests 2019, 10, x FOR PEER REVIEW 13 of 20 
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classification results with individual tree segmentation.



Forests 2020, 11, 303 12 of 19
Forests 2019, 10, x FOR PEER REVIEW 14 of 20 

 

  

(a) (b) 

  

(c) (d) 

 

Figure 10. Classification results of crown-based ITC and pixel-based ITC: (a) result of crown-based 

ITC-SVM; (b) result of crown-based ITC-SAM; (c) result of pixel-based ITC-SVM; (d) result of pixel-

based ITC-SAM. 

First, we used all samples for training to get results without validation. The individual tree 

classes statistics of the results without validation are shown in Table 3. From the table, the 

broadleaved classes appear too much in the pixel-based ITC results compared to the survey data. 

Generally, the classes distribution based on the crown-based ITC results is better than that of the 

pixel-based ITC. Each class generated the following observations: 

(1) Class A, in which the Korean pine was the dominant species in the plot, was frequently 

identified. The pixel-based ITC SVM method identified Class A with the highest frequency, 

the crown-based ITC SAM method identified it with the lowest frequency, and crown-

based ITC SVM and crown-based ITC SAM identified it at nearly the same rate. The crown-

based ITC methods obtained more Class A than the pixel-based ITC methods. 

(2) Class B, in which the Faber’s fir and dragon spruce were also the main dominant and sub-

dominant species in the plot, was identified frequently using the pixel-based ITC method, 

whereas it was seldom identified using the crown-based ITC method. 

Figure 10. Classification results of crown-based ITC and pixel-based ITC: (a) result of crown-based
ITC-SVM; (b) result of crown-based ITC-SAM; (c) result of pixel-based ITC-SVM; (d) result of
pixel-based ITC-SAM.

First, we used all samples for training to get results without validation. The individual tree classes
statistics of the results without validation are shown in Table 3. From the table, the broadleaved classes
appear too much in the pixel-based ITC results compared to the survey data. Generally, the classes
distribution based on the crown-based ITC results is better than that of the pixel-based ITC. Each class
generated the following observations:

(1) Class A, in which the Korean pine was the dominant species in the plot, was frequently identified.
The pixel-based ITC SVM method identified Class A with the highest frequency, the crown-based
ITC SAM method identified it with the lowest frequency, and crown-based ITC SVM and
crown-based ITC SAM identified it at nearly the same rate. The crown-based ITC methods
obtained more Class A than the pixel-based ITC methods.
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(2) Class B, in which the Faber’s fir and dragon spruce were also the main dominant and sub-dominant
species in the plot, was identified frequently using the pixel-based ITC method, whereas it was
seldom identified using the crown-based ITC method.

(3) Crown-based ITC identified Class C (Korean birch, Acer mono, and Amur linden) relatively close
to the survey data, whereas pixel-based ITC SAM identified it more than 30%.

(4) Class D (northeast China ash) was appropriately identified by crown-based ITC but just 1/8
identified by pixel-based ITC. This was mainly because crown-based ITC reduced the influence
of the crown overlap.

(5) The tree heights of the Japanese elm and the other broadleaved species in Class E were relatively
low. Therefore, they were only partially identified by both pixel-based ITC and crown-based ITC.

(6) Several trees were classified as background, which resulted in five tree classes with fewer than
1847 trees classified in each method.

Table 3. Classification result statistics (Count_Sur: Count of Survey data, Count_Exp: Count of
Experiments, Percent in total: ratio of count to total, A–E are classes).

Class A B C D E Total

Survey Data
(H > 15 m)

Count_Sur 980 419 313 125 368 2205
Percent in total 44.44% 19.00% 14.20% 5.67% 16.69% 100.00%

Crown-based ITC
SVM Results

Count_Exp 739 578 364 86 71 1838
Percent in total 40.21% 31.45% 19.80% 4.68% 3.86% 100.00%

Crown-based ITC
SAM Results

Count_Exp 531 561 419 126 195 1832
Percent in total 29.22% 30.52% 22.80% 6.86% 10.61% 100.00%

Pixel-based ITC
SVM Results

Count_Exp 1220 116 428 16 59 1839
Percent in total 66.34% 6.31% 23.27% 0.87% 3.21% 100.00%

Pixel-based ITC
SAM Results

Count_Exp 856 55 864 10 32 1817
Percent in total 47.11% 3.03% 47.55% 0.55% 1.76% 100.00%

From the observations, pixel-based ITC SVM was failed to distinguish class A and B, while
SAM was failed to class B and C. These indicated that the results of pixel-based ITC were obviously
not matching the ground survey data well. Therefore, the validation was only carried out on the
crown-based ITC results.

The validation was carried out, and the OA and KC of each repeat for crown-based ITC SVM
and crown-based ITC SAM were showed in Table 4. The mean OA and KC of SVM were 85.33% and
80.93%, and SAM were 81.67% and 75.52%. Both the mean OA and KC of SVM were better than SAM.

Table 4. Validation result statistics for crown-based ITC.

Repeat Crown-Based ITC SVM Crown-Based ITC SAM

OA Kappa OA Kappa

1 93.33% 89.36% 86.67% 81.23%
2 88.67% 82.61% 85.33% 79.20%
3 85.33% 81.45% 88.67% 82.58%
4 82.67% 80.22% 80.67% 74.22%
5 90.67% 87.34% 88.00% 85.44%
6 79.33% 73.28% 73.33% 69.88%
7 84.67% 79.28% 86.67% 81.19%
8 92.67% 88.76% 78.67% 70.94%
9 72.67% 67.55% 66.67% 56.82%
10 83.33% 79.46% 82.00% 73.74%

Mean 85.33% 80.93% 81.67% 75.52%
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The consistency with the field measurements (Table 5) also showed the similar results to the
validation. From the table, Class A, the dominant species, has the highest consistency; both SVM and
SAM have a consistency of approximately 95%. The consistencies of Classes B and C are approximately
60%, whereas the consistency of Class D using SAM is higher than that obtained using SVM, and the
consistency of Class E is opposite with respect to SAM and SVM. The overall consistencies of SVM
and SAM are not significantly different, and the identification consistency of each class should be
considered to help assess the methods.

Table 5. Consistency result statistics for crown-based ITC (Count_Sur: Count of Survey data, Count_Exp:
Count of Experiments, Percent in total: ratio of count to total, A–E are classes).

Class A B C D E Total

Survey Data
(H > 15 m)

Count_Sur 980 419 313 125 368 2205
Percent in total 44.44% 19.00% 14.20% 5.67% 16.69% 100.00%

Crown-based ITC
SVM Results

Count_Exp 739 578 364 86 71 1838
Percent in total 40.21% 31.45% 19.80% 4.68% 3.86% 100.00%

Correct count 701 334 230 42 58 1365
Consistency 94.86% 57.79% 63.19% 48.84% 81.69% 74.27%

Ratio to survey data 71.53% 79.71% 73.48% 33.60% 15.76% 61.90%

Crown-based ITC
SAM Results

Count_Exp 531 561 419 126 195 1832
Percent in total 28.98% 30.62% 22.87% 6.88% 10.64% 100.00%

Correct count 514 375 283 79 141 1392
Consistency 96.80% 66.84% 67.54% 62.70% 72.31% 75.98%

Ratio to survey data 52.45% 89.50% 90.42% 63.20% 38.32% 63.13%

The sample plot is a mixed forest, in which Classes A and B have higher tree height. Based on
the statistics of trees with a tree height greater than 15 m, the average tree heights of Classes A, B, and
C, are 24.7 m, 20.18 m, and 19.9 m, respectively, and the average tree height of Classes D and E is 19 m.
Based on the principle of individual tree isolation [18], Classes A, B, and C should be more isolated due to
their greater height. Additionally, the hyperspectral image is “viewing the crown from above”, which
leads to species with greater tree heights being identified more frequently. As shown in Tables 3 and 4, the
SVM results are consistent with the fact that the greater height classes outnumbered the other classes.

Finally, we analysed the classification errors in the crown-based ITC SVM results based on the
buffer analysing (Table 6). From the table, the OA and KC were 74.27% and 62.11%. Classes A and B
were likely to be mutually misclassified because the spectra of these two coniferous species are similar.
Overlapping tree crowns were another cause of the above problem. The method can eliminate some of
the non-vegetation pixels in the crown area but could not distinguish the overlapping crown pixels.
Thus, the merged spectra may mix spectra of two or more trees. In fact, misclassification is impossible to
avoid because the plot is a high-density mixed forest. Additionally, incorrect validation can also be caused
by the misregistration between individual tree isolation results and ground survey data. The trees in our
plot are not all perfectly vertical. If the tree grows at an angle, the crown centre, which is considered the
tree position in individual tree isolation, is located at a certain distance from the real tree position.

Table 6. The confusion matrices of buffer based analyzing for crown-based ITC SVM (Count_Exp:
Count of Experiments, A–E are classes).

Class A B C D E Total

Count_Exp 739 578 364 86 71 1838

A 701 20 9 4 5 739
B 182 334 34 24 4 578
C 84 33 230 7 10 364
D 12 10 18 42 4 86
E 3 5 3 2 58 71

Total 982 402 294 79 81 1838
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5. Discussion

Individual tree classification based on LiDAR and hyperspectral data from forests is a method
that could save a considerable amount of time, manpower, and material resources during forest
investigations. This research verifies that the mean spectra of the crown could represent individual
tree spectra and it is more suitable for the individual tree species identification than pixel-based
classification. Based on experiments, our approach and data appear to be suitable for the isolation and
classification of dominant and sub-dominant individual trees and can be applied to forests with simple
vertical structures, such as a planted forest. There were some advantages and limitations in the use of
this approach. Classification based on hyperspectral data usually encounters several problems, e.g.,
mixed-pixel and four-component problems. The pixel-based ITC methods first executed classification
and then analysed individual tree classes based on the individual tree isolation results. Thus, these
problems still existed when executing pixel-based classification. To overcome these problems, the
crown-based ITC methods used a merged spectrum, which involved merging the spectra of one tree
into a single spectrum, to avoid the mixed-pixel problem at the level of individual tree and, in doing so,
largely weakened the four-component problem by neutralizing the components. However, this largely
depends on the registration accuracy of the hyperspectral and LiDAR-derived CHM. The registration
directly determines the purity of the individual spectra. The registration in this study was executed
by finding homonymous objects around the plot. However, a mass of homonymous objects would
be required to ensure an accurate registration when applying our method to large areas, it would be
more feasible to use object-based registration, which isolates individual trees in both hyperspectral
and CHM images and then registers the images based on the homonymous or most similar individual
tree group [43].

The crown-based ITC method extracted an individual tree spectrum from a hyperspectral image
based on the label image obtained from the isolation using the LiDAR CHM. A threshold was defined
to eliminate non-vegetation pixels, and the vegetation pixels were then merged by calculating the
mean value of spectra. Then, every individual crown had its own spectral curve. Zhang et al. [27]
used the spectrum of the treetop pixel to represent an individual tree spectrum, which was appropriate
because the trees in an urban area had a relatively regular shape and little overlap. Dalponte et al. [29]
used thresholds to extract hyperspectral pixels inside individual tree crowns from individual tree
isolation models based on LiDAR or hyperspectral images to ensure that the pixels were the real
crown surface. All these vegetation pixels were then used in the classification. However, this approach
still encounters the problems of mixed-pixels, four-component, and overlapping crowns. As a result,
merging the crown pixels would be better for identifying individual tree species. The results of
the individual tree species identification had a good relationship with tree height. A taller tree was
more likely to be correctly identified, and smaller trees and understories were difficult to detect.
The results also indicated that greater consistency was obtained with dominant and sub-dominant
species compared to other species. The reason for this could be that both the LiDAR CHM and
hyperspectral data represented the upper surface of the crown. Although LiDAR had some penetration
ability, the individual tree isolation process was carried out based only on the CHM. The dominant and
sub-dominant species groups were better observed in images, whereas the midstory and understory
species groups were mostly overlapping. The validation results of individual isolation had the same
pattern as the results of Zhao et al. [18], which showed that the LiDAR CHM- based individual tree
isolation could provide good information about the dominant and sub-dominant trees in forests.
Thus, dominant and sub-dominant species were set to individual classes, and other species were
grouped when determining classes.

The mean OA and KC of this study for crown-based ITC SVM were 85.33% and 80.93%. According
to Table 7, our results confirmed that the overall accuracy of individual tree species classification
based on LiDAR and hyperspectral data could achieve around 85%. The classes of this study were
limited, and larger study area should be considered for further research. The classification errors were
mainly attributable to similar spectra, crown overlap, and registration between isolation results and
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ground survey data. In future studies, the latter two problems can be remedied, or even avoided.
Crown overlap always leads to over- or under-isolation, and this issue is frequently encountered
in individual tree isolation studies. A 3D structural individual tree isolation process based on a
high-density point cloud could be studied to reduce over- and under-isolation. For the registration
between isolation results and ground survey data, a potential solution is to replace individual positions
with the individual treetops in the field works, which will be more suitable for remote sensing-based
individual tree applications.

Table 7. The overall accuracy comparison of some individual tree species classification studies.

Methods/Literature Classes Overall Accuracy Location

crown-based ITC SVM 6 85.33% Temperate forest in China
Maschler et al. 2018 13 89.4% Temperate forest in Australia
Dalponte et al. 2019 9 88.1% Temperate forest in US

Nevalainen et al. 2017 4 >90% Boreal forest in Southern Finland
Zhang et al. 2012 20 68.8% Urban forest in north Dellas
Alonzo et al. 2014 29 83.4% Urban forest in California

Lee et al. 2016 7 >85% Deciduous forest in England

The six classes used in this paper are defined based on hyperspectral image, and classes B, C and
E are actually “mixed genera”. This is likely because that the hyperspectral data we used just has 23
bands, which are insufficient to distinguish some spectra-similar species, such as the species in classes
B and C. In future, we are intending to realize “real species” classification in a large region with more
samples and the hyperspectral data with more detail bands. The classifiers used were SVM and SAM,
which are frequently used in hyperspectral image classification. Some of the latest algorithms, such as
adaptive Gaussian fuzzy learning vector quantization, may be better methods [27].

A significant limitation of this research is the combination of LiDAR and hyperspectral data.
Airborne LiDAR and hyperspectral data acquisition are still expensive because individual-scale
parameter extraction requires high-density point clouds and high-resolution hyperspectral data, as well
as synchronous data acquisitions. However, the expense will decrease in the future as technology
continues to improve. For example, an integrated device, like the LiCHy-CAF, which can combine the
two flights into one by integrating LiDAR and hyperspectral sensors, as well as the development of
systems to acquire LiDAR and hyperspectral imagery from UAVs will significantly reduce the cost.

6. Conclusions

Individual tree information in forest, including position, height, and species, could be extract based
LiDAR and hyperspectral data, especially for the dominant and sub-dominant trees. Two individual
tree classification methods, namely crown-based ITC and pixel-based ITC, based on LiDAR and
hyperspectral data, were proposed and compared in this paper. The results in Northeast China
showed that the crown-based ITC method performed better than the pixel-based ITC method.
It could be concluded that the individual tree species should be classified based on individual tree
crown-based spectrum features, rather than analyzed based on pixel-based classification results using
individual crowns.

Following crown-based ITC method, the identification consistency of the class of the dominant
species relative to the field measurements was greater than 90%, whereas that of the classes of the
sub-dominant species groups were greater than 60%. The overall consistencies of SVM and SAM
were both greater than 70%, but SVM reflected the species distribution of the experiment area better
than SAM. It also could be concluded that individual tree species classification based on LiDAR and
hyperspectral data can be applied to distinguish dominant and sub-dominant species in forests with
high accuracy, but remains powerless in the case of non-dominant species.
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