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Abstract: Resprouting is an important trait that allows plants to persist after fire and is considered a
key functional trait in woody plants. While resprouting is well documented in fire-prone biomes,
information is scarce in non-fire-prone ecosystems, such as New Zealand (NZ) forests. Our objective
was to investigate patterns of post-fire resprouting in NZ by identifying the ability of species to
resprout and quantifying the resprouting rates within the local plant community. Fire occurrence is
likely to increase in NZ as a consequence of climate change, and this investigation addresses an
important knowledge gap needed for planning restoration actions in fire-susceptible regions. The
study was conducted in two phases: (1) A detailed review of the resprouting ability of the NZ woody
flora, and (2) a field study where the post-fire responses of plants were quantified. The field study was
undertaken in the eastern South Island, where woody plants (>5 cm diameter at 30 cm height) were
sampled in 10 plots (10x10 m), five- and 10-months post-fire. The research synthesized the resprouting
ability of 73 woody species and is the first to provide extensive quantitative data on resprouting in
NZ. Most of the canopy dominant species were non-resprouters, but many smaller trees and shrubs
were capable of resprouting, despite their evolution in an environment with low fire frequency.
Species composition and abundance were important predictors of resprouting patterns among plots,
with similar communities resulting in similar resprouting responses. Resprouting capacity provides
species with a competitive advantage in the post-fire recovery. We suggest that it is possible to
engineer more fire resilient restoration plantings by planting higher proportions of the resprouters
identified in this study. The incorporation of resprouting as a trait in restoration plans is likely to be
relevant not just in NZ, but also in other non-fire-prone regions facing increases in fire frequency.
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1. Introduction

Fire is an ecological disturbance agent that plays an important role in the evolution, distribution,
and abundance of woody plants worldwide [1,2]. As a result, trees and shrubs present a range of
different post-fire responses and strategies to persist or re-establish in burnt areas. For instance,
resprouting is an important post-fire response that allows plants to persist after fire events and is
considered a key functional trait in woody plants [3]. Resprouting can be a shortcut for forest recovery
[3,4]. Starting as a vigorous shoot, resprouting eliminates some risks related to seedling establishment,
such as limited dispersion, seed predation, seed desiccation, and the initial, and most vulnerable,
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seedling stages [4]. The ability to resprout varies among species [5] and has profound effects on plant
population dynamics and community assembly [6].

The capacity to recover by resprouting varies not just across species but also within species,
depending on pre-fire plant conditions, fire intensity [5], and fire frequency (e.g., the resprouting
capacity may be reduced under recurrent fire events). The initial production of resprouting shoots will
depend on the development, protection, and resourcing of a viable bud bank [7], but other factors can
influence the final recovery success, such as the vigour of the resprouts [8], the probability of predation
[9], and climate conditions.

Due to its ecological importance, resprouting is well-documented in fire-prone biomes such as
Mediterranean vegetation types, temperate forests in the United States and Australia, and savannas in
Australia, Africa, and South America [5,6,10]. However, information on resprouting is scarce in hitherto
non-fire-prone ecosystems [11]. Given that fires are becoming more prevalent globally, including in
systems that have historically been considered as non-fire-prone, quantitative data collection in
different vegetation types is required to develop a broader understanding of this trait and its
implications [5]. New Zealand (NZ) forests are an example of a non-fire-prone vegetation type where
little is known about post-fire resprouting [12], and where observations of vegetation change
immediately after wildfire are rare in the literature [13]. Prior to this investigation, the only paper that
directly addressed the resprouting capability of NZ native species was essentially descriptive [9] and,
while it contributed as a first step to understanding resprouting in NZ, it lacked quantitative data (e.g.,
the proportion of plants resprouting, numbers of resprouts). Other research which focused on post-fire
recovery more broadly also contributed information on resprouting in NZ species [14-17].

The forests in NZ evolved in an environment with naturally low fire frequency, with many areas
having hundreds of years between fires [18,19]. This low pre-human fire frequency is mainly explained
by the absence of ignition sources [12], as New Zealand has a predominantly low rate of lightning
strikes [20,21] and, even when they happen, they tend to be associated with wet fronts [18] resulting in
small scale fires [19]. As a consequence of its evolution with limited exposure to fire, the indigenous
flora is poorly adapted to fire [12,19,22]. When Polynesians arrived in NZ in the mid-13th century, fires
were introduced to the landscape at a much greater frequency, resulting in rapid and substantial forest
loss [18,23]. Forests were locally burned to clear land for agriculture, facilitate cross-country travel, and
to encourage the growth of bracken (Pteridium esculentum), which was used as a food source [24-26].
Nevertheless, the Polynesian fires led to extensive forest losses because of limited ability to control
them once started and so in most cases large-scale deforestation was likely accidental [19,26]. Planned
European settlements occurred from around 1840 [18], and by 1900, extensive areas of forest in lowland
and eastern areas of NZ were removed by felling or burning to extract timber and create pasture [27].
The impact of European settlement was much more severe than the Polynesian occupation period due
to the further reduction in forest cover and the introduction of exotic plants and animals leading to the
extinction of many native species [28, 29].

In NZ ecosystems, forest burning favors the establishment of early successional native species,
such as Pteridium esculentum, Kunzea spp., and Leptospermum scoparium, and facilitates the invasion of
woody exotic species, such as Ulex europaeus, Cytisus scoparius and Hakea spp. [30]. The colonization of
these species in early post-fire successional states results in the development of a vegetation type more
flammable and fire-prone than the original pre-fire forest [12,31]. As a consequence, this dynamic has
the potential to create a positive feedback between fire and vegetation succession [32]. As common
invasive species are often pyrophyllic and well adapted to fire, while the native flora generally is not
[19], these invasions potentially alter the successional trajectories, and may even arrest the successional
process [31], creating novel fire-prone ecosystems dominated by woody exotic species. When this
threshold is crossed, restoration efforts may be crucial to enhance the re-establishment of the native
forest, including reintroduction of native species, control of exotic species, and management actions
aiming to reduce local fire frequency and intensity.

Fire occurrence in NZ has been increasing in the last few decades. The most recent and detailed
wildfire analysis shows that the number of wildfires increased from about 1200 fires per year in the
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early 1990s, to over 4000 fires per year in 2006/2007 [33]. In addition, climate change models predict
that fire risk is likely to increase further in NZ as a consequence of higher temperatures, reduced
rainfall, and stronger winds [34,35].

Considering this trend of increasing fire frequency, understanding how plants respond to fire and
whether a species will resprout or not is of paramount importance for planning forest restoration and
conservation. Our investigation into post-fire vegetation responses in NZ forests addressed three main
questions. Firstly, can woody species that have evolved in a land with very low frequency of fire events
resprout following a fire? Secondly, do resprouting rates vary between species? And, finally, how do
species composition and abundance influence resprouting rates within the local plant community?
Ultimately, by answering these questions, this study provides insights to guide the restoration and
conservation of forests located in regions of NZ that are currently under increasing fire pressure. This
contribution is likely to be relevant not only in NZ but also in other countries and biomes that have not
historically experienced frequent fire, but which are now facing increasing fire occurrence because of
the combined effects of human presence and climate change. This study was undertaken after a large
wildfire in late summer 2017 on the Port Hills, Christchurch City, NZ, which burnt through a mosaic
of native second growth regenerating forest, exotic scrub and grassland.

2. Materials and Methods

The study was conducted in two phases: the first consisted of a detailed literature review in order
to identify what is known about the resprouting capacity of the NZ woody flora, and the second
comprised a field-based study where post-fire responses of plants were quantified, monitored, and
analysed.

2.1. Resprouting Review

Aiming to understand if the NZ woody flora, which evolved in an environment with low fire
occurrence, is able to resprout after fire, we conducted an extensive survey of the literature referring to
the resprouting ability of NZ species. We searched the Scopus database for international publications,
and the query included fire and sprout* in any part of the text, and “New Zealand” in the title, abstract,
or key-words (ALL (sprout* AND fire) AND TITLE-ABS-KEY ("New Zealand")). For national
publications, the databases of New Zealand Journal of Botany (NZJB) and New Zealand Journal of
Ecology (NZJE) were thoroughly searched. The query used in the NZJB included sprout AND fire, and
resprout AND fire in any part of the text. And the NZ]JE was searched using fire in the title, abstract,
and keywords, and searching in each article for sprout or resprout. The queries were adapted to the
peculiarities of each database searched. Based on the literature, a list of NZ woody species and their
binary resprouting response (yes or no) was developed. The position of resprouting buds, quantitative
information (e.g., resprouting percentage), and relevant comments were included when available. The
botanical nomenclature followed the New Zealand Plant Conservation Network
(http://www.nzpcn.org.nz/, accessed on 10 January, 2020).

2.2. Field Study Site

The field study was undertaken on the Port Hills (43°37’ S, 172°37’), on the east coast of NZ’s South
Island, near the city of Christchurch (Figure 1). The study area has a rugged topography and rises from
the sea level to 573 m. Soils are mainly derived from basaltic bedrock and loess. The average annual
rainfall varies from 600 to 800 mm, with periodic droughts during the summer. Originally, the area was
covered mainly with podocarp-broadleaved forest but practically all the forest cover was removed by
felling or burning by the European settlers to create pasture and extract timber, with the old growth
forest reduced to tiny fragments [27]. During the last few decades, much effort has been made to
preserve and restore the forests in the region, and currently there is a trend towards an increasing area
covered by native second growth regenerating forest. A detailed characterization of the Port Hills
region is presented by Wilson [27-29,36].
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In February 2017, the region was burnt with two adjacent wildfires affecting about 1660 ha [35]
(Figure 1). The burnt area was comprised of a complex mosaic of vegetation including pine plantations
(approximately 530 ha), exotic shrubland dominated mainly by Ulex europaeus and Cytisus scoparius (475
ha), pastureland (315 ha), and native vegetation in different stages of regeneration back to forest (155
ha). Our study was focused on these burnt patches of native regenerating forest (Appendix B—Figure
B1).

q
@
W,
™y £
e -3
% :
. e
b K
7 f
€ ik
) 3
L& 3
sy :
f iy
/ y
y ;
4 B B e—
£ f -8
£ :
é 4
& /
i,
7 Legend
p 0 5 10 15 20
New Zealand —— — ometers Fire Area
172"50'0"5 171"4‘0‘0'E I72"5'»0‘0“E 173'b'U'E WTT;U'U"E

Figure 1. Location of the area affected by the wildfire (yellow polygon) on the Port Hills, near the city
of Christchurch, New Zealand.

2.3. Sampling And Measurements

The burnt patches of native second-growth forest were sampled in ten 10 x 10 m plots (Appendix
B—Figure B1). The sample design was planned using both pre- and post-fire orthophotography and
field observations of the study area. The pre-fire orthophotography was taken in the flying season of
2015-16 and the post-fire was taken in March 2017. The imagery was provided by Land Information
New Zealand and Environment Canterbury, respectively, and was supplied using a New Zealand
Transverse Mercator 2000 (NZTM 2000) with a 30 cm pixel resolution (0.3 m GSD), 3-band (RGB). The
orthophotography was used to identify the main burnt vegetation types. The burnt areas that classified
as native second-growth forest in the pre-fire orthophotography were selected for study. Potential plot
locations were identified, taking into account accessibility, the density of burnt trees (forest rather than
scattered trees), and an effort to obtain a representative spatial coverage of the total burnt area. The
location of the potential plots was then stratified in two main strata (1) kanuka dominant canopy (5
hectares burnt), and (2) mixed angiosperm canopy (137 ha burnt). The identification of these strata was
based on the pre-fire orthophotography, more specifically on the tone, which is one of the main
characteristics used to identify and classify imagery features. In this case, the foliage of the kanuka
dominant canopy reflected less light than the mixed angiosperm canopy, with kanuka crowns darker
and distinct in the landscape. After stratification, plots were located randomly on the map, and the
geographic coordinates of each plot were used to locate plots in the field. The randomization was
restricted to 100 m from tracks to facilitate access and re-measurement.

The first field sampling was undertaken five months after the fire. All the burnt woody plants >5
cm diameter, as measured at 30 cm above ground level, were counted and identified. Any sign of
resprouting was recorded for each individual. The stems were tagged in order to facilitate ongoing
monitoring, and the resprouts were counted and classified according to their position on the plant—
basal or epicormic. Growth form, crown architecture, and bark characteristics were used to identify the
species, as there were no data on the vegetation present in the plots prior to the fire event.
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The second sampling was undertaken 10 months after the fire event. New signs of resprouting
were recorded and, in order to monitor the vigour and survival of resprouts, the plants tagged in the
first sampling were checked, the number of resprouts were counted. Any signs of resprouts wilting or
being browsed were recorded. Additional sampling was undertaken beyond the sampling plots, in
random walks, in an effort to increase the number of individuals sampled per species, with the aim of
having at least nine individuals of each species sampled.

2.4. Data Analysis

The species were classified according to the percentage of individuals capable of resprouting,
obtained from the number of resprouting individuals and the total number of individuals per species.
When the resprouting rate was >70%, the species were considered as strong-resprouters; between 30%
and 70%, intermediate-resprouters; and <30%, weak- and non-resprouters, as suggested in [37]. In order
to determine if the proportions of resprouting differed across species, a chi-squared test was conducted
for the most abundant species (N > 12).

The total resprouting rate and type (basal and epicormic) were calculated for each plot and, based
on these results, the plots were grouped according to the resprouting patterns identified. Data
originating from the extra sampling (i.e., beyond the plots) were not included in this analysis. Non-
metric multidimensional scaling (NMDS) [38,39] was performed to ordinate the plots in a reduced
number of dimensions and to support the visualisation of the plots” similarities in terms of overall
species composition. For this, we used a matrix of species abundance data for the pre-fire vegetation,
although it was collected after the fire and species were identified based on plant growth form, crown
architecture and bark characteristics. The data included all the individuals identified in the plot
independent of their resprouting capacity (resprouters and non-resprouters were included). We used
the function metaMDS from the package “vegan 2.4-2” [41] in the R programme (version 3.6.0), applied
Wisconsin double standardization to the data and adopted the Bray Curtis similarity index. The
minimum number of random starts in search of a stable solution was 50 and the maximum was 500,
and the number of iterations stopped after reaching this minimum number and finding two convergent
solutions. The results were scaled by using the default options of metaMDS. The appropriate number
of dimensions (axes) was assessed by plotting final stress values against the number of dimensions on
a scree plot using the function dimcheckMDS from the package “goeveg”. To examine the influence of
species composition and abundance on the post-fire resprouting responses, we used a permutational
multivariate analysis of variance (PERMANOVA). The PERMANOV A was conducted using the adonis
function from the package “vegan 2.4-2” [40] and was based on the same species abundance matrix
used in the NMDS. This analysis was used to compare the plots’ species abundance against the
resprouting patterns. We used the Bray Curtis dissimilarity index and 999 permutations to do this.

3. Results

3.1. Resprouting Review

The review of resprouting in NZ woody species resulted in observations for 73 species, which are
summarized and presented in Appendix 1. Most of the observations were qualitative and classified the
species resprouting capacity in a binary system, while quantitative data (with n > 4) was available for
just 23 species, representing 28% of the data set. The field-based phase of our research provided
quantitative information on 15 species, from which five species had no previous information and two
species had just qualitative information. The other quantitative data presented originated from ‘grey’
literature and included two Master theses and an undergraduate report.

Most of the species that usually form the tallest tier of the conifer-broadleaved forests, one of the
two main forest types in NZ, were classified as non-resprouters. These species included the conifers
Dacrycarpus dacrydioides (kahikatea), Dacrydium cupressinum (rimu), Podocarpus spp., and Prumnopitys
taxifolia (matai). An exception was Agathis australis (kauri), which was considered capable of
resprouting, although also considered sensitive to fire. Some tall broadleaved angiosperms that can
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form a tier beneath the conifers, or the main canopy when conifers are absent or sparse, were classified
as non-resprouters, such as Metrosideros spp., but others were classified as resprouters (e.g.,
Beilschmiedia spp. and Weinmannia racemosa). The canopy species of the beech (Nothofagaceae) forests,
the other main forest type in NZ, were all classified as non-resprouters. These species were also
considered to be poor colonizers after fire, and very sensitive to burning. While most of the canopy
dominant species of the two main NZ forest types were non-resprouters, many medium and small trees
and shrubs were considered capable of resprouting, despite their history of little exposure to fire events
(e.g., Coprosma spp. and Melicytus spp.).

3.2. Field study—species’ responses

A total of 453 woody plants were assessed, 373 in the plots and 80 around the plots (extra samples).
The total resprouting rate rose from 17%, five months after the fire, to 38% ten months after. From the
24 species identified, 20 were native and four exotic. The exotic species represented 15% of the total
number of woody plants. The 15 most common species (1 2 9) represented 92% of the sample, and their
resprout proportions were extremely variable. Considering the resprouting ability of these species,
three species were classified as strong resprouters, four as intermediate, and eight as weak or non-
resprouters (Table 1).

Table 1. Classification of resprouting ability for the most abundant species (n > 9), along with their
flammability category [22], and dispersal mode [41]. The proportion of individuals resprouting varied
across different native species (x =196.2; d.f. =9; p <0.001). The majority of native species are evergreen,
except Fuchsia and Plagianthus. * Exotic species.

Species N Origin ~ Resprout % Resprout Ability g:::gl::y Dispersal
Cordyline australis 20  Native 100 Strong Low/Mod bird
Fuchsia excorticata 9 Native 100 Strong Low bird

Sambucus nigra* 15 Exotic 87 Strong NA bird
Melicytus ramiflorus 126 Native 69 Intermediate Low bird
Coprosma robusta/ lucida 33 Native 64 Intermediate Low/Mod bird
Griselinia littoralis 11 Native 55 Intermediate Low bird
Ulex europaeus * 47 Exotic 13 Weak Very high ballistic
Plagianthus regius 11 Native 9 Weak Very low gravity/wind
Pseudopanax arboreus 43 Native 5 Weak Low bird
Pittosporum tenuifolium/eugenioides 35 Native 3 Weak Low/Mod bird
Kunzea robusta 39  Native 0 None High wind
Olearia avicenniifolia 12 Native 0 None NA wind
Veronica salicifolia 14 Native 0 None NA wind

Note: Coprosma robusta and C. lucida, and Pittosporum tenuifolium and P. eugenioides were analysed
together. These congeneric species pairs presented very similar bark and crown architecture, and it was
not possible to confidently separate these species when they did not resprout. In general, Coprosma
robusta seemed to be more abundant than C. lucida in the sampled region.

Melicytus ramiflorus, classified as an intermediate resprouter, was the most abundant species,
representing 28% of the total number of plants. The majority (56%) of the burnt trees were top killed
and resprouted from the base. Epicormic resprouts were observed in 21% of trees, and a combination
of epicormic and basal resprouts in a further 23%. The trees that presented epicormic or a combination
of epicormic and basal resprouts, often resprouted vigorously, producing more than 10 resprouts per
plant. In the case of the top-killed trees, the resprouts were less vigorous, with the majority presenting
fewer than five resprouts.

Low intensity herbivory was observed on several individuals of M. ramiflorus (11) and one F.
excorticata. Based on the height of the predated leaves and field observations, the former was likely to
have been predated by goats and the latter by hares. Dry or withered resprouts were observed on a few
trees of M. ramiflorus (3), P. eugenioides (1), F. excorticata (1), G. australis (1), and U. europaeus (3).
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3.3. Field Study— Community Response

The total resprouting rate in the plots varied from 7% to 74%, and the proportion of basal and
epicormic resprouts was also variable. Based on this variability, different resprouting patterns were
identified, and three groups of plots could be distinguished (Figure 2). The first group (G1) comprised
the plots where resprouting rates were less than 10%. The second (G2) included plots with intermediate
resprouting rates, from 10% to 40%, and the resprouting type was essentially basal. The third group
(G3) was composed of plots with higher total resprouting rates, greater than 40%, and the resprouting
types included both epicormic and basal resprouts.

Plots

2 | I
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4 | I
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7

9
0% 20% 40% 60% 80% 100%

B Epicormic resprout % M Basal resprout % ' Non-resprout %

Figure 2. Total resprouting rate and proportion of resprouting type per plot. The different resprouting
patterns identified resulted in three groups of plots: G1 (red), G2 (blue), and G3 (green).

The results of the NMDS ordination (Figure 3) and the PERMANOVA indicated that species
composition and abundance were important predictors of resprouting patterns among plots, with
similar communities resulting in similar resprouting patterns. The two-dimensional NMNDS
ordination explained 95% of the species abundance similarity matrix (final stress = 0.09). Solutions with
more dimensions only minimally reduced stress. The PERMANOVA showed that the pre-fire
community abundance and composition significantly influenced the post-fire resprouting patterns
identified in the plots (p <0.01, R2=0.58). Among the plots with greater resprouting rates (G3), Melicytus
ramiflorus was the most abundant species, representing 81% of the total number of individuals in plot
10 (38 ind/100 m?), 65% in plot 2 (15 ind/100 m?), 40% in plot 6 (21 ind/100 m?), and 33% in plot 4 (12
ind/100 m?). In contrast, the plots with the lowest resprouting rates (G1) were strongly dominated by
Kunzea robusta, with 86% of the total number of individuals in plot 7 and 93% in plot 9.
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Figure 3. Results of the two-dimensional non-metric multidimensional scaling (NMDS). Resprouting
groups are represented by colours: G1 (red), G2 (blue), G3 (green), and resprouting percentages are
shown under each plot label.4. Discussion.

4. Discussion

4.1. Resprouting Review

The scarcity of quantitative resprouting information identified in our research reflects a global
trend, as many studies worldwide report just a binary resprouting response and far fewer report
quantitative data [5]. However, understanding resprouting goes beyond binary responses [6], as
resprouting represents a spectrum of probability between zero and one, and collecting quantitative
data is fundamental for better understanding of this trait [5].

Most of the dominant canopy tree species in the NZ conifer-broadleaved forests are conifers
incapable of resprouting. This absence of resprouting is not uncommon among other gymnosperms
worldwide [5]. In addition, in comparison to angiosperms, epicormic resprouting is limited to just a
few gymnosperm species, probably due to their lack of axillary meristems and hydraulic limitations
[7].

In contrast, the dominant species of the NZ beech forests, which are also not capable of
resprouting, belong to a family of plants, the Nothofagaceae, that present great variability globally
concerning resprouting responses, with some of them being successful post-fire resprouters in other
regions of the world. For example, in the Valdivian rain forests in Southern Chile, Nothofagus obliqua
and N. alpina are dominant canopy tree species, and both resprout after being burnt [42]. In Tasmania,
Australia, N. cunninghamii is also capable of resprouting after fire events [43].

Despite the absence of resprouting capability in most of NZ’s canopy dominant species, many
smaller trees are able to resprout after burning. Resprouting can be related to ancient floras [11,44] and
is also a common response to many other disturbance types, including wind, herbivory, landslides,
hurricanes, and floods. Thus, it is possible that the resprouting ability of native species in NZ’s non-
fire-prone forests has its origins in ancestral lineages or had been shaped by evolutionary forces other
than fire [45]. Independent of their origin, their resprouting capacity will provide these species with a
competitive advantage in post-fire recovery.
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4.2. Species Response

The majority of the native species sampled in the field study appeared incapable of resprouting or
resprouted at very reduced rates. This result was expected and can be explained by the species’
evolution in an environment with a naturally low fire frequency [12,19]. Some of the species classified
as non- or weak-resprouters, such as Pseudopanax arboreus, Kunzea robusta, Pittosporum
tenuifolium/eugenioides, Veronica salicifolia, Olearia avicenniifolia, and Plagianthus regius, were abundant in
the pre-fire vegetation and their lack of resprouting has strong implications for the post-fire vegetation
recovery process.

Kunzea robusta, V. salicifolia, O. avicenniifolia, and P. regius produce small wind-dispersed seeds that
are not able to survive fire and, due to their inability to resprout, their recovery after a fire will rely on
dispersal from unburnt patches in the region. Kunzea robusta was incapable of resprouting even when
not severely burnt, and similar results were also observed in other research carried out in NZ with this
species (e.g., in Hinewai reserve and in Marlborough [15,46]). The resprouting capacity of V. salicifolia,
O. avicenniifolia, and P. regius was assessed for the first time in the present study. Further observation
in different study sites is required to confirm their inability to resprout, as resprouting response can
vary depending on many factors, including fire intensity [5], plant size, post-fire environmental
conditions, and site productivity [8].

The resprouting rates registered on the Port Hills for Pseudopanax arboreus (5%, n = 43) and
Pittosporum tenuifolium/eugenioides (3%, n = 35) were very low compared to the results of a previous
study carried out in Hinewai Reserve [47]. At Hinewai, 100% of the P. arboreus trees sampled (1 = 7)
resprouted, as did 87.5% of the P. eugenioides (n = 16). The contrasting resprouting responses recorded
in these two relatively close locations (both study sites are situated in the same ecological region—
Banks Peninsula), might be attributed to different burn intensities, and moisture regime. The Hinewai
fire occurred during winter and was a natural fire ignited by a lightning strike, and it is likely that it
was less severe mainly because of the moister climate conditions typical in winter in this region,
although conditions were unusually dry when the fire occurred. In contrast, the Port Hills fire occurred
in summer and involved two distinct fires that merged into a large, intense fire [35].

Consequently, we suggest that the resprout response of P. arboreus and P. tenuifolium/eugenioides
may be dependent on fire intensity, with more intense fires constraining the resprouting capability.
While there is no research demonstrating the relation between fire intensity and resprout capacity in
NZ, in general resprouting proportions are considered a result of a species’ intrinsic resprouting ability
combined with the disturbance intensity, and a decline in resprouting capacity is expected as a
consequence of an increase in disturbance intensity [5]. For instance, after intense wildfire, even species
native to fire-prone ecosystems and regarded as resprouters may fail to resprout or will resprout at
very low rates [47].

The native species C. australis and F. excorticata (Appendix B, Figure B2) showed the highest
resprouting rates and were considered strong resprouters. C. australis is well known for its resprouting
ability [9], and resprouted even when severely burnt. Seedlings of C. australis were also observed
resprouting in a burnt restoration planting site near the study plots (personal observation, AMCT),
demonstrating the capacity of this species to recover after fire events. The strong resprouting
performance of F. excorticata has also been reported previously [9,19,46].

Intermediate resprouting rates were observed in C. robusta/lucida (Appendix B, Figure B3), G.
littoralis (Appendix B, Figure B4) and M. ramiflorus (Appendix B, Figure B5). While no specific
information about C. robusta or C. lucida is available in the literature, the resprout ability of species in
the genus Coprosma is well documented, with most species studied capable of resprouting (Appendix
A). G. littoralis and M. ramiflorus also resprouted after the fire in Hinewai reserve [46], but the
resprouting proportions there were greater than in the present study. The reasons for this difference
are probably the same as discussed for P. arboreus and P. tenuifolium/eugenioides above.

Although the NZ vegetation is not fire adapted, some native species were capable of resprouting
following fire. From the most abundant species sampled, 45% of the native species were intermediate-
or strong-resprouters (see Table 1). Similarly, in the Amazonian rainforest, where the native flora also
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evolved in the absence of fire, a modest proportion of the native plants was capable of resprouting after
wildfires [48]. The results of a study conducted in five patches of Amazonian forest showed that 59%
of the species were capable of resprouting, presenting great variation rates among species, and the total
number of individuals resprouting was approximately 40% [48], which is very similar to the results of
the present study (38%).

Even though some of the native species in non-fire-prone forests can resprout after wildfire, the
percentage of resprouting species is much smaller than in fire-prone forests. For example, in Australian
fire-prone forests, the percentage of woody species capable of resprouting can reach 90% [49], and in a
South-western China forest 100% of the trees and 93% shrubs resprouted within six months after fire
[50]. Having a smaller percentage of species capable of resprouting is one of the reasons why non-fire-
prone forests have their biodiversity more negatively impacted by fire events than fire-prone forests.

The exotic species represented an important component of the total number of woody species
sampled, with Ulex europaeus (gorse) being the most abundant exotic species. In its natural distribution
in Western Europe, U. europaeus is a strong resprouter and the germination of its seeds is also stimulated
by fire, which makes this species a very successful coloniser after fire events [51]. On the Port Hills,
perhaps surprisingly, U. europaeus seldom resprouted, but its seeds germinated vigorously, producing
carpets of seedlings (Appendix B, Figures B5 and B6). Potentially, below-ground or basal resprouts
were hidden amongst the abundant seedlings, which may have led to an underestimation of the
resprouting rate. Therefore, further investigation may be required to verify if the low resprouting rate
is actually a pattern for this species in NZ, or if it was a consequence of underestimation.

In the Port Hills landscape, exotic woody species that benefit from fire events are common and
widespread in the landscape. Considering that these invasive species are fire adapted and capable of
recruiting seedlings with great efficiency (e.g., U. europaeus and C. scoparius), the native flora recovery
process faces strong competition. In this competitive environment, resprouting capacity is a vital
feature for the native species. Resprouting is a mechanism that allows plants to persist after
disturbances and confers advantages in the recovery process, as resprouts often grow faster than
seedlings [3] and, therefore, are more competitive, especially in the initial successional stages. In
general, resprouters can form larger and taller crowns faster than seedlings because they have larger
carbohydrate reserves [52] and larger root systems that usually go deeper into the soil and have more
surface area for the absorption of water and nutrients [53].

On the other hand, the recovery of non-resprouters will rely on dispersed seeds from neighboring
populations or surviving individuals, and if this dispersal is not efficient and there is strong
competition, the recovery of these species will be very slow or they may even face local extinction [10].
Thus, from a conservation and restoration perspective, resprouters will generally demand less active
management to re-establish than non-resprouters [3].

4.3. Community Response

The influence of species composition and abundance on the resprouting pattern among the plots
can be explained at two different levels: firstly, a direct influence, which is the result of the intrinsic
resprout capacity of each species; then, indirectly, with species composition and abundance influencing
the local fuel flammability, and therefore the fire intensity. Variation in local fire intensity resulting
from fuels with different flammability has the potential to influence post-fire responses [54] and, in
general, as fire intensity increases, resprouting capacity decreases [5].

Among the first group of plots (G1, resprouting rates < 10%), K. robusta was the dominant species.
This pioneer species is highly flammable [23], and often occurs in essentially pure stands [55,56]. The
strong dominance of this non-resprouting species added to its high flammability explains the very low
resprouting rates in these plots.

On the other hand, M. ramiflorus was the dominant species in the third group of plots (G3,
resprouting rates > 40%). This species presented relatively high resprouting capability, which directly
influenced the plots’ total resprouting rate. In addition, it is likely that the low flammability of M.
ramiflorus [23] led to less intense fire at a local scale. When the leaf litter flammability is reduced, a
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reduction in fire intensity and an increase in the probability of a tree resprouting is expected [54,57,58].
Indeed, the high epicormic resprouting rates registered in these plots also suggest that the fire was less
intense [59].

Important mechanisms that explain how the different flammability components change when
mixtures of species are burnt together were revealed in laboratory experiments conducted in different
locations and including species from different ecosystems. As a general rule, the more flammable
species of a pair drives the net flammability at the shoot level and at the litter level, and this effect is
non-additive [60-62]. A trial conducted with NZ native and exotic species demonstrated that the more
flammable species increases the ignition speed and the fire temperature, while the less flammable may
contribute to reduce the burning time [63]. These mechanisms may explain the flammability influence
of K. robusta in G1 plots and of M. ramiflorus in G3 plots.

The second group of plots (G2, resprouting rates 10%—40%), showed more variation in species
composition and abundance when compared with the other groups. In contrast to the plots in G1 and
G3, the G2 plots did not share a common dominant species and interpretations on how flammability of
the species influenced the resprouting rates in this case are more complex and unclear.

The high flammability of U. europaeus probably influenced the resprouting responses of the native
species, as U. europaeus occurred in the majority of the plots studied (6/10 plots) and was also
widespread across the burnt landscape. Due to the high flammability of its leaves [22] and the retention
of significant amounts of dead flammable material, U. europaeus can strongly influence fire temperature
[63], increasing the fire intensity over what would be expected if the generally less-flammable NZ
native vegetation was burning in isolation [62]. By increasing the fire intensity, the likelihood of the
native plants resprouting was probably reduced. However, it was not possible to interpret the direct
effect of the high flammability of U. europaeus on the resprouting rate in each plot. The complexity of
the composition and structure of the plots, for example, U. europaeus, combined with different mixtures
of native species in different proportions, emphasizes the challenge of understanding how several
species may influence fuel flammability, and how this affects the resprouting rates within a community.

Despite being unable to disentangle the direct effect of U. europaues on resprouting rates within
plots, it is broadly recognised that highly flammable invasive plants have the potential to alter fire
regimes and the response of plants to fire occurrence. By changing fuel conditions and increasing fire
intensity, the invasive species thrive under the new fire conditions created by them [64,65]. Probably,
when U. europaeus replaces areas previously dominated by NZ forests, it has the potential to generate
this fire-vegetation feedback reinforced by the shift in fuel flammability.

4.4. Implications for Restoration

We recommend that the native species we identified as capable of resprouting are used for
restoration planting in areas increasingly susceptible to fire, such as in wildland—urban interfaces (WUI)
and regions predicted to experience more severe fire weather and fire danger. In NZ, these areas are
concentrated in the eastern regions of both islands, part of the central region (Wellington and Nelson),
and the Bay of Plenty [34].

Although most restoration plantings have been focused on keeping historic fidelity by using
remnant natural ecosystems as a reference, and aiming to restore this vegetation composition and
structure, this target is not always possible [66]. Restoration ecologists are increasingly recognising that
human activities, climate change and species invasion profoundly transform the environment and even
alter biochemical cycles. In these cases, the restoration of historical vegetation composition and
structure may be unsustainable, and restoration efforts should be directed towards the recovery of
ecological processes based on selected functional traits [66]. It has been internationally recognised that
new fire regimes, altered as a consequence of climate change, should be incorporated into restoration
strategies aimed at enhancing the resilience of newly restored landscapes [67]. Based on these concepts,
we propose that by planting higher proportions of resprouters, it is possible to engineer more fire
resilient restoration plantings (Box 1). The incorporation of the resprout trait in restoration plans is
likely to be relevant not just in NZ but also in other historically non-fire-prone regions that are facing
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an increase in fire frequency. Despite the fact that most of the NZ canopy dominant species do not have
the capacity to resprout, it is likely that the initial restoration planting will ameliorate the environment
and are likely to be subsequently colonised by these non-resprouters. In addition, non- and weak-
resprouters, and also high flammability species, can still be included in the restoration planting, but we
suggest that this should be done in smaller densities in initial plantings.

Box 1: Conceptual model showing how plant communities abundant in species capable of
resprouting tend to be more fire resilient and resistant to invasion. The Model is based on the
present case study.

l FIRE l

Non-resprouters and high Resprouters and low flammable
flammable species are abundant species are abundant
Native seedlings struggle Regeneration of exotic Native resprouters
to re-establish fire-adapted species overcome and shade
the exotic seedlings
4 COMPETITION
= A4 n
o Exotic woody canopy dominates Exoti can hates 5
v
o for a long period of time g perip: H a
S %
> =]
%] v =
v Resprouters established
Native seedlings will colonise + native seedlings will colonise
(partial shade tolerant species) (partial shade tolerant species)
v —— > NATIVE FOREST +——7—- v

When fire affects a native plant community that lacks fire adaptation and is abundant in obligate
seeders, this community will be more susceptible to invasion by exotic fire-adapted species, such
as Ulex europaeus and Cytisus scoparius. If these exotic species regenerate and establish in the area,
the subsequent establishment of native seedlings will be limited by strong competition.
Subsequently, this novel community tends to be arrested in an exotic and highly flammable woody
canopy for a long period of time, retarding the successional process. This novel community is
generally more susceptible to new fire occurrence, due to its high flammability, and has the
potential to generate a positive fire feedback. If the community does not burn again, and if sources
of native seeds from unburnt patches are available, partial shade-tolerant native seedlings will
slowly colonise the area following the successional trajectory back to the native forest. On the other
hand, if resprouters are abundant in the native plant community, the resprouting trees will
compete and overcome the exotic seedlings, reducing the probability of an exotic flammable
canopy dominance. Therefore, communities abundant in resprouters tend to be more fire resilient
and resistant to invasive species.

In addition, any restoration strategy following extensive wildfires should consider the
establishment of green firebreaks [68]. The selection of ideal species for green firebreaks should be
based on specific functional traits and, from an ecological perspective, low flammability and
resprouting capability after fire are fundamental features [69]. In this sense, the native species with the
best resprouting capacity, which are also low flammability species, such as F. excorticata, M. ramiflorus
and G. littoralis, will probably have the potential to be used in firebreaks on the Port Hills and also in
other fire-susceptible regions in NZ.
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Finally, the population of species classified as incapable of resprouting or weak resprouters should
be monitored and, in case these species do not recover naturally, assisted restoration, such as the
planting of seedlings, may be required in order to restore ecosystem biodiversity.

5. Conclusions

The present paper provides a large database of the resprouting capability of NZ woody species,
including quantitative information on post-fire resprouting for some of the species. We expect that the
data presented here will highlight the need for research into post-fire resprouting in vegetation types
for which no information is available, promoting a broader understanding of this important functional
trait [5,11].

Future research into resprouting in NZ should focus on understanding why the same species (e.g.,
P. arboreus) can have great variation in resprouting proportions. We suggest that it varied as a function
of fire intensity, but further investigation with a direct measurement of fire intensity is required to gain
a deeper understanding. In addition, collecting quantitative resprouting data in different regions of NZ
would be of value to improve and expand the database presented in this study.

We also showed that the composition and abundance of species are important predictors of the
resprouting pattern at the community level. Predictions of post-fire responses in ecosystems that
evolved with a low fire frequency are of strategic importance for planning restoration and conservation
actions. From an ecological restoration perspective, we suggested that by planting higher proportions
of resprouters and low flammable species, it is possible to engineer restored native forests to be more
fire resilient and more resistant to invasion by exotic species (Box 1). The incorporation of the
resprouting trait into restoration planning is likely to be relevant not just in NZ but also in other fire-
sensitive forests that are currently under fire pressure.
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Appendix A
Table A1l. Resprouting capacity of New Zealand native trees and shrubs.
. . . Burrows Wabing Glogoski Current
Famil Life-f h
amily Species ife-form (1994) [9] (2014) [46] 017) [70] Others Research Comments
Araliaceae Meryta sinclairii (Hook.f.) Seem tree No [71] Appears to lack the capacity to resprout after
damage [71].
Araliaceae Pseudopanax arboreus (L.f.) Allan tree 100% (n=7) Yes [14] 5% (n =43)
. Pseudopanax crassifolius (Sol. ex _

Araliaceae A.Cunn.) C.Koch tree Yes Yes [14] No (n=1)

Araliaceae Schefflera digitata ].R.Forst. et G.Forst. tree Yes 100% (n=2) Yes (n=2)
Araucariaceae Agathis australis (D.Don) Lindl. tree Yes [19] ResPro.u ! ab1h.ty reportfzd, althc?ggh the

species is considered a fire-sensitive [19].
Argophyllaceae Corokia cotoneaster Raoul shrub Yes
Asparagaceae Cordyline australis (Forst.f.) Endl. * tree Yes 100% (n =20) Trees often resprouted, even when severely
(monoc) burned (current research).
. tree

Asparagaceae Cordyline spp. (monoc) Yes [19]

Asteraceae Olearia avicenniifolia (Raoul) Hook.f. ** tree 0% (n=12)

Asteraceae Olearia colensoi Hook.f. shrub No [72]

Asteraceae Olearia ilicifolia Hook.f. tree Yes [73]

Resprout after tree falls and storm damage,

Asteraceae Olearia rani (A.Cunn.) Druce tree Yes [74] but fire can decrease the possibility of
recovery from resproutings [74].

Ozothamnus leptophyllus (G.Forst.)

Asteraceae Breitw. et | M.Ward shrub No Yes [19,73] May resprout from the base [73].
laevigatus ] R Forst. et R t int t h
Corynocarpaceae Corynocarpus laevigatus J.R.Forst. e tree Yes Yes [71] esprouts may grow into new trees when
G.Forst. young trees are sawn off at the base [9].
Cunoniaceae Weinmannia racemosa L.£. tree Yes Yes [19]
Dicksoniaceae Dicksonia squarrosa (G.Forst.) Swartz tree fern Yes [75]
Elaeocarpaceae Aristotelia fruticosa Hook.f. tree Yes
Aristotelia serrata (J.R Forst. et G.Forst.) Resprouts may grow into new trees when
El t Y 100% (n = Yes [1
acocarpaceac W.R.B.Oliv. ree ©s 00% (n=9) es [19] young trees are sawn off the base [9].
Ericaceae Dracophyllum acerosum Bergg. tree No
) Dracophyllum longifolium (J.R.Forst et
Ericaceae G.Forst.) R.Br. shrub No [72]
Ericaceae Dracophyllum subulatum Hook.f. shrub No [76]
Ericaceae Dracophyllum spp. shrub - tree No [19]
Gaultheri 5ti Col
Ericaceae aultheria macrostigma (Colenso) shrub Yes [16]

D.J.Middleton

Ericaceae Gaultheria rupestris (L.f.) D.Don shrub Yes [73] Resprouted from rhizomes [73].
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. . . Burrows Wabing Glogoski Current
Famil Life-f h
amily Species ife-form (1994) [9] (2014) [46] 017) [70] Others Research Comments
Resprouts may grow into new trees, when
. . young trees are sawn off at the base [9].
Fabaceae Sophora microphylla Aiton * tree Yes 25% (n=4) . .
Usually did not resprout, even when lightly
burnt (current research).
40 plant ted and t d and 30
Fabaceae Sophora prostrata Buchanan shrub - tree Yes [15] prants resprowed and were tagged an
were still alive 15 years after the fire [15].
Resprouts when young trees are sawn off at
Griseliniaceae Griselinia littoralis Raoul tree Yes 100% (n =4) Yes [71] 50% (n =10) the base [9]. Withstands fire and continues to
grow from basal stem sprouts [71].
Lamiaceae Teucridium parvifolium (Hook.f.) Kattari tree 100% (1 =5)
et Salmaki
R ts aft 1 disturbance, nothi
Lamiaceae Vitex lucens Kirk tree Yes [77] esprouts é, et generé isturbance, noting
specific about fire response [77].
Although th ility, i i
Lauraceae Beilschmiedia spp. tree Yes [19] thoug t, ¢ resp.rout abi _lty' is considered
fire-sentive species [19].
R i h
Beilschmiedia tawa (A.Cunn.) Benth. et esprouts may grow into new trees when
Lauraceae . tree Yes Yes [78] young trees are sawn off at the base [9].
Hook.f. ex Kirk . ..
Resprouted after volcanic activity [78].
Resprout after tree falls and storm damage,
Loganiaceae Geniostoma ligustrifolium A.Cunn. shrub Yes [74] but fire can decrease the possibility of
recovery from resprouts [74].
Malvaceae Hoheria glabrata Sprague et tree Yes [73] Probably can resprout from burnt stumps
Summerhayes [73].
R t int t h
Malvaceae Hoheria sexstylosa Colenso tree Yes CSProuts May grow Iito new trees waen
young trees are sawn off at the base [9].
Malvaceae Plagianthus regius (Poit.) Hochr. ** tree 10% (n=11)
Vigorous basal and stem sprouts (general
Monimiaceae Hedycarya arborea ].R Forst. et G.Forst tree Yes [71] disturbance, nothing specific about fire
response) [71].
D t t, hen lightly burnt
Myrtaceae Kunzea robusta de Lange et Toelken tree No 0% (n=6) No [19,15] 0% (n=39) 068 ot resprout, evert when Aghtly burm
(current research).
Myrtaceae Leptospermum scoparium J.R Forst. et tree No No No Inability to produce basal sprouts after fire
G.Forst. [9].
Myrtaceae Metrosideros umbellata Cav. tree No [79] Trees do not recover from forest fires [79].
Small t tf
Myrtaceae Metrosideros excelsa Sol. ex Gaertn. tree No [80] mat perceniage can resprout from
epicormic buds after volcanism [80].
F liffortioides (Hook.f.
Nothofagaceae uscospora cliffortioi o (Hook.£.) tree No No [81] NZ beeches do not resprout after fire [81].
Heenan et Smissen
. Virtually all mountain beech trees scorched
F Hook.f.) Hi
Nothofagaceae uscospora solandri ,( ook.f) Heenan et tree No [81] by fire died within five years [14]. NZ
Smissen .
beeches do not resprout after fire [81].
Nothofagaceae Fuscospora s tree No NZ beeches do not resprout after fire [81].
& P Pp- [14,19,81] Even low temperature ground fires often kill
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. . . Burrows Wabin, Glogoski Current
Family Species Life-form (1994) [9] 2014) [ 4g6] @0 15) 1701 Others Research Comments
most beech trees and seedlings in New
Zealand [14,19]
Nothofagaceae Lophozonia menzzesu' (Hook £) Heenan tree No [19,81] NZ beeches do not resprout after fire [81].
et Smissen
Trees burnt to the ground and felled by wind
Fuchsia excorticata (J.R.Forst. et regenerate from resprouts [9]. After fire, trees
Onagraceae G.Forst.) g.f. free Yes 100% (n =9) Yes 100% (1 =9) oiten resprouted a}l;undarEtl]y from the base
(current research).
Phyllocladaceae Phyllocladus alpinus Hook.f. shrub Yes Yes [72] Epicormic resprout [72].
Phyllocladaceae Phyllocladus spp. tree No [19]
Pittosporaceae Pittosporum eugenioides A.Cunn. tree 87% (n=16)
Pittosporaceae Pittosporum tenuifolium Sol. ex Gaertn tree Yes [19]
Two slightly burnt plants resprouted, but the
Pittosporaceae Pittosporum tenuifolium/eugenioides tree 3% (n=35) resplr(()) 1;2:;2182: lireli:fiiit(vcvs:litand
research).
Pittosporaceae Pittosporum sp. tree 100% (1 =2)
Plantaginaceae Veronica salicifolia G.Forst. ** tree 0% (n=14)
Plantaginaceae Veronica spp. (hebe) tree No [73]
Podocarpaceae Dacrycarpus dacrydioides (A.Rich.) de tree No [19]
Laub.
Podocarpaceae Dacrydium cupressinum Lamb. tree No [19]
Podocarpaceae Halocarpus bidwillii (Kirk) Quinn shrub Yes
Podocarpaceae Halocarpus spp. tree No [19]
Podocarpaceae Podocarpus spp. tree No
Podocarpaceae Podocarpus totara G.Benn. ex D.Don tree 71% (n=7) No [19] No (n=3)
f Prumnopitys taxifolia (D.Don) de Laub. tree No [19]
Polygonaceae Muehlenbeckia astonii Petrie shrub Yes [82] Resprouts éf,ter generél disturbance, nothing
specific about fire response [82].
Trees damaged near the base produce
Primulaceae Muyrsine australis (A.Rich.) Allan tree Yes [83] apundant resprouts [9]. Resprouts after
wind-storm, and probably resprout from
roots after fire [83].
Yes 35 - Between approximately 35 and 65%,
Rhamnaceae Discaria toumatou Raoul shrub-tree Yes 5% Yes [70,19] depending on plant size and time since the
fire event [70].
Rosaceae Rubus cissoides A.Cunn. tree 100% (n=1)
Rousseaceae Carpodetus serratus ].R.Forst. et G.Forst. tree Yes 90% (n=10) Yes [14]
Rubiaceae Coprosma ciliata Hook.f. shrub Yes [16]
Rubiaceae Coprosma crassifolia Colenso shrub 7 %(n=163)

(84]
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. . . Burrows Wabing Glogoski Current
Famil Life-f h
amily Species ife-form (1994) [9] (2014) [46] 017) [70] Others Research Comments
C d Ch
Rubiaceae oprosma durmosa (Cheeseman) tree 100% (n=1)
G.T.Jane
R ts the burnt b, d f
Rubiaceae Corposma sp. aff. intertexa G.Simpson shrub Yes [17] esprouts from the u'rn ase and from
underground rhizomes [17].
Rubiaceae Coprosma microcarpa Hook.f. tree Yes [14]
36% (n=56)
. . Resprouts from the burnt base and from
Rubiaceae Coprosma propinqua A.Cunn shrub Yes [84] .
underground rhizomes [17].
Yes [17]
Rubiaceae Coprosma pseudocuneata Garn.-Jones et tree Yes [14]
R.Elder
Rubiaceae Coprosma rhamnoides A.Cunn. tree Yes [14]
Rubiaceae Coprosma spp. shrub Yes [9,85]
Rubiaceae Coprosma cf. rubra ** shrub 60% (1 =5)
R ted - basal and epi i t
Rubiaceae Coprosma robusta/lucida ** tree 64% (n = 33) esproute asal and epicormic (curren
research)
Rubiaceae Coprosma serrulata Hook.f. ex Buchanan shrub Yes [73] Resprouted from surviving base [73].
R t int t h
Sapindaceae Alectryon excelsus Gaertn. tree Yes €SPrOUs may grow iito new trees waen
- young trees are sawn off the base [9].
Violaceae Melicytus alpinus (Kirk) Garn.-Jones shrub Yes
Melicyt i R Forst. et R ted - basal and epi i t
Violaceae elicytus ramiflorus J.R.Forst. e tree Yes 93 (11=29) Yes [19] 69% (1 = 126) esproute asal and epicormic (curren
G.Forst. research)
Resprouts after tree falls and storm damage,
Violaceae Melicytus macrophyllus A.Cunn. tree Yes [74] but fire can decrease the possibility of
recovery from resprouting [74].
Winteraceae Pseudowintera colorata (Raoul) Dandy tree 77% (n=57)

Note: * Prior to this investigation, there was no quantitative information on resprouting for the species. ** Prior to this investigation, there was no information on

resprouting for the species.



Forests 2020, 11, 269 18 of 23

Appendix B

Figure B1. Location of the sampling plots in the burned landscape (a). Photograph of one of the sampling
plots (b).
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Figure B2. Fuchsia excorticata resprouting. Figure B3.  Coprosma  robusta/lucida
resprouting.

Figure B4. Griselinia littoralis resprouting. Figure B5. Melicytus ramiflorus resprouting

and Ulex europaeus seedlings.
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Figure B6. High density of Ulex europaeus seedlings regenerating under the burnt bush canopy. In the

center of the picture, a basal resprout of Melicytus ramiflorus overcame the thick layer of U. europaeus
seedlings. The photography was taken in plot 3, 18 months after the fire.
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