Supplementary Materials A

Table S1. Number of formal actors for plant material supply in different Brazilian biomes, including native seed collectors, forest seedling nurseries, and seed testing laboratories.

Biome	Registered collectors (n)	Accredited seed laboratories	Registered seedling nurseries	Brazil's restoration target by 2030 (Mha)
Amazon	63	-	-	4.8
Atlantic Forest	129	7	214	4.75
Cerrado	71	-	63	2.1
Caatinga	1	-	-	0.5
Pantanal	-	-	-	0.05
Pampa	-	5	-	0.3
Total	264	12	277	12.5

Source: Ministry of Agriculture (2018).

Supplementary Materials B

1. Determination of the number of seeds needed per unit of area (kg/ha)

1.1. Estimation of Mean Germination Rates by Species

Original germination test database (São Paulo Forestry Institute) for 156 tree plant species of the Brazilian flora were organized in a table containing species name, mean germination (standard deviation), the average number of seeds in one kilogram. Three parameters used in the germination test were the number of lots tested, number of sites where seed are collected, and the number of years in which they were collected (Complete list at the end of this document). Due to the significant variation in these three parameters, the n sample (germination test number) was estimated by the interaction between the number of lots, sites of collection and years of collection, in order to better express the variability of germination tests.

The interaction of the variables for the composition of the estimated n sample was made by Poisson regression in 2 stages. In the first stage, we considered as dependent variable the number of collection sites while for the independent variables the number of years of collection and amount of seeds per kilogram, assuming the latter is an indicator of ease of obtaining seeds in the field.

The second stage considered as dependent variable the number of lots used in the experiments and independent variables the estimated number of collection sites (instrumentalized by years of the collection) controlled by the number of seeds per kilogram. The estimated n sample (lots_hat) was used with n sample for each species, is used to calculate the confidence interval (95%) of the germination average instead of the number of seed lots used in the tests.

Figure S1. Relates the number of original lots (lots) and estimated lots (lots_hat).

The general format of a Poisson model can be written as follows:

$$logSites_i = \beta_0 + \beta_1 years_i + \beta_2 seedskilo_i + e$$
(1)

And:

$$logLots_i = \beta_0 + \beta_3 \widehat{sites_i} + \beta_4 seedskilo_i$$
(2)

Where

Sites is the number of sites where tested seeds of species i were collected *years* the number of years when tested seeds of species i were collected *seedskilo* is the number of seeds per kilogram of species i *Lots* is the number of tested lots of species i With outputs as

```
cor sites years seedskilo
(obs=156)
                   sites
                             years seedsk~o
       sites
                  1.0000
                  0.8027
                            1.0000
       years
                 -0.0182 -0.0630 1.0000
   seedskilo
. poisson sites years seedskilo
Iteration 0: log likelihood = -326.69538
Iteration 1: log likelihood = -326.69495
Iteration 2: log likelihood = -326.69495
Poisson regression
                                                     Number of obs
                                                                      =
                                                                                156
                                                      LR chi2(2)
                                                                       =
                                                                             290.86
                                                      Prob > chi2
                                                                       =
                                                                             0.0000
Log likelihood = -326.69495
                                                      Pseudo R2
                                                                       =
                                                                             0.3080
                             Std. Err.
                                                              [95% Conf. Interval]
       sites
                     Coef.
                                                   P>|z|
                                              z
                  .1882199
                              .0110778
                                           16.99
                                                   0.000
                                                               .1665079
                                                                            .2099319
       years
                  2.18e-07
                             2.33e-07
                                                   0.350
                                                             -2.39e-07
                                                                           6.75e-07
   seedskilo
                                           0.93
       _cons
                  .4636218
                              .0911667
                                            5.09
                                                   0.000
                                                             .2849385
                                                                          .6423052
. predict sites hat
(option n assumed; predicted number of events)
(2 missing values generated)
. poisson lots sites_hat seedskilo
Iteration 0:
              log likelihood = -522.89207
Iteration 1: log likelihood = -518.49157
Iteration 2: log likelihood = -518.48726
Iteration 3: log likelihood = -518.48726
                                                     Number of obs
Poisson regression
                                                                                156
                                                      LR chi2(2)
                                                                            1323.36
                                                                      =
                                                     Prob > chi2
                                                                             0.0000
                                                                       =
Log likelihood = -518.48726
                                                     Pseudo R2
                                                                             0.5607
                                                                       =
         lots
                     Coef Std Err
                                             z P>|z| [95% Conf. Interval]
```

1003	00021	boa. BII.	-	20121	[551 CON1.	invervarj
sites_hat	.1826833	.0046841	39.00	0.000	.1735025	.191864
seedskilo	2.29e-07	1.34e-07	1.71	0.088	-3.39e-08	4.92e-07
_cons	1.339179	.046601	28.74	0.000	1.247843	1.430515
	sites_hat seedskilo _cons	sites_hat .1826833 seedskilo 2.29e-07 _cons 1.339179	sites_hat .1826833 .0046841 seedskilo 2.29e-07 1.34e-07 _cons 1.339179 .046601	sites_hat .1826833 .0046841 39.00 seedskilo 2.29e-07 1.34e-07 1.71 _cons 1.339179 .046601 28.74	sites_hat .1826833 .0046841 39.00 0.000 seedskilo 2.29e-07 1.34e-07 1.71 0.088 _cons 1.339179 .046601 28.74 0.000	sites_hat .1826833 .0046841 39.00 0.000 .1735025 seedskilo 2.29e-07 1.34e-07 1.71 0.088 -3.39e-08 _cons 1.339179 .046601 28.74 0.000 1.247843

. predict lots_hat

Figure S2. Two stages Poisson Regression application to estimate the n sample (lots_hat) as a function of the number of sites (lots) and number of years of collection (years), controlled by the number of seeds available per kilogram of each species (seedskilo).

With the estimated n sample (lots_hat), we calculated the confidence intervals (95%) for the average germination of each species. For each species, we simulated the normal distribution with 100 repetitions. We considered that the most probable germination range for each species would be the most frequently found in the simulation sited between the lower and upper limits of the confidence interval. We opted for only 100 repetitions to give the distribution more randomness, since simulations with more than 1,000

repetitions would tend to produce well-behaved standard curves, leading to higher frequencies closer to the midpoint of the confidence intervals. We then exclude all species whose most frequent range within the confidence interval was negative and greater than 100, for the apparent statistical inconsistency. Since these results also reflected the existence of very low sample size, we suggest that such species would not be recommended for inclusion in the study putting at risk directly sowing efficiency. Under this criterion, we excluded 34 species. From there, all the work went on with the remaining 122 species. The remaining 122 species were then classified as large and small, considering large those that had less than 3,000 seeds per kilogram (n = 29) and small others (n = 93).

1.2. Estimated seed weight by restoration method

We consider that the seeds should have two purposes to promote forest restoration (1) direct sowing and (2) seedling production.

1.2.1. Direct sowing

For seeds destined for direct seeding we considered a predation rate of 47%. Due to the lack of literature on disease involvement, we considered the same proportion used for predation based on [37–40], that is, another 47%, so that the recruitment rate would be given by

$$r_i = g_i * (1 - 0.47)^2 \tag{3}$$

where

 r_i recruitment rate of seed species i

 g_i germination rate of species i, as estimated in 1.1

For each species the number of seeds which will survived after germination per kilogram was then estimated as follows.

$$s_i = r_i * k_i \tag{4}$$

Where:

 s_i survived seeds of species i (number of seeds)

 k_i seeds of species i (number of seeds/kg)

In line with the criteria and recommendations on minimum biodiversity to be met in restoration activities in Brazil, we assume that the seed mix intended for direct sowing should contain precisely 80 species, 30% necessarily consisting of large seeds and 70% small seeds. By Markov Chain Monte Carlo (MCMC) method, we run 10,000 simulations to determine random combinations for seed mixtures containing 24 out of 29 large species and 56 out of 93 small species, restricting the possibility of repeating species in the same pack.

We repeated the procedure 4 times in order to estimate different germination levels.

Low Germination if the germination rate for each species in the pack is the lower limit for its own mean (mean – confident interval) after the 10,000 rounds, Medium Germination if the germination rate for each species in the pack is exactly its own mean, High Germination level if the germination rate for each species in the pack is the upper limit for its own mean (mean + confident interval), and the Randomly Germination if germination rate for each species in the pack is randomly determined within its confident interval for mean (mean - ci or mean or mean + ci. The results after the 10,000 rounds for each level is presented in table a.

		seeds germ %		
	Low Germination	Medium Germination	High Germination	Ramdomly
minimum	18.25	35.51	48.67	32.12
maximum	38.08	53.43	68.55	52.60
mean	28.73	44.13	59.48	42.30
confidence interval	0.05	0.04	0.05	0.05
upper limit of mean (95%)	28.77	44.17	59.53	42.36
lower limit of mean (95%)	28.68	44.08	59.43	42.25
standart deviation	2.30	2.29	2.68	2.74

Table S2. Simulations to determine the germination rate. (10,000 rounds for each).

In order to estimate the estimated the seeds per kg of packs and the expected value of seeds would germinate, we adopted the same method above, with results showed in table b.

Table S3. simulations to determine the total seeds per kg of mixed pack and expected value of germinated seeds per kg (10,000 rounds for each).

			seeds germ pe	r kg					
	total Seeds per kg	Low Germination	Medium Germination	High Germinati on	Ramdomly				
minimum	110,063	2,784	5,460	7,455	4,472				
maximum	14,414	23,300	31,915	40,801	30,671				
mean	40,742	8,635	13,451	18,367	13,168				
confidence interval	274	54	68	90	72				
upper limit of mean (95%)	40,468	8,689	13,519	18,457	13,240				
lower limit of mean (95%)	41,016	8,581	13,382	18,277	13,097				
standart deviation	13,990	2,752	3,474	4,598	3,653				

For determining the necessary quantity of the seed package destined to restore one hectare (10,000 m2) by direct sowing, we used the findings of Souza, Engel (2018) who, in an empirical study, concluded that on average the sowing of 82,500 previously selected seeds - fertilized and without apparent disease. Thus, we consider that the average weight of seed packages should be

(5)

Where,

p seed mix pack weight in required to restore 1 hectare (kg)

s survived seeds in 1 kg of mixed pack (number of seeds)

Applying this formula to the MCMC simulated package set, we get the following results, as shown in table c.

		seeds for direct sowing kg/ha							
	Low	Medium	High	Ramdamby					
	Germination	nation Germination Germin		Nanidonny					
minimum	99.85	54.79	39.68	55.97					
maximum	12.29	9.41	6.84	6.91					
mean	37.81	23.31	17.13	23.14					
confidence interval	0.24	0.12	0.09	0.14					
upper limit of mean (95%)	37.57	23.19	17.04	23.00					
lower limit of mean (95%)	38.05	23.43	17.22	23.28					
standart deviation	12.12	6.17	4.38	7.08					

Table S4. simulations to determine the total kg of mixed pack to 1 hectare of direct sowing (10,000 rounds for each).

1.2.2. Planting by seedlings

For seedlings intended for seedling production, we considered the same germination rates (gi) estimated in item 1.1.1, with no predation rate or loss due to field-acquired diseases. However, we consider a 30% loss rate in seedling selection. We determined an anticipated rate of seedling loss in the field (need for replanting), being 8% in the first year, and 5% in the following three years. For the total planting method, we defined the final density of 1.667 seedlings/ha and for enrichment 600 seedlings/ha. We follow the same procedure of seed pack formation simulations, as described in the previous item, considering the literature [37–40].

 $s_i = r_i * k_i$

$$r_i = g_i * (1 - 0.3) * (1 - 0.08) * (1 - 0.05)^3$$
(6)

Where,

 r_i survived seeds of species i

 g_i germination rate of species i, as estimated in 1.1

Where,

 s_i survived seeds of species i (number of seeds)

 k_i seeds of species i (number of seeds/kg)

And

$$p = d/s \tag{7}$$

Where,

p seed mix pack weight is required to restore 1 hectare (kg)

d desirable density of seedlings per hectare, being d=1,667 if full restoration or d=600 if enrichment *s* survived seeds in 1 kg of the mixed pack (number of seeds)

The 10,000 simulations for 80 species random packages returned the results shown in tables (d,e) below.

Table S5. simulations to determine the total kg of mixed pack to 1 hectare of seedlings - enrichment (10,000 rounds for each).

		seeds for seedlings-enrichment kg/ha							
	Low	Medium	High	Pamdomly					
	Germination	Germination Germination		Nanidonny					
minimum	0.3837	0.2091	0.1460	0.1996					
maximum	0.0483	0.0345	0.0279	0.0300					
mean	0.1406	0.0860	0.0630	0.0841					
confidence interval	0.0009	0.0004	0.0003	0.0005					
upper limit of mean (95%)	0.1415	0.0865 0.0633		0.0846					
lower limit of mean (95%)	0.1397	0.0856 0.0626 0		0.0837					
standart deviation	0.0450	0.0229	0.0161	0.0251					

Table S6. simulations to determine the total kg of mixed pack to 1 hectare of seedlings – total planting (10,000 rounds for each).

		seeds for seedlings-total planting kg/ha						
	Low	Medium	High	Pamdomly				
	Germination	Germination	Germination	Naniuonny				
minimum	1.0106	0.5780	0.4302	0.5795				
maximum	0.1191	0.0891	0.0665	0.0907				
mean	0.3870	0.2403	0.1751	0.2566				
confidence interval	0.0024	0.0013	0.0009	0.0013				
upper limit of mean (95%)	0.3895	0.2416	0.1760	0.2579				
lower limit of mean (95%)	0.3846	0.2391	0.1743	0.2553				
standart deviation	0.1239	0.0640	0.0449	0.0663				

Table S7. Native seed sources required to meet Brazil's restoration target according to 5 restoration scenarios and the possibilities of Lower Limit Production (LL), Mean Center Production (MC), Upper Limit Production (UL), Full Range Production (FR).

	LL	MC	UL	FR
Scenario 1	25,506	15,632	11,422	15,624
Scenario 2	13,624	8,352	6,100	8,375
Scenario3	7,449	4,568	3,334	4,596
Scenario 4	5,883	3,606	2,633	3,620
Scenario 5	5,925	3,632	2,651	3,645

2. Determination of the number of seeds collected per collector (kg /collector) and average income generated per collector (USD/collector)

In order to determine the number of seeds that an average collector collects annually, we had a database of 6 seed networks containing the number of seeds collected (kg), number of collectors, number of species collected, and value of revenue generated. Revenues originally in Brazilian Reais were deflated by the IGP-DI (General Price Index-Internal Availability) and converted into US Dollars using the average

exchange rate for the last 60 months (December 2014 to November October 2019) at the rate of 1 US = \$ 3.4975. Data for each network varied according to availability, from 2007 to 2018, according to table A8.

year	network_name	network _id	seeds_kg	species	collectors	income
2015	Arboretum	1	720	70	21	13,159.80
2016	Arboretum	1	1,060	119	27	17,787.10
2017	Arboretum	1	1,810	230	29	28,596.90
2018	Arboretum	1	1,240	232	29	16,599.10
2012	Cerrado	2	600	23	3	593.86
2013	Cerrado	2	1,000	26	10	967.27
2014	Cerrado	2	2,000	30	22	1,813.88
2015	Cerrado	2	6,000	34	38	3,899.96
2016	Cerrado	2	12,000	72	66	14,827.00
2017	Cerrado	2	7,000	51	30	8,695.13
2018	Cerrado	2	8,000	72	60	25,322.80
2010	Portal	3	17,000	134	250	194,707.00
2011	Portal	3	27,800	183	150	147,887.00
2012	Portal	3	31,500	168	100	147,271.00
2013	Portal	3	1,000	93	100	4,851.79
2014	Portal	3	9,300	141	74	43,718.70
2015	Portal	3	16,000	158	85	91,588.40
2016	Portal	3	12,800	176	102	84,099.50
2017	Portal	3	16,500	156	120	109,603.00
2018	Portal	3	10,800	154	120	47,757.90
2012	Tupygua	4	590	29	22	3,338.12
2013	Tupygua	4	2,490	81	89	15,830.00
2014	Tupygua	4	2,710	85	65	18,256.30
2015	Tupygua	4	3,500	94	69	21,826.60
2016	Tupygua	4	2,780	72	78	15,661.30
2017	Tupygua	4	780	22	65	4,509.83
2018	Tupygua	4	120	14	8	1,225.74
2017	Vale do Ribeira	5	40	11	10	966.13
2018	Vale do Ribeira	5	90	19	14	2,411.74
2007	Xingu	6	5,000	120	10	10,733.50
2008	Xingu	6	8,000	125	50	41,626.30
2009	Xingu	6	15,000	207	240	78,790.80
2010	Xingu	6	25,000	214	300	103,843.00
2011	Xingu	6	19,000	185	300	96,077.60
2012	Xingu	6	25,000	159	350	172,748.00
2013	Xingu	6	22,000	177	350	128,853.00
2014	Xingu	6	17,500	124	420	130,838.00
2015	Xingu	6	17,000	120	420	106,397.00
2016	Xingu	6	22,000	140	447	135,753.00
2017	Xingu	6	26,000	164	568	203,855.00
2018	Xingu	6	18,200	147	568	114,101.00

Table S8. Primary seed production data from the six major seed networks assessed.

To estimate the amount of seeds collected by each collector, a panel regression was estimated assuming as dependent variable the amount of seeds collected and independent variable the number of collectors, using as control the number of species collected squared, a As a correlation hint was found between the number of collectors and species. The same procedure was used to estimate the revenue per collector, substituting in the dependent variable the number of seeds collected by the value of the generated revenues (US), as shown in figure (g). Panel regression estimated can be written as:

$$Seeds_kg_{it} = \beta_i + \beta_{it} collectors + X\beta'_{it} + \xi_i + e_{it}$$
(8)

And:

With outputs as

Random-effects GLS	5 regression		Nu	mber of o	bs =	40
Group variable: ne	etwork_id		Nu	mber of g	roups =	6
R-sq: within = (0.4188		Ob	s per gro	up: min =	2
between = (0.8874				avg =	6.7
overall = (0.7423				max =	12
			Wa	ld chi2(6	. =	95.06
corr(u_i, X) = (0 (assumed)		Pro	ob > chi2	=	0.0000
seeds_kg	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval
collectors	30 41506	8 580616	3 54	0 000	13 59736	47 2327
evap driest g	-2611.013	1486.114	-1.76	0.079	-5523.743	301.717
evap moist q	955.8946	413.5684	2.31	0.021	145.3154	1766.47
indigenous dummy	79.81604	2226.09	0.04	0.971	-4283.24	4442.87
species2	.186357	.0628073	2.97	0.003	.0632568	.309457
lforest	85.8564	950.2247	0.09	0.928	-1776.55	1948.26
_cons	-3899.22	12139.39	-0.32	0.748	-27691.99	19893.5
sigma_u	0					
sigma_e	4937.2045					
rho	0	(fraction	of varia	nce due t	o u_i)	
-						
	and a second second					
. estimates store	random					
. estimates store	random					
. estimates store . xtreg income col	random llectors evap_	_driest_q ev	rap_moist	_q specie	s2, re	
. estimates store . xtreg income col Random-effects GLS	random llectors evap_ 3 regression	_driest_q ev	vap_moist_ Nu	_q specie mber of o	s2, re bs =	40

Group variable	: network_id			Number o	f groups =	6
R-sq: within	= 0.5367			Obs per	group: min =	2
between	= 0.8849				avg =	6.7
overall	= 0.7352				max =	12
				Wald chi	.2 (4) =	51.10
corr(u_i, X)	= 0 (assumed)			Prob > c	thi2 =	0.0000
income	Coef.	Std. Err.	z	₽> z	[95% Conf.	Interval
collectors	284.557	43.86542	6.49	0.000	198.5823	370.531
evap driest g	-7276.994	8186.444	-0.89	0.374	-23322.13	8768.14
evap moist q	2463.636	2706.13	0.91	0.363	-2840.281	7767.55
species2	.8100336	.4252043	1.91	0.057	0233514	1.64341
_cons	-9700.643	26323.88	-0.37	0.712	-61294.49	41893.3
sigma u	28078.626					
sigma_e	30317.404					
rho	.46171842	(fraction	of varia	nce due t	o u_i)	

Figure S3. Outputs of panel regressions.

All variables are related to a spatial (networks=i) and time (year=t) indexes. "Collectors" is the number of seeds collectors (individuals). Controllers are "evap_driest_q" - proxy of evapotranspiration in the driest season in the host municipality of each network, estimated as the total rainfall in the driest quarter (mm)/average temperature in the same quarter (°C). "evap_moist_quarter" - proxy of evapotranspiration in the wetter season, which is the total rainfall in the wetter quarter (mm)/average temperature in the same quarter (°C). "evap_moist_quarter" - proxy of evapotranspiration in the wetter season, which is the total rainfall in the wetter quarter (mm)/average temperature in the same quarter (°C). "indigenous_dummy" is a binary variable, assuming 1 if the network is an indigenous network, 0 otherwise. "species2" is the squared of the number of species collected. "lforest" is the natural log of the area of native vegetation in host municipality of each network

To extrapolate the amount of seeds (kg) needed to meet the different proposed restoration scenarios, as well as the number of collectors and expected recipes, these parameters obtained in panel regressions were used. List of species is provided in table A9.

Specie	id	on rate	standard deviation	seeds (1kg)	lots	sites	years	lots_h at	large	small	in
Acacia podalyriaefolia	1	(%)	41.8489	16390	4	2	3	5		o ::	Analysis I 1
Acacia polyphylla DC. Acrocomia aculeata (Jacq.) Lodd. ex Mart.	2	80.3	22.351	15598.2 24	11	2	3	6		1 0	1 2 0
Aegiphilla sellowiana Cham.	4	12.625	10.0561	37416.2	6	3	3	5			1 1
Albizzia sp	6	50.5	25.018	11097	6	3	5	7		5	i 1
Alchornea triplinervia(Spreng.) Müll.Arg. Alleurites mollucana	7	3.5	3.78153 9.8995	22453.8 107	6	4	4	6		1 0	1 1
Anadenanthera colubrina (Vell.) Brenan Anadenanthera falcata	9	56.8333 67.1429	28.6791 36.2097	25371.3	25	12	8	23			1 1 1 1
Anadenanthera macrocarpa (benth.) Brenan	11	53.6	21.8701	10241.8	5	3	4	6		D	1 1
Araucaria angustifolia Araucaria excelsa	12	12.7143	16.0178	2684.2	7	2	3	4		1 0	0 0
Archontophoenix cunninghamiana Aspidosperma olivaceum	14	8.33333 78.3755	19.6373 31.2255	1732 3561.27	25	8	11	29		1 0	1 1
Aspidosperma polyneuron Muell. Arg.	16	31.2143	34.1224	11409.8	15	7	8	16			1 1
Balfourodendron riedelianum (Engl.) Engl	18	12.36	14.6796	2413.86	26	12	10	33		i	> 1
Bauhinea variegata Bauhinea variegata var.candida	19	67.85 72.3	35.3706 26.9817	4708.74 3205.13	20	6	9	18			1 1
Bauhinia blackeana Biza ozologa l	21	79.7	22.1663	3587.56	10	3	6	8			1 1
Bowdichia virgilioides Kunth	23	44.6	9.8387	12820	4	1	1	3			1 1
Cabralea canjerana (Vell.) Mart. Caesalpinea ferrea Mart. ex Tul. var. leiostachya Benth.	24	0.25 52.0263	0.707107 25.1609	3527.5 15385.1	6 19	3	3	21			1 0
Caesalpinia peltophoroides	26	49.9431	27.2012	5072.29	36	17	10	47			1 1
Callicarpa reevesii	28	0	7.55166	260591	4	2	3	5		5	1 0
Cariniana estrellensis (Raddi) O. Kuntze Cariniana legalis (Mart.) Kuntze	29	61.8125	24.4546	10426.4	16	9	8	18	-		1 1
Caryota urens	31	14.6429	20.0638	1388.15	14	8	6	12		1 (> 1
Cassia ferruginea (Scharad. ex) DC. Cassia fistula	32	72.8889 60.7333	28.5501 31.9765	13808.3 11106.4	10	6	6	9		D	1 1
Cassia grandis L.f.	34	40.9167	35.9809	2559.29	13	9	7	15		1 0	2 1
Cassia leptophylla Vog.	36	37.3333	27.7369	4994.67	3	2	3	4		5	i 1
Cecropia pachystachya Trec. Cedrela fissilis Vell.	37	32.6667	29.1433	568000 21587.7	3 68	15	3	5 49	-		1 1
Cedrela odorata L.	39	65	38.3275	24308.8	5	2	4	5			1 1
Chorisia speciosa St. Hil.	40	46.0968	26.8717	6502.65	33	11	10	30			1 1
Clitoria fairchildiana Howard Colubrina glandulosa (C. rufa)	42	19.2	31.2522	2397.75	5	4	4	6		1 0) O 1 1
Columbrina glandulosa Perk.	44	28.8	27.941	35429.5	5	3	4	6		0	1 1
Copaitera langsdorffii Desf. Cordia sellowiana Cham.	45	57.625	26.7313 22.3215	2411.14 3850.67	32	13	9	29			1 0
Cordia trichotoma (Vell.) Arrab. Ex Steud	47	5.20833	15.2115	56245.7	24	9	8	19		0	. 0
Croton urucurana Baill.	48	7.85714	19.9201	140397	13	3	4	8		5	1 0
Cryptocaria aschersoniana Crysalidocarpus lutescens	50	35.4367	39.7929	1970.67	3	17	3	4		1 0	0 1
Cunninghamia konishii	52	14	8.42615	163388	6	3	5	7			1 1
Cyclolobium vecchi A. Samp. ex Hochne Cysbistax antisyphilitica	53	49.8	31.0355 30.4176	2853.8 42202.3	5	1	3	4) 1 1 1
Cysbistax antisyphilitica (Mart.) Mart.	55	78	17.4738	61552.3	4	3	3	5	4	0	1 1
Cytharexyllum myrianthum Dalbergia nigra (Vell.) Fr. All. Ex Benth.	56	13.4286 52.9519	32.4698 31.5695	14939.6 10320.3	21	13	5	42		0	1 0
Dictyloma vandellianum Adr. Juss Didumonanax morototonii (Aubl.) D. et P.	58	78.6667	9.29157	326753	3	3	3	5			1 0
Dimorphandra mollis Benth.	60	6.83611	5.93305	1113.78	12	6	6	10		1 0	> 1
Dipterix alata Vog. Duguetia lanceolata St. Hil.	61	69.2129	19.5027	4840.36	12	7	7	13			i 1 0 0
Enterolobium contortisiliquum	63	63.875	33.3464	6642.06	16	7	7	13	-		1 1
Eriotheca candolleana Erythrina verna (E. mulungu)	64	67 55.6667	33.7787 18.8007	16727 3120.67	3	2	3	6			1 0
Esenbeckia leiocarpa Engl.	66	62.0263	35.5631	12249.9	19	9	9	22			1 1
Eugenia uniflora L.	68	54.5	35.6254	3789.67	10	3	5	7			1 1
Euterpe edulis Mart. Gallesia integrifolia (Spreng.) Harms	69	25.5207	28.2259	1815.82	75	19	11	65		1 0	1 1
Genipa americana L.	71	54.93	31.8933	23934.5	18	6	7	12			1 1
Grevilea robusta Guarea guidonea L. (Sleumer)	72	33.1538 9.78571	20.6946	63361.6 3406.71	12	4	8	13			1 1
Guazuma ulmifolia Horenia duleis	74	26.2222	25.208	121354	11	8	4	9			4 1
Hymenaea courbaril L. var. stilbocarpa	76	70.7963	24.2099	256.083	51	14	10	38		1 0	2 1
Ingá uruguensis Hook. et Arn. Jacaranda mimosaefolia	77	47 63.0345	54.4243 20.8844	2414.5 86732.3	29	2	2	21) 0 1 1
Jacaratia spinosa (Aubl.) A. DC.	79	13.875	15.4498	58152.1	8	4	6	9		0	1 1
Joannesia princepis Kielmeyera variabilis Mart.	80	18.4643 72.3333	19.2048	193.714 6518.67	3	3	2	8			1 1
Lafoensia glyptocarpa	82	45.3571	26.8804	33181.3	14	5	8	14			4 1
Lagerstroemia speciosa	84	12.6	14.4326	67343.3	5	3	3	5		5	1 0
Lecythis pisonis Camb. Licania tomentosa	85	31.4812	29.2922 22.7507	522.5 3641.33	15	7	6	11		1 0) 1 1 0
Licania tomentosa	87	39.1667	50.676	8888	3	2	3	4		0	1 0
Lithraea molleoides	89	4.20123	2.82843	10520.4	2	2	2	43		5	1 1
Livistona chinensis Lonchocarpus guilheminianus Benth.	90	22.1071	29.0891	1420.16	28	9	10	26		1 0	1 0
Lonchocarpus muehlbergianus Hassl.	92	65.4422	30.1826	1344.83	16	4	7	11		1 0	2 1
Luehea divaricata Mabea fistulifera Mart.	93	44.2857	15.1626 41.8688	171143 18455	3	3	3	5			1 1
Machaerium acutifolium Machaerium brazilienze	95	32.4569	29.5691	1655.5	18	9	7	15		1 0	1
Machaerium nyctitans (Vell.) Benth.	97	12.25	13.1244	4829	4	2	3	4		5	i o
Machaerium scleroxylon Tul. Machaerium villosum Vog.	98	38.8646	40.2056 26.6292	11656.8 2609.62	4	2	4	13		1 0	1 1
Magnolia grandiflora	100	0	0	5981.67	4	1	4	5			1 0
Mimosa bimucronata	101	3.0012/5	25.385	93661	33 6	12	11	39		5	1 1
Mimosa caesalpiniaefolia Benth. Mimosa scabrella Benth.	103	57.3333	18.5	14751.9	9	4	4	6	4		1 1
Murraya paniculata	105	25.0185	29.6319	13191	27	8	11	29		0	1 1
Myracrodruon urundeuva Myrocarpus frondosus	106	24.25 25.6	27.0067 26.8011	74881.8 1906	18	11	8	22		1 0	0
Myroxylon peruiferum Ocotea Porosa	108	19.3182	24.6023	14068.7	22	9	12	37		0	1 1
Ormosia arborea (Vell.) Harms	110	47.1667	40.9766	1062.5	3	2	3	4		1 0	2 1
Parapiptadenia rigida (Benth.) Brenan Peltophorum dubium (Spreng.) Taub.	111	53.7778 67.903	37.4928 25.4685	9278.15 10666.2	40	10	11	34		0	1 1
Peschiera fuchsiaefolia Miers.	113	62.6667	32.8075	21914	2	2	2	4		0	1 1
Phoenix roebelenii	114	52.08	33.6027	4001.3	25	13	11	42		0	1 1
Piptadenia gonoacantha (Mart.) Macbr. Piracantha coceineta	116	42.8	25.9172	23808.2 135645	5	4	3	5	1		1 1
Pitosporum undulatum	118	22.8611	30.6185	90707	4	3	3	5		0	1 0
Platycyamus regnellii Benth.	119	46.6418	27.8406	72057.9 2005.33	11 6	3	6	8		1 0	. 1
Platypodium elegans Vog. Poecilanthe parciflora Benth	121	33.8571	30.1077	3155.43	7	5	4	7		0	1 1
Poncirus	122	39.43/8	38,4187	6206.75	4	3	4	6			L 0
Poncirus trifoliata Prunus selowoli	124	15	29.8137 1.06066	5899.67 8334	8	3	5	7			1 0
Psidium gajava Ptosocarpus sobsii	126	61.25	38.4307	114048	4	1	3	4		0	1 1
Pterogyne nitens Tul.	127	34.8333 58.4768	26.7857	2206.78 9133.35	18 46	9	12	18			1 1
Qualea dichotoma Rapanea ferruginea (Ruiz et Pay) May	129	71	14.4222	2904.33	3	1	2	3	-	1 0	1 0
Rapanea umbellata	131	11.6667	20.2073	58515.3	3	2	2	4		0	1 0
Reseda speciosa Roystonea oleracea	132	8.53333 40.1871	4.92499 32.4673	121325 3513.46	15	1	4	5		0	1 1
Roystonea regia	134	23.3846	29.8762	3777.83	15	6	5	9		2	1
Sapindus saponaria L	135	28.3	19.0017	1243.12	22	, ,	9	19		1 0	> 1
Schinus terebinthifolius Schizolobium parahyba	137	19.6538 64.9808	26.8075	57298.8 553.941	13	9	7	16 28		1 4	1 1
Senna macranthera (Colla) Irwin et Barn.	139	42.2667	34.458	36005.1	17	7	10	23			1 1
Senna multijuga (Kich.) Irwin et Barn. Stryphnodentron adstringens	140	48.75	50.7239 27.4717	87780 9726.33	4	4	3	5		5	1 1
Syagrus romanzoffiana (Cham.) Glassm. Tabebuia avellanedae	142	27.2708	32.5627	995.733	16	9	8	18		1 0	
Tabebuia chrysotricha (Mart ex D.C.) St.	143	49.312	29.4375	78175.6	48	20	10	65		0	1 1
Tabebuia heptaphylla Tabebuia impetiginosa (Mart.) Standl.	145	59.2049 45.5196	31.5825 30.1591	26385.9	12	10	6	10	1		1 1
Tabebuia ochracea (Cham.) Standl.	147	36	20.7686	75848.5	4	4	3	5		0	1
Tabebula sp	148	29.0946	29.2021	7979.9	14	2	5	8		5	1 1
Terminalia argentea Mart. et Succ. Tibouchina granulosa	150	22.2	20.4222	75668	9	10	4	7			1 1
Tipuana tipu	152	57.6719	31.3188	2095.67	36	16	9	37		1 0	> 1
Triplaris brasiliana Cham.	153 154	17.25 38.1429	21.6852 27.8106	142517 20333.5	3	3	3	23		0	1 0
Zanthoxyllum riedelianum Engl. Zeyheria tuberculosa (Vell.) Bur	155	0.4	0.894427	27459.8	6	4	3	5			1 0
											-

Table S9. Germination database of the Institute of Forestry.