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Abstract: The terrestrial laser scanner (TLS) has been widely used in forest inventories. However, with
increasing precision of TLS, storing and transmitting tree point clouds become more challenging. In
this paper, a novel compressed sensing (CS) scheme for broad-leaved tree point clouds is proposed by
analyzing and comparing different sparse bases, observation matrices, and reconstruction algorithms.
Our scheme starts by eliminating outliers and simplifying point clouds with statistical filtering and
voxel filtering. The scheme then applies Haar sparse basis to thin the coordinate data based on the
characteristics of the broad-leaved tree point clouds. An observation procedure down-samples the
point clouds with the partial Fourier matrix. The regularized orthogonal matching pursuit algorithm
(ROMP) finally reconstructs the original point clouds. The experimental results illustrate that the
proposed scheme can preserve morphological attributes of the broad-leaved tree within a range of
relative error: 0.0010%–3.3937%, and robustly extend to plot-level within a range of mean square
error (MSE): 0.0063–0.2245.

Keywords: terrestrial laser scanner; forest inventories; point cloud; broad-leaved tree; compressed
sensing; morphological attributes; plot-level

1. Introduction

A terrestrial laser scanner (TLS) can provide three-dimensional (3D) co-ordinates of sampled
points at a pre-defined sampling interval. They have high measurement accuracy and data acquisition
efficiency, and are suitable for capturing large scenes with relatively low expenditure. TLS has been
used to obtain 3D observations on tree surfaces to study morphological attributes [1–5]. However, the
sampled data from TLS is very dense and with considerable redundancy. The vast volume of point
clouds poses great challenges in real-time processing, storage, display, and transmission. Therefore, it
is necessary to compress massive point clouds while maintaining a certain accuracy.

For a practical compression algorithm of point cloud, the following criterions must be satisfied:
(1) high compression rate, i.e., the number of point clouds should be minimized subject to a distortion
bound; (2) the simplified point clouds can meet the accuracy requirements of target applications; (3) the
algorithm needs to be computationally efficient.

In recent years there has been considerable research on point cloud compression. Digne et al. [6]
exploited the self-similarity of the underlying shapes to create a particular dictionary on which the
local neighborhoods will be sparsely represented; thus, allowing for a lightweight representation of
the total surface. Wang et al. [7] applied planar reflective symmetry analysis to identify a primary
symmetry plane and three orthogonal projection planes given a point-based model. By analyzing
the characteristics of the projection on these planes, different and specific coders were employed.
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Zhang et al. [8] employed mean-shift clustering to gather similar spatial points into many homogeneous
blocks, which were fitted into surfaces by Random Sample Consensus (RANSAC) algorithm. The color
(RGB) information of each point was then replaced by the average RGB values in the grid. Finally,
DCT (Discrete Cosine Transform) was performed on grids for sparse representation. Ahn et al. [9]
proposed a hybrid range image coding algorithm, which predicted the radial distance of each pixel
adaptively by utilizing the previously encoded neighborhood in the range image domain, height image
domain, and 3D domain. Queiroz et al. [10] combined hierarchical transform and arithmetic coding to
compress the color information of point clouds, which ensured the whole transform was adaptive,
non-expansive and orthogonal. Thanou et al. [11] exploited temporal correlation between consecutive
point clouds to develop a compression scheme for 3D point cloud sequences. Navarrete et al. [12]
took a non-supervised learning algorithm based on Gaussian Mixture Models (GMMs) together
with the Expectation-Maximization (EM) algorithm to compress a 3D point cloud, which excelled
at reducing the size of data and enhancing efficiency. Rente et al. [13] proposed an efficient lossy
coding mechanism for the geometry of static point clouds. It applied an octree-based approach for
a base layer and a graph-based transform approach for the enhancement layer where an inter-layer
residual was coded. Imdad et al. [14] compressed 3D point clouds by representing implicit surfaces
with polynomial equations of degree one, which retained geometric information of scene with low
storage complexity. Cui et al. [15] proposed a palette-based compression method for color information
of 3D point clouds. It created a color palette according to the spatial redundancy among color attribute
data, and applied K-means clustering method to remove redundancy among adjacent color data.
However, existing compression algorithms [16–32] of point clouds have several weaknesses: (1) low
computational efficiency; (2) high time cost; (3) inability to handle complex point clouds, and (4) the
need for full sampling.

It is well known that due to the complex morphological structures and massiveness of point clouds
captured from trees or forests, the traditional methods that perform compression after full sampling are
very inefficient and time-consuming. Moreover, most compression algorithms cannot deal with point
clouds with high complexity, such as trees or forests. The emergence of compressed sensing [33–35]
has brought a new breakthrough to the Shannon–Nyquist sampling theorem. It acquires data by
random sampling with very few sampling points to achieve the same effect as full sampling and
has been widely used in Magnetic Resonance Imaging (CS-MRI) [36], high-speed video camera [37],
compressive spectral imaging system [38], single-pixel camera [39], etc.

In this paper, a novel scheme based on compressed (PDF S1) sensing for acquiring broad-leaved
tree point clouds is proposed. Firstly, voxel filtering and statistical filtering are employed to simplify
point clouds and remove outliers, respectively. Secondly, the spatial coordinate data (XYZ) are divided
into three one-dimensional data to be processed in parallel since compressed sensing is not able to
process three-dimensional data directly. In addition, since the one-dimensional data is too large to be
processed directly, it is arranged into matrix and processed by columns in parallel. A suitable sparse
basis is selected for sparse representation of data according to the characteristics of broad-leaved tree
point clouds, and partial Fourier matrix is applied to down-sample the sparse data due to its RIP
(Restricted Isometry Property) [33,40]. Finally, the most suitable ROMP (Regularized Orthogonal
Matching Pursuit) algorithm [41] is selected to reconstruct the data accurately.

2. Materials and Methods

2.1. Study Area and Equipment Introduction

Point clouds (a)–(g) were collected at the Laoshan National Forest Park (32◦5′36”–32◦7′4” N,
118◦36′2”–118◦36′55” E) in Nanjing City, Jiangsu Province (31◦14′–32◦37′ N, 118◦22′–119◦14′ E),
and point cloud (h) was collected at the rubber tree plantation in Danzhou City (19◦11′–19◦52′ N,
108◦56′–109◦46′ E), Hainan Province (18◦10′–20◦10′ N, 108◦37′–111◦03′ E), using the popular high
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definition Velodyne HDL-32E LiDAR sensor (Velodyne Lidar, Inc, US). The configuration is given in
Table 1.

Table 1. Configuration of Velodyne HDL-32E LiDAR sensor.

Technical Parameters Technical Specifications

Measurement Distance 80 m (min) to 100 m (max)
Points per second Up to 695,000
Scanning accuracy <2 cm

Field of view
Horizontal: 0◦ to 360◦

Vertical: −30.67◦ to +10.67◦

2.2. Point Clouds

The collected data, including point clouds from a single tree (e.g., cherry tree, papaya tree, poplar), as
well as from plots (e.g., sapindus plot, poplar plot, rubber tree plot) are illustrated in Figure 1. The flow
chart of the proposed scheme is given in Figure 2. The procedure consists of data preprocessing, sparse
transformation, data down-sampling, and data reconstruction.
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Figure 1. The collected point clouds from Velodyne HDL-32E LiDAR sensor. Single-tree point clouds:
(a) Cherry tree, (b) Papaya tree, (c) Poplar 1, (d) Poplar 2, (e) Poplar 3 with shrubs, and plot point clouds:
(f) Sapindus plot, (g) Poplar plot, (h) Rubber tree plot.
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2.3. Date Preprocessing

In the first step, voxel filtering and statistical filtering are applied to simplify the tree point
clouds acquired from TLS and remove outliers. Due to the massive volume of tree point clouds, the
observation matrix and the sparse transform matrix are very large and difficult to process. If the data
is not arranged appropriately, direct computation will consume hundreds of gigabytes of memory.
Furthermore, compressed sensing is based on one-dimensional data processing, and thus cannot be
applied to 3D point clouds directly. Therefore, we first split the spatial coordinate data (XYZ) into
three separate one-dimensional data and then arrange them into three matrices. Take X-coordinate as
an example (Figure 3). Every 2N points compose a column of the resulting matrix, namely, 1 ∼ 2N

points compose the first column, 2N + 1 ∼ 2N+1 points compose the second column and so on. Note
that if the number of points in the last column is less than 2N, the remaining elements are set to be zero.
The procedure of preprocessing can greatly save time and memories. In this paper, N is set to 8 due to
its superior performance.
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Figure 3. Date arrangement where N = 8.

2.4. Sparse Transformation

After data preprocessing, three spatial coordinate matrices X1, Y1, Z1 are obtained. By observing
each column of X1, Y1, Z1 matrix, we find that most data have similar morphological characteristics:
step-wise pattern (Figure 4a–c), which motivates us to apply DWT (Discrete Wavelet Transform) based
on Haar wavelet (Figure 4d). The sparse matrix X2 can be obtained by:

X2 = ΨX1 (1)

where Ψ denotes the DWT matrix (Figure 5). Experimental results in Section 3.1 confirms that Haar
wavelet is the most suitable choice among common wavelets like Daubechies (db), Symlets (sym),
Coiflets (coif), Biorthogonal (Bior), Reverse Biorthogonal (rbio) and Fejer-Korovkin (fk).
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2.5. Data Down-Sampling

According to the compressed sensing theory based on sparse structure, the original data can be
accurately recovered from only a few sampling points provided that the data is sparse. Moreover, in
order to obtain the unique reconstructed solution, the observation matrix must satisfy the RIP condition.
In this paper, a partial Fourier matrix is applied to down-sample the sparse data. We multiply partial
Fourier matrix to each column of the sparse matrix X2 (Figure 6) to obtain the observation result X3:

X3 = ΦX2, (2)

where Φ denotes the observation matrix.
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2.6. Data Reconstruction

Since M � N, the scale of observation result X3 is much smaller than that of X2, which is
convenient for storage and transmission. To recover the sparse matrix X′2 from X3, we apply the
ROMP (Algorithm 1) provided that the observation result X3 and observation matrix Φ are known. By
inverse DWT, the arranged matrix X′1 is computed. Finally, the arranged matrix X′1 is rearranged into
one-dimensional data X′, which means the data reconstruction is completed (Figure 7). The inverse
DWT is given by:

X′1 = Ψ−1X′2 (3)

Algorithm 1. Regularized Orthogonal Matching Pursuit Algorithm (ROMP).

INPUT: Sensing matrix Θ = ΦΨ, observation result y ∈ RN and sparse level K
OUTPUT: Reconstruction result x̂

1: Index set Λ = ∅;
2: Residual r0 = Y;
3: The number of iterations t = 1;
4: For t ≤ K and ‖ Λ ‖0 ≤ 2K do
5: Compute the correlation coefficient u =

{
uj

∣∣∣uj =
∣∣∣< r,ϕj >

∣∣∣, j = 1, 2, . . .N
}

and choose a set J of the K biggest
nonzero coordinates in the magnitude of u, or all of its nonzero coordinates, whichever set is smaller;
6: Among all subsets J0 ⊂ J with comparable coordinates

∣∣∣u(i)∣∣∣ ≤ 2
∣∣∣u(j)∣∣∣ i, j ∈ J0, choose J0 with maximal energy

‖ u| J0
‖2;

7: Update Λ = Λ
⋃

J0 and the support set ΦΛ;
8: Compute x̂ = argmin

x∈RΛ
‖ Y−ΦΛx ‖2 and update rnew = Y−ΦΛx̂, t = t + 1;

9: End for
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3. Results

In this section, we first compare several classical wavelet bases, observation matrices, and
reconstruction algorithms with the proposed scheme (Excel S1). Then, we report the experimental
results of the proposed scheme on real-world point clouds. Our algorithm has been implemented in
MATLAB and C++. The experimental platform is Inter® CoreTM I5-9400F CPU @ 2.90GHZ, 16GB
RAM, Windows 10 operating system.

We utilize the mean square errors (MSE) of reconstructed data as an evaluation metric:

MSE =
‖X−X′‖22

N
(4)

where X denotes the original data, X′ denotes the reconstructed data, and N is the length of the data.
Let M denote the number of compressive measurements. The compression ratio can be represented as
M/N, also called the sampling rate.

3.1. Comparison

For comparison, we choose several classical wavelet bases, observation matrices, and
reconstruction algorithms based on their suitability for tree point clouds compression. Note that the
parameters of each experiment have been tuned to the optimal values. Each data point in the figures is
the numerical mean of multiple (ten times) experiments.

Firstly, we compare the reconstruction accuracy using different wavelet bases. In order to ensure
the validity of the experiment, we only change the wavelet and keep the observation matrix and
reconstruction algorithm the same.

As can be seen in Figure 8, the scheme based on the Haar wavelet consistently achieves the lowest
reconstruction error with comparable reconstruction time as the other wavelet bases over multiple
point clouds. It can thus be concluded that the Haar wavelet is a suitable sparse basis for broad-leaved
tree point clouds.

Secondly, we compare the reconstruction accuracy using different observation matrices. In the
experiment, only the sparse transform matrix is changed, while the sparse basis and reconstruction
algorithm remain the same.

Figure 9 shows that the reconstruction errors of partial Fourier matrix are much smaller than
those of other observation matrices. The improved accuracy, however, comes at the cost of doubling
the reconstruction time. For broad-leaved trees, the reconstruction error has a significant impact on the
preservation of tree morphological attributes. Therefore, as long as the computation time is acceptable,
partial Fourier matrix is a better choice due to its high accuracy.

Finally, we compare the effect of reconstruction algorithms with only changing the algorithms
during the experiment.

Lastly, we compare the ROMP algorithm with other reconstruction algorithms. From Figure 10, it
can be observed that ROMP algorithm achieves lower reconstruction errors and it takes much less
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time than other algorithms. It only takes a few seconds on a 100,000-point point cloud and almost 15
seconds on a 1,000,000-point point cloud. Thus, it is reasonable to conclude that ROMP algorithm is
superior in recovering broad-leaved tree point clouds.

Forests 2020, 11, x FOR PEER REVIEW 8 of 24 

 

parameters of each experiment have been tuned to the optimal values. Each data point in the figures 
is the numerical mean of multiple (ten times) experiments. 

Firstly, we compare the reconstruction accuracy using different wavelet bases. In order to ensure 
the validity of the experiment, we only change the wavelet and keep the observation matrix and 
reconstruction algorithm the same. 

  
(a) (b) 

Figure 8. Comparison of wavelet bases at compression ratio: 40%. (a) Reconstruction error (mean 
square error (MSE)). (b) Reconstruction time. 

As can be seen in Figure 8, the scheme based on the Haar wavelet consistently achieves the 
lowest reconstruction error with comparable reconstruction time as the other wavelet bases over 
multiple point clouds. It can thus be concluded that the Haar wavelet is a suitable sparse basis for 
broad-leaved tree point clouds.  

Secondly, we compare the reconstruction accuracy using different observation matrices. In the 
experiment, only the sparse transform matrix is changed, while the sparse basis and reconstruction 
algorithm remain the same. 

  
(a) (b) 

Figure 9. Comparison of observation matrices at compression ratio: 40%. (a) Reconstruction error 
(MSE). (b) Reconstruction time. 

Figure 9 shows that the reconstruction errors of partial Fourier matrix are much smaller than 
those of other observation matrices. The improved accuracy, however, comes at the cost of doubling 
the reconstruction time. For broad-leaved trees, the reconstruction error has a significant impact on 
the preservation of tree morphological attributes. Therefore, as long as the computation time is 
acceptable, partial Fourier matrix is a better choice due to its high accuracy. 

Finally, we compare the effect of reconstruction algorithms with only changing the algorithms 
during the experiment. 

Figure 8. Comparison of wavelet bases at compression ratio: 40%. (a) Reconstruction error (mean
square error (MSE)). (b) Reconstruction time.

Forests 2020, 11, x FOR PEER REVIEW 8 of 24 

 

parameters of each experiment have been tuned to the optimal values. Each data point in the figures 
is the numerical mean of multiple (ten times) experiments. 

Firstly, we compare the reconstruction accuracy using different wavelet bases. In order to ensure 
the validity of the experiment, we only change the wavelet and keep the observation matrix and 
reconstruction algorithm the same. 

  
(a) (b) 

Figure 8. Comparison of wavelet bases at compression ratio: 40%. (a) Reconstruction error (mean 
square error (MSE)). (b) Reconstruction time. 

As can be seen in Figure 8, the scheme based on the Haar wavelet consistently achieves the 
lowest reconstruction error with comparable reconstruction time as the other wavelet bases over 
multiple point clouds. It can thus be concluded that the Haar wavelet is a suitable sparse basis for 
broad-leaved tree point clouds.  

Secondly, we compare the reconstruction accuracy using different observation matrices. In the 
experiment, only the sparse transform matrix is changed, while the sparse basis and reconstruction 
algorithm remain the same. 

  
(a) (b) 

Figure 9. Comparison of observation matrices at compression ratio: 40%. (a) Reconstruction error 
(MSE). (b) Reconstruction time. 

Figure 9 shows that the reconstruction errors of partial Fourier matrix are much smaller than 
those of other observation matrices. The improved accuracy, however, comes at the cost of doubling 
the reconstruction time. For broad-leaved trees, the reconstruction error has a significant impact on 
the preservation of tree morphological attributes. Therefore, as long as the computation time is 
acceptable, partial Fourier matrix is a better choice due to its high accuracy. 

Finally, we compare the effect of reconstruction algorithms with only changing the algorithms 
during the experiment. 

Figure 9. Comparison of observation matrices at compression ratio: 40%. (a) Reconstruction error
(MSE). (b) Reconstruction time.Forests 2020, 11, x FOR PEER REVIEW 9 of 24 

 

  
(a) (b) 

Figure 10. Comparison of reconstruction algorithms at compression ratio: 40%. (a) Reconstruction 
error (MSE). (b) Reconstruction time. Note that OMP denotes Orthogonal Matching Pursuit, CoSaMP 
denotes Compressive Sampling Matching Pursuit, NLR denotes Nonlocal Low-Rank Regularization, 
BCS denotes Bayesian Compressed Sensing, and IHT denotes Iterative Hard Thresholding. 

Lastly, we compare the ROMP algorithm with other reconstruction algorithms. From Figure 10, 
it can be observed that ROMP algorithm achieves lower reconstruction errors and it takes much less 
time than other algorithms. It only takes a few seconds on a 100,000-point point cloud and almost 15 
seconds on a 1,000,000-point point cloud. Thus, it is reasonable to conclude that ROMP algorithm is 
superior in recovering broad-leaved tree point clouds. 

In summary, the choice of Haar wavelet, partial Fourier observation matrix, and ROMP 
reconstruction algorithm in the proposed scheme are advantageous in handling broad-leaved tree 
point clouds, both in terms of reconstruction error and computation time. 

3.2. Experiments on Single-Tree Point Clouds 

In this set of experiments, point clouds (a)–(e) are used to verify the performance of the proposed 
scheme on point clouds from a single tree.  

The main parameters of voxel filtering and statistical filtering in the preprocessing step are tuned 
separately for each point cloud in order to obtain the best performance. The results of filtering are 
shown in Table 2 and Table 3. 

Table 2. The results of statistical filtering. 

Point Clouds Date size before filtering Date size after filtering 
Cherry tree 293,631 286,937 
Papaya tree 114,322 111,690 

Poplar 1 146,635 146,015 
Poplar 2 137,100 136,544 

Poplar 3 with shrubs 1,349,406 1,344,029 

Table 3. The results of voxel filtering. 

Point Clouds Date size before filtering Date size after filtering 
Cherry tree 286,937 274,502 
Papaya tree 111,690 110,729 

Poplar 1 146,015 117,268 
Poplar 2 136,544 110,335 

Poplar 3 with shrubs 1,344,029 1,053,598 

The experimental results with different compression ratios are summarized in Table 4. 

 

Figure 10. Comparison of reconstruction algorithms at compression ratio: 40%. (a) Reconstruction
error (MSE). (b) Reconstruction time. Note that OMP denotes Orthogonal Matching Pursuit, CoSaMP
denotes Compressive Sampling Matching Pursuit, NLR denotes Nonlocal Low-Rank Regularization,
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Forests 2020, 11, 257 9 of 23

In summary, the choice of Haar wavelet, partial Fourier observation matrix, and ROMP
reconstruction algorithm in the proposed scheme are advantageous in handling broad-leaved tree
point clouds, both in terms of reconstruction error and computation time.

3.2. Experiments on Single-Tree Point Clouds

In this set of experiments, point clouds (a)–(e) are used to verify the performance of the proposed
scheme on point clouds from a single tree.

The main parameters of voxel filtering and statistical filtering in the preprocessing step are tuned
separately for each point cloud in order to obtain the best performance. The results of filtering are
shown in Tables 2 and 3.

Table 2. The results of statistical filtering.

Point Clouds Date Size before Filtering Date Size after Filtering

Cherry tree 293,631 286,937
Papaya tree 114,322 111,690

Poplar 1 146,635 146,015
Poplar 2 137,100 136,544

Poplar 3 with shrubs 1,349,406 1,344,029

Table 3. The results of voxel filtering.

Point Clouds Date Size before Filtering Date Size after Filtering

Cherry tree 286,937 274,502
Papaya tree 111,690 110,729

Poplar 1 146,015 117,268
Poplar 2 136,544 110,335

Poplar 3 with shrubs 1,344,029 1,053,598

The experimental results with different compression ratios are summarized in Table 4.

Table 4. Experiments on single-tree point clouds.

Point Clouds Compression Ratio Reconstruction Time (s) Reconstruction Error (MSE)

Cherry tree
(274,502 × 3)

20% 2.9435 0.0079
40% 1.9146 0.0135
60% 1.6454 0.0175
80% 1.1322 0.0329

Papaya tree
(110,729 × 3)

20% 1.5268 0.0123
40% 0.8760 0.0196
60% 0.6759 0.0279
80% 0.4944 0.0521

Poplar 1
(117,268 × 3)

20% 1.4454 0.0830
40% 0.9120 0.1214
60% 0.6284 0.1896
80% 0.4874 0.2795

Poplar 2
(110,335 × 3)

20% 1.2941 0.0779
40% 0.8483 0.1233
60% 0.5896 0.1940
80% 0.4633 0.2890

Poplar 3 with shrubs
(1,053,598 × 3)

20% 15.1236 0.0184
40% 10.8942 0.0320
60% 8.7479 0.0482
80% 7.8575 0.0995
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The morphological features of the reconstructed point clouds are illustrated in Figures 11–15.
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Figure 15. CS recovered Poplar 3 with shrubs point cloud with different compression ratios. (a)
Compression ratio: 20%, (b) compression ratio: 40%, (c) compression ratio: 60%, (d) compression ratio:
80%.

3.3. Experiments on Morphological Attributes

To further understand if the proposed scheme sufficiently preserves the original characteristics of a
single tree, we quantify the morphological attributes of the reconstructed trees at different compression
ratios. The morphological attributes considered include crown size (east-west, south-north, height) [4],
diameter at breast height (DBH, diameter of the trunk at 1.30 m above the ground-surface) [2–4],
ground diameter (diameter of the trunk at 0.20 m above the ground-surface, only for Papaya tree), tree
height [2,4,5], which are important parameters for tree growth [1–5]. These morphological attributes
are estimated with the software CloudCompare [42], a professional tool for processing point cloud.
The results are summarized in Table 5.

For the Papaya tree point cloud, we estimate the ground diameter rather than DBH due to its
special branch structures (Table 6). For simplicity, we assume that the cross section of the trunk is
circular and apply least-squares circle fitting [3] to estimate DBH and the ground diameter. The relative
error statistics compared to measurements from uncompressed point clouds are also given in Table 7.
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Table 5. Experiments on morphological attributes.

Point Clouds Compression
Ratio

Crown Size (East-West,
South-North, Height) (m)

Diameter at Breast
Height (DBH, m)

Tree
Height (m)

Cherry tree

0% 3.0520, 3.0263, 4.1213 0.0704 5.0193
20% 3.0624, 3.0244, 4.1265 0.0700 5.0276
40% 3.0591, 3.0306, 4.1309 0.0691 5.0202
60% 3.0475, 3.0384, 4.1357 0.0700 5.0223
80% 3.0423, 3.0741, 4.1441 0.0701 5.0363

Poplar 1

0% 10.4139, 10.3026, 15.9860 0.3665 19.0771
20% 10.4625, 10.2566, 15.9743 0.3700 19.1161
40% 10.4422, 10.2605, 15.9552 0.3735 19.1176
60% 10.4044, 10.3855, 15.9098 0.3741 19.0294
80% 10.4829, 10.4011, 15.9433 0.3773 19.1235

Poplar 2

0% 10.4491, 10.0871, 15.9337 0.3620 19.1354
20% 10.5182, 10.0796, 15.9818 0.3539 19.1475
40% 10.4058, 10.0800, 15.7993 0.3658 19.0596
60% 10.4786, 10.2239, 15.9947 0.3515 18.9318
80% 10.5838, 10.2361, 16.1414 0.3717 19.1148

Poplar 3 with
shrubs

0% 10.1693, 10.4654, 15.5625 0.3598 18.5915
20% 10.1940, 10.4629, 15.5920 0.3628 18.5740
40% 10.1370, 10.4903, 15.6360 0.3619 18.6114
60% 10.1766, 10.5377, 15.6412 0.3494 18.6125
80% 10.2543, 10.6840, 15.7492 0.3555 18.7761

Table 6. Experiment on morphological attributes of Papaya tree.

Point Cloud Compression
Ratio

Crown Size (East-West,
South-North, Height) (m)

Ground Diameter
(m)

Tree
Height (m)

Papaya tree

0% 2.4256, 3.1193, 4.6847 0.0442 5.1134
20% 2.4589, 3.1246, 4.7133 0.0438 5.1237
40% 2.4390, 3.1283, 4.7088 0.0455 5.1089
60% 2.4178, 3.1339, 4.7248 0.0449 5.1133
80% 2.4749, 3.1923, 4.6561 0.0457 5.1311

Table 7. The relative error statistics of morphological attributes.

Point Clouds Compression
Ratio

Crown Size (East-West,
South-North, Height)

DBH & Ground
Diameter

Tree
Height

Cherry tree

20% 0.3407%, 0.0628%, 0.1262% 0.5682% 0.1657%
40% 0.2326%, 0.1421%, 0.2329% 1.8466% 0.0179%
60% 0.1474%, 0.3998%, 0.3494% 0.5682% 0.0598%
80% 0.3178%, 1.5795%, 0.5532% 0.4261% 0.3387%

Poplar 1

20% 0.4667%, 0.4465%, 0.0732% 0.9550% 0.2044%
40% 0.2718%, 0.4086%, 0.1927% 1.9099% 0.2123%
60% 0.0912%, 0.8047%, 0.4767% 2.0737% 0.2500%
80% 0.6626%, 0.9560%, 0.2671% 2.9468% 0.2432%

Poplar 2

20% 0.6613%, 0.0743%, 0.3019% 2.2376% 0.0632%
40% 0.4144%, 0.0704%, 0.8435% 1.0497% 0.3961%
60% 0.2823%, 1.3562%, 0.3828% 2.9006% 1.0640%
80% 1.2891%, 1.4771%, 1.3035% 2.6796% 0.1077%

Poplar 3 with
shrubs

20% 0.2429%, 0.0239%, 0.2793% 0.8338% 0.0941%
40% 0.3176%, 0.2379%, 0.6959% 0.5837% 0.1070%
60% 0.0717%, 0.6908%, 0.7451% 2.8905% 0.1130%
80% 0.8358%, 2.0888%, 1.7675% 1.1951% 0.9929%

Papaya tree

20% 1.3729%, 0.1699%, 0.6105% 0.9050% 0.2014%
40% 0.5524%, 0.2885%, 0.5144% 2.9412% 0.0880%
60% 0.3216%, 0.4681%, 0.8560% 1.5837% 0.0001%
80% 2.0325%, 2.3403%, 0.6105% 3.3937% 0.3461%
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3.4. Extension to Plot-Level

To evaluate the performance of the proposed scheme on large scenes, we prepare 3 plot point
clouds: Sapindus plot, Poplar plot, and Rubber tree plot. The detailed experimental results are given
in Tables 8–10, and graphical displays are shown in Figures 16–18. We can see that similar to the
cases of a single tree, the proposed scheme can achieve low reconstruction errors within reasonable
reconstruction time.

Table 8. The results of statistical filtering.

Point Clouds Date Size before Filtering Date Size after Filtering

Sapindus plot 9,694,521 9,158,523
Poplar plot 12,824,963 11,535,794

Rubber tree plot 4,592,723 4,193,915

Table 9. The results of voxel filtering.

Point Clouds Date Size before Filtering Date Size after Filtering

Sapindus plot 9,158,523 7,836,739
Poplar plot 11,535,794 9,127,145

Rubber tree plot 4,193,915 2,852,350

Table 10. Experiments on plot point clouds.

Point Clouds Compression Ratio Reconstruction Time (s) Reconstruction Error (MSE)

Sapindus plot
(7,836,739 × 3)

20% 295.8003 0.0063
40% 277.4267 0.0091
60% 268.4071 0.0129
80% 253.6288 0.0211

Poplar plot
(9,127,145 × 3)

20% 366.7588 0.0961
40% 355.7145 0.1226
60% 346.3504 0.1687
80% 336.7655 0.2245

Rubber tree plot
(2,852,350 × 3)

20% 48.2435 0.0719
40% 44.5872 0.0903
60% 41.6949 0.1247
80% 39.4404 0.1405
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Figure 19. Statistical filtering removes outliers. (a) Original Cherry tree point cloud. (b) Details of the 
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4.1.2. Voxel Filtering 

Voxel filtering is a method to simplify point clouds. It can reduce the size of point clouds while 
maintaining the original geometric structure of point clouds. It is mostly used in the preprocessing 
of dense point clouds and have been applied in surface reconstruction, shape recognition, etc. A point 
cloud can be down-sampled depending on the size of voxels. With larger voxels, the filtered point 
cloud is thinner (Figure 20). A small voxel size is suitable for studying the local morphological 

Figure 18. CS recovered Rubber tree plot point cloud with different compression ratios. (a) Compression
ratio: 20%, (b) compression ratio: 40%, (c) compression ratio: 60%, (d) compression ratio: 80%.

4. Discussion

4.1. Effects of Voxel Filtering and Statistical Filering

4.1.1. Statistical Filtering

When collecting point clouds, outliers can be generated due to measurement noise. Such noises
tend to be sparsely distributed. It is important to remove outliers since they can reduce the accuracy
of reconstruction. In statistical filtering for outlier removal, one needs to select a search radius and a
threshold. There exists a trade-off between outlier removal and retention of normal points. With a
larger search radius, more outliers can be removed, and with a smaller threshold, more normal points
can be removed as outliers. In this study, the appropriate search radius and threshold are 10–50 points
and 0.5–5, respectively. The statistical filtering is realized by PCL (Point Cloud Library) [43,44]

As an example, in the Cherry tree point cloud, statistical filtering eliminates 12,435 abnormal points
(Figure 19).
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Figure 19. Statistical filtering removes outliers. (a) Original Cherry tree point cloud. (b) Details of the
underneath trunk before statistical filtering. (c) Statistical filtered Cherry tree point cloud. (d) Details of
the underneath trunk after statistical filtering.
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4.1.2. Voxel Filtering

Voxel filtering is a method to simplify point clouds. It can reduce the size of point clouds while
maintaining the original geometric structure of point clouds. It is mostly used in the preprocessing
of dense point clouds and have been applied in surface reconstruction, shape recognition, etc. A
point cloud can be down-sampled depending on the size of voxels. With larger voxels, the filtered
point cloud is thinner (Figure 20). A small voxel size is suitable for studying the local morphological
attributes of a tree, while a large voxel size makes it easier to observe the global growth of a plot. Hence,
the choice of voxel size is application-specific. In this study, voxel filtering is applied to simplify point
clouds in order to accelerate the speed of subsequent operations. A voxel size of 0.005 m–0.02 m is
reasonable for most broad-leaved trees. Voxel filtering is also realized by PCL in our implementation.

Take the point cloud Poplar 3 with shrubs as an example. Voxel filtering removes 290,431 points,
equivalent to reduce the data size by 22%. This leads to a 0.5 s–1 s reduction in computation time for
a small point cloud like Cherry tree, and 3 s–5 s for a large point cloud such as Poplar 3 with shrubs,
without any negative effect on the morphological characteristics of trees.
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Figure 20. The voxel filtering only dilutes the point clouds and does no damage to morphological
attributes. (a) Cherry tree point cloud after statistical filtering. (b) Voxel filtering on Cherry tree point
cloud with a voxel size of 0.005 m. (c) Voxel filtering on Cherry tree point cloud with a voxel size of
0.01 m. (d) Voxel filtering on Cherry tree point cloud with a voxel size of 0.02 m.

4.2. Justification for Choosing Sparse Structure and Selection of Sparse Basis

In the past 10 years, the requirement of compressed sensing for data has changed from general
sparsity to specific structures, such as low rank [45,46], group sparsity [47,48] and so on. Compressed
sensing based on low rank and group sparsity has been widely employed in image processing due to
their high compression ratio and reconstruction accuracy. Nevertheless, point clouds have different
characteristics compared to general images. For example, all points have distinctive XYZ coordinates.
Point clouds tend to be cluttered and disordered, making low rank and group sparsity structure unable
to achieve satisfactory performances. Moreover, we find that most data are distributed in a roughly
step-wise pattern, like the shape of Haar wavelet. This phenomenon prompts us to choose Haar
wavelet as sparse basis.

We also design an experiment to confirm that the Haar wavelet is indeed superior to other classical
wavelets, such as db2, sym2, coif1, bior1.1, rbio1.1, fk4. The experiment illustrates that Haar wavelet
has the highest reconstruction accuracy among the bases tested on five single-tree point clouds with
comparable reconstruction time. This confirms the observation of step-wise patterns in the data, and
Haar wavelet as a suitable wavelet basis.
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4.3. Selection of Observation Matrix

Random Gaussian matrix [49,50] was proved to be the most universal observation matrix in
compressed sensing because it is uncorrelated with most orthogonal bases or dictionaries. Later,
the partial Fourier matrix [51–53] was proposed to replace the random Gaussian matrix. Over time,
more and more special structured matrices that satisfied RIP were proposed for observation matrices,
including sparse random matrix [49,53], partial Hadamard matrix [53], Bernoulli matrix [49,54], Toeplitz
matrix [55–58], and Circulant matrix [57,58].

Random Gaussian matrix is uncorrelated with most orthogonal bases of dictionaries and can
meet the requirement of accurate reconstruction when M ≥ cK log(N/K), where M, N denote the
dimensions of the observation matrix, K is sparse level of the data and c is a constant. Partial Fourier
matrix also satisfies RIP, but the sparse level K must conform to K ≤ cM(log(N))6. Sparse random
matrix and Bernoulli matrix stand out because they are easy to implement and store. Partial Hadamard
matrix requires a smaller number of measurements due to its uncorrelation and partial orthogonality.
However, its dimension must meet N = 2k, k = 1, 2, 3, . . ., which greatly limits its application.
Toeplitz matrix and Circulant matrix are attractive as they are easy to implement in hardware.

From Figure 9, we find that the reconstruction errors of partial Fourier matrix are much lower
than that of other observation matrices. For small point clouds such as Cherry tree and Papaya tree,
the reconstruction errors using partial Fourier matrix are 10%–20% smaller than those using other
observation matrices, and for a large point cloud like Poplar 3 with shrubs, the error is 16%–21% smaller
than others. However, the smaller reconstruction error comes at the expense of longer reconstruction
time. For Cherry tree, Papaya tree, Poplar 1, Poplar 2, the reconstruction time using partial Fourier matrix
is 1.5 times that of other observation matrices. For Poplar 3 with shrubs, the reconstruction time is 2 times
more. The desired trade-off between accuracy and computation time is application-dependent. In forest
inventories, the time cost is acceptable since accuracy is important in preserving tree morphological
structures. However, partial Fourier matrix may not be suitable for extremely large point clouds due
to its higher complexity. In this case, other observation matrices which also have a good performance
on broad-leaved tree point clouds like Circulant matrix can be adopted.

4.4. Selection of Reconstruction Algorithm

Reconstruction in compressed sensing is first formulated as an optimization problem. Many
reconstruction algorithms have been proposed in literature, including MP (Matching Pursuit) [59],
OMP (Orthogonal Matching Pursuit) [60,61], CoSaMP (Compressive Sampling Matching Pursuit) [62],
ROMP (Regularized Orthogonal Matching Pursuit) [41], HTP (Hard Thresholding Pursuit) [63], IHT
(Iterative Hard Thresholding) [64], etc. Several algorithms have also been proposed to solve the
reconstruction problem as an estimation problem, e.g., BCS (Bayesian Compressed Sensing) [65], AMP
(Approximate Message Passing) [66], etc. Later efforts focused on solving problems with specific
structures, e.g., NLR (Nonlocal Low-Rank Regularization) [67] and SGSR (Structural Group Sparse
Representation) [48]. Nowadays, combining compressed sensing with the popular deep learning, the
deep-CS [68–77] becomes the focus of current research. Owing to the complex structures of trees,
it is challenging to select an algorithm that satisfies both criterions of low computation time and
high accuracy. Moreover, most algorithms, such as NLR, have many parameters that are difficult
to tune while others, such as deep-CS, rely too much upon abundant training data. Based on these
observations, we select the classical ROMP algorithm, which can achieve a high accuracy in a short
computation time with few tunable parameters.

In the experiment, the ROMP algorithm has a better performance in both reconstruction errors
and time. The ROMP algorithm outperforms other algorithms by 22%–63% in terms of MSE, and
13%–97% in terms of reconstruction time. Therefore, we conclude that the ROMP algorithm is the best
algorithm in reconstructing broad-leaved tree point clouds among all algorithms experimented.
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4.5. Impacts on Morphological Attributes

A single tree has many significant morphological attributes, such as crown size, DBH, tree
height, etc. Good compression and reconstruction algorithms should have negligible impacts on these
attributes. Figures 21–23 illustrate crown size, DBH and tree height under different compression ratios.
Tables 5 and 6 compare these attributes estimated from reconstructed and original point clouds.

From Tables 5 and 6, we observe that the crown size, DBH and tree height fluctuate around the
actual value. The relative error statistics are summarized in Table 7. The relative errors range from
0.0010%–3.3937%, which is acceptable in our application. Next, we provide an in-depth analysis on
the errors.

Firstly, in forest inventories, it is common to use one terrestrial laser scanner to scan a wide area.
Missing data is common in this case, especially at the back of the trees (Figure 24). This makes it
difficult to compute morphological attributes such as DBH, because the cross sections of tree trunks
are incomplete (Figure 25). Missing data may influence fitting and lead to the miscalculation of DBH.
As evident from the experimental results, our scheme can handle this situation and determine DBH
within acceptable errors.

Secondly, to improve the estimation accuracy of morphological attributes, we perform an extra
statistical filtering on the reconstructed data to eliminate outliers. However, due to missing data during
acquisition, some parts such as branches appear as if they are torn apart from the trunk. When the
compression ratio is very high, these points are sparser and as a result, statistical filtering will eliminate
them as outliers. This may cause a slight reduction in estimated morphological attributes, e.g., the
crown size (south-north) of Cherry tree when the compression ratio is 80%.

Finally, it is expected that the larger reconstruction errors will reduce estimation accuracy. As
the compression ratio increases, more point clouds deviate from their original positions. If a point far
from its original position happens to be retained by statistical filtering, there will be a slight increase of
morphological attributes as indicated by the crown size and tree height of Poplar 3 with shrubs when
compression ratio is 80%. On the other hand, when reconstruction causes overlaps of points and thus
some local points may be missing, morphological attributes may be underestimated as indicated by
the sudden decline of tree height of Poplar 2 when compression ratio is 60%.

In conclusion, compression and reconstruction will affect morphological attributes to a certain
degree. As compression ratio increases, the impact tends to be bigger. However, the overall error
ranges from 0.0010%–3.3937%, which will not have a considerable influence on practical applications.
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ratio: 80%. 
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Figure 21. The crown size (west-east and south-north) of Cherry tree with different compression ratios.
(a) Compression ratio: 20%, (b) compression ratio: 40%, (c) compression ratio: 60%, (d) compression
ratio: 80%.
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Figure 21. The crown size (west-east and south-north) of Cherry tree with different compression ratios. 
(a) Compression ratio: 20%, (b) compression ratio: 40%, (c) compression ratio: 60%, (d) compression 
ratio: 80%. 
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Figure 22. The DBH of Cherry tree with different compression ratios. (a) Compression ratio: 20%, (b)
compression ratio: 40%, (c) compression ratio: 60%, (d) compression ratio: 80%.
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4.6. Generalization to Plot-Level

Experimental results show that the proposed scheme has an acceptable performance on plot point
clouds. A few comments are in order. First, the choice of sparse basis depends on the characteristics of
the point cloud very much. For both single-tree and plot-level point clouds, we find strong correlations
with the Harr wavelet basis. This explains the excellent performance of the Harr wavelet. Second, as
evident from the results, the time complexity of compression using partial Fourier matrix is higher than
other matrices. Though it is acceptable for small point clouds, random Gaussian matrix or Circulant
matrix are better candidates for plot-level point clouds since they achieve a good trade-off between
computation time and accuracy. Lastly, it appears that dense or high-quality point clouds have a better
reconstruction performance. This may be attributed to two reasons, namely, (1) high redundancy, and
(2) sufficient resolutions to learn sparse structures properly.

In conclusion, the proposed scheme can indeed handle different plot structures with acceptable
MSE at 0.0063–0.2245, demonstrating its generalization to plot-level.

4.7. Future Work

As the current scheme fails to reconstruct RGB information of broad-leaved tree point clouds, one
interesting extension to take RGB information into consideration. Additionally, in the experiments, we
find when compression ratio exceeds a critical value, the reconstructed broad-leaved tree point clouds
tend to be sparse due to the overlapping points. For further improvement, we plan to investigate
smoothing or filled function. Another venue of future work is to generalize the proposed scheme to
other categories of trees, such as conifers, and larger application scenes with various forest structures,
such as mingled forests. Special sparse transform matrix, observation matrix, and reconstruction
algorithm will be designed to optimize the MSE and reconstruction time based on the characteristics of
the target data.

5. Conclusions

In this paper, a compressed sensing scheme has been proposed to compress and reconstruct
broad-leaved tree point clouds. Unlike conventional point cloud compression algorithms that perform
compression after full sampling, the proposed scheme completes compression in the process of
sampling, which greatly reduces computation time and storage space. Moreover, instead of considering
the topological relationship among points, spatial coordinate information was compressed directly
based on the characteristics of broad-leaved tree point clouds. We identified the most suitable sparse
transformation matrix, observation matrix, and reconstruction algorithm by analyzing and empirically
comparing different approaches. Experimental results demonstrated that the proposed scheme achieves
superior performances on both single-tree and plot-level point clouds. The significant reduction in
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data volume makes it possible for real-time transmission and storage of broad-leaved tree point clouds
in forest inventories.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/3/257/s1,
PDF S1: A Brief Introduction to Compressed Sensing; Excel S1: Experimental result.
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