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Abstract: Despite the widespread use and strong promotion of the sustainable forest management
approach, there are still uncertainties about the actual contribution of current forest management
practices to sustainability. We studied the problem of sustainable timber production in four tropical
countries (Belize, Guyana, Suriname, and Trinidad and Tobago). Data assessed on experimental
plots covering 10 km2 were used to compare management practices of four forest tenure types
that commonly exist in the study countries: large scale concessions (LSC), private forests (PR),
periodic block system forests (PBS), and community managed forests (CM). As an indicator of
sustainable timber production, we calculated the recovery times expected under the initial condition
of the stands and compared them with currently practiced cutting cycles. Three growth scenarios
were simulated using diameter growth rates (1.6/2.7/4.5 mm year−1) from empirical data from studies
in the region. Initial volumes were determined for all commercial trees as well as for commercial
trees with a DBH-threshold ≥45 cm. Highest initial volumes were found in LSC and PBS managed
forests. Lowest volumes were found in CM and PR forests. Assuming the lowest growth rate for
all commercial trees, none of the stands studied reached the initial pre-harvest volumes within the
currently practiced cutting cycles. Assuming the highest growth rate for all trees, LSC, PBS, and PR
forests reach the initial pre-harvest volume. Looking at the subset of commercial trees with a DBH
≥45 cm, all stands will reach the initial volume within 30 years only if the highest growth rate is
assumed. We show that general harvest codes do not guarantee sustainable forest management in the
tropics. Local stand conditions must always be one of the guiding principles of sustainable timber
utilization. Applying the rigid rules, which do not take into account the current conditions of the
stands, entails long-term risk of forest degradation.

Keywords: sustainability; forest recovery; logged-over natural forests; sustainable forest management;
reduced impact logging; conventional logging; cutting cycles

1. Introduction

The holistic approach of sustainable forest management (SFM) has become an integral part of
modern tropical forest management and addresses the multiple ecological, economic, and social
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functions of forests [1–3]. Although there is no generally accepted definition of SFM, the concept
has been strongly promoted by the international community and is an important foundation of the
United Nations Convention on Biological Diversity (CBD), the United Nations Convention to Combat
Desertification (CCD) and the United Nations Framework Convention on Climate Change (UNFCCC).
The ITTO and FAO have launched criteria and indicators as well as guidelines for strengthening SFM
of tropical forests [1,4,5].

Despite the widespread use and strong promotion of SFM, there are uncertainties as to whether
current tropical forest management is sustainable [6]. Forest degradation by timber harvesting
and wood fuel extraction is considered to have a significant impact on tropical forest ecosystems,
though varying from region to region [7–9]. According to Blaser and ITTO [2], around 403 million
hectares (ha) of tropical forests were managed under selective logging, and around 183 million ha were
managed with a management plan until 2010. Several studies showed an increase in forest growth
in logged compared to non-logged forests [10–16], which is caused by varying reasons. The level of
disturbance caused by the intensity of trees removed from the current growing stock has a marked
influence on the rate of recovery of the remaining stand; increasing intensity of disturbance generally
reduced the growth of the remaining stand [10,17–21]. It is widely accepted that the implementation of
reduce impact logging (RIL) and post-harvesting silvicultural treatments shows a positive impact on
growing stock recovery [16,21–24]. Various studies examined and questioned cutting cycles and harvest
intensities in tropical South America (e.g., Piponiot et al. [25], Piponiot et al. [26], Macpherson et al. [27],
ter Steege et al. [28]), with the joint consensus questioning the sustainability of current management.
Avila et al. [29] studied the effect of logging intensities on tree species composition on 41 permanent
sample plots in the Brazilian Amazon over a period of 30 years and showed that high logging intensities
with a basal area reduction of > 6.6 m2 ha−1 had a substantial influence on tree species abundance
with no signs of return to the pre-logging species composition. Schwartz et al. [30] compared areas
where reduced impact logging (RIL) was applied with unlogged areas in the Tapajós National Forest,
Eastern Amazon—Brazil and suggest additional silvicultural techniques such as liberation of future
crop trees for maintaining the ecological outcome of RIL on the long run. Shima et al. [31] studied the
diversity of unlogged and selectively logged Malaysian forests and found that a period of 40 years is not
sufficient for selectively logged forests to regain their diversity. In the Guiana Shield, the sustainability
of common forest exploitation was studied by Yguel et al. [32]. They studied 12 plots of 6.25 ha each in
French Guiana, consisting of control plots, plots with selective logging, with selective logging and
thinning, and with selective logging, thinning, and fuelwood harvesting. Harvesting has not affected
species richness, but even the slightest form of disturbance has resulted in a decrease in total and
commercial biomass. Based on these results, they conclude that the rotation periods commonly used
in tropical forests are not sufficient for recovery. Lévesque et al. [33] studied the recovery rate and
stem turnover in a primary tropical dry forest in Jamaica on a total sample area of 0.27 ha. Tree height,
basal area, and tree diversity in partially cut plots had recovered by more than 80% 10 years after
experimental cutting. Size classes with DBH ≥ 14 cm had fewer individuals compared with the
pre-disturbance size-class distribution and the biomass lost by cutting could not be recovered.

The present paper utilizes data from study sites covering a total area of 10 km2 and are located
in four Caribbean countries to examine the sustainability of timber production by comparing four
common forest tenure types. The production and regenerative capacity of forest stands is used as an
indicator of sustainable timber production.

2. Materials and Methods

2.1. Countries, Study Sites, and Forest Tenure Types

The present study was carried out in four Caribbean countries: Belize, Guyana, Suriname,
and Trinidad and Tobago. The climate in the selected countries is tropical with dry and rainy seasons.
Suriname and Guyana show two rainy and two dry seasons, with the dry seasons extending from
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February to April and from August to November. Belize and Trinidad and Tobago exhibit one dry
season from January to May. In Trinidad and Tobago and Belize, forests are threatened by hurricanes.
All four countries have experience in forest use and management dating back to the beginning of the
20th century [34–36].

For each country, at least two research sites were selected. Main decision criteria for the selection
of sites were:

• logging was practiced at least once within the past 30 years;
• logging activities were carried out within the project period;
• the implemented forest management system was representative for the Caribbean;
• minimum size of 100 ha;
• participation of granted concessionaires, forest owners, or communities was secured

Four forest tenure types were covered by the site selection (Table 1): (1) large scale concession
managed forest (LSC), (2) periodic block system (PBS), (3) private owned forest (PR), and (4) community
managed forest (CM). The analyses shown refer to the respective tenure types and not to the countries
involved. As the data and results are representative of the tenure types, they cannot be used to assess
and compare individual countries.

Table 1. Sites and tenure types

Country Site Silvicultural System/Logging Type Ownership Tenure Type Cutting Cycle Code

Belize

Rio Bravo 305 Polycyclic / controlled selective
logging based on MHD and MAC

from yield model

Private
forest

Private
managed by

owner

40 years PR
Rio Bravo 102

Quiche Ha Polycyclic / conventional selective
logging

State forest
Community

managed with
annual cutting

permits

1 year CM

Guyana

Greatfalls
Polycyclic / conventional selective

logging based on MHD
Orealla

Ituni

Suriname

Mapane

Polycyclic / controlled selective
logging based on minimum

harvesting diameter (MHD) and
fixed maximum allowable cut (MAC) State forest Large scale

concession
30 years LSC

Kabo
Polycyclic / semi-controlled selective

logging based on MHD and
fixed MAC

Trinidad and
Tobago

Rio Claro Polycyclic / conventional selective
logging based on MHD with

individual tree sale
State forest Periodic block

system
30 years PBS

Cats Hill

Large scale concession (LSC): Large scale concession managed in this case means a semi-/controlled
management, which includes measurements e.g., establishment of annual cutting areas of 100 ha,
pre-harvest inventory of harvestable species, planned skidding, directional felling, tree selection,
and marking. The concessionaire has to prepare a management plan which has to be approved by
the national forest authority prior to harvesting. The harvest has to follow guidelines published by
the forest authority which include the maximum allowable cut per hectare (normally between 20 and
25 m3 ha−1) within 30 years; minimum distance of 10 m between harvest trees; protection of soil, water,
and conservation values; block alignment; and the maximum area of roads to be constructed in a felling
compartment [2,37].

Periodic Block System (PBS): The periodic block system is a polycyclic selective timber harvesting
system. At least one block per year is opened and the trees within the open block are to be sold over a
two-year period. After two years the block is closed and allowed to regenerate for a period of 30 years.
The trees for sale are selected and marked by forest officers following guidelines for tree selection.
So-called ‘replacement trees’ are required for each tree selected for harvest. These trees were to be of
the same species and will form the residual stand after the logging. There is no pre-harvest inventory
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and skid trails are not pre-planned; they are created by loggers in an unplanned manner. Although
a limited amount of timber is supposed to be removed from each block on a 30-year cycle, there are
blocks that have been clearly over-harvested and trees that are not supposed to be taken are felled and
sold to the loggers [38].

Private owned forest (PR): The private owned forest areas for this study are located within the
Rio Bravo Conservation and Management Area (RBCMA) in north-western Belize. The RBCMA was
part of a logging concession from the mid-19th century until 1982 [39]. Logging was done mainly
for mahogany without any management prescriptions until a minimum girth limit was introduced
in 1922. The first inventory was conducted in 1975 resulting in a commercial species volume of only
36 m3 ha−1 [40]. The area is managed by the non-governmental organisation Programme for Belize
(PFB) since 1988. PFB uses a yield model for the selection of the harvest stand which was developed
based on the data of the national permanent sample plot network [41]. Before logging the owner has
to apply for a cutting permission by presenting an annual plan of operations to the national forest
authorities. A pre-harvest inventory has to be done, skid trails are pre-planned, and a post-harvest
inventory has to be executed after logging. The cutting cycle is 40 years [40].

Community managed forest (CM): The communities participating in this study log their forest on
an annual basis. The forest is state owned but managed by a community with conventional logging.
Cutting permits, so called state forest permits (SFP), are granted on an annual basis. The SFP holder is
not committed to present a management plan or to do pre-harvest activities like pre-harvest inventory
or skid trail planning [2]. Measures of sustainable forest management (SFM) are written in a code of
practice [42] which was adopted by the forests act of Guyana in 2009 [43].

2.2. Block Layout

In order to investigate the effect of silvicultural management systems in an objective manner, a
randomized block design was chosen for the study. With exception of one site in Suriname, all sites had
an area of 1 × 1 km. In each 1 × 1 km site, four blocks containing 32 plots of 50 × 100 m were installed
(Figure 1). The individual blocks and the entire 1 × 1 km site were surrounded by a buffer-zone to
avoid influences from neighboring stocks. The 32 plots were 0.5 ha in size. Due to the concessionaire’s
pre-set logging area alignment for one site in Suriname a modified block design had to be used: The site
size was set to 0.8 × 1.25 km with two blocks inside. Within the two blocks, 140 sample plots with a
size of 0.5 ha were installed. Both blocks were surrounded by buffer zones.
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2.3. Forest Stock Assessment

A forest stock assessment (pre-harvest inventory) was implemented to obtain information about
forest stand attributes: (1) diameter at 1.30 m height (DBH), (2) spatial distribution of trees, (3) log grade
(LG), (4) species composition, (5) standing volume, and (6) harvestable timber volume. Log grade
was determined using the categories presented in Table 2. Tree species was further categorized in
commercial and non-commercial species. The classification was done using local species classification
lists provided by the national forest authorities or forest management units. Within the sample plots,
every tree with DBH ≥ 25 cm was recorded and mapped.

Table 2. Log grade categories

Options Description Category

High quality Straight tree without visible damage due to fire,
pests, diseases, animals, etc. 1

Medium quality Tree with little defects or damage due to fire, pests,
diseases, animals, etc. 2

Poor quality Tree with several defects or damage due to fire, pests,
diseases, animals, etc. 3

Dead or dying standing tree
A tree is dead when none of its parts are alive (leaves,
buds, cambium) at 1.3 m or above. A tree is dying if

it shows damage that will surely lead to death.
0

2.4. Commercial Species Classes

Only a proportion of the total volume is made of so called commercial species which have a
merchantable value on the timber market. All commercial tree species were assigned to four classes
(CSC): (1) class A includes species with the highest market value and demand on the timber market;
(2) class B species are less valuable species, but with a high acceptance on the timber market; (3) class
C species are marketable, but with low demand on the timber market; and (4) class D species are
commercial species but with a weaker marketability. The species were categorised based on national
species classifications which can be found in Alder [44], GFC [45], Ramnarine et al. [38], and SBB [46,47].

2.5. Tree Selection and Stand Terminology

The selection of trees to be harvested within the forest management units (FMU) is limited by
several factors, e.g., the actual timber market demand, or the harvesting capacity of the FMU. In order
to be able to compare the intensity of logging in a standardized way, two approaches for selecting
harvestable trees were applied: (1) the FMU applied their local tree selection practices and selected
the trees to be harvested on the basis of national criteria, and (2) the minimum harvesting diameter
(MHD) and log quality were used as uniform, systematic criteria to determine trees to be harvested.
Actual logging activities were performed based on the selection decisions of the FMUs.

Depending on the selection, the trees were divided into groups: (1) harvestable trees = trees that
met the criteria for harvest (see Table 3) and that were potential harvest trees, (2) harvest trees = trees
of the harvestable stand which were selected to be harvested during the actual or upcoming harvest,
and (3) residual trees = trees of commercial species that formed the remaining commercial stand after
logging. The harvested and the residual commercial stand together formed the initial commercial
stand (Figure 2).
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Table 3. Harvest tree selection criteria

Large Scale
Concession

Periodic Block
System Private Forest Community

Forest
Systematic Selection

(Standardized Criteria)

Species class A A & B A, B, C, D A, B, C, D A, B, C, D
MHD 1 ≥45 cm ≥50 cm ≥45 cm 2 ≥35 cm ≥45 cm

Log grade 1 1 & 2 1 & 2 1 & 2 1 & 2
1 MHD = minimum harvesting diameter; 2 except mahogany.
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2.6. Volume Equation

The tree volume was estimated using a DBH-based allometric equation (Equation (1)) according to
Alder and van Kuijk [48]. The equation was derived from 1849 felled sample trees covering 137 species.

V = 0.0005107∗DBH2.2055, (1)

where
V = volume in m3

DBH = diameter at breast height in cm

2.7. Scenario Analysis

No post-harvest assessments were carried out after previous harvest operations, which did
not allow for an empirical estimation of post-intervention tree growth. Therefore, growth rates
were taken from former studies conducted in the region and implemented in a scenario analysis.
The scenario analysis approach was chosen to include a wide range of potential site specific growth
rates. We used a straightforward diameter-increment-approach to simulate the growth of the individual
trees. The scenario analysis served to evaluate the quantity of harvestable volume, the resulting harvest
intensity, and the tenure type specific cutting cycles (see Section 2.1). For the scenario analysis we used
the selection of the harvest stand made by the forest management units.

2.7.1. Simulation Parameters

The parameters mean growth rate and mean annual tree mortality rate were varied for the
simulation study. Mean growth rate here is expressed in annual diameter growth. In logged tropical
forests diameter growth between 2.3 mm year−1 and 4.6 mm year−1 (Table 4) were reported by
Werger [36] and Jonkers [49]. Smaller growth rates were usually observed in undisturbed forests
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whereas high growth rates result from silvicultural interventions or high intensity logging [36,50].
Vieira et al. [51] found growth rates from 1.7 mm year−1 (mean of minimum growth rates), 3.1 mm
year−1 (mean of medium growth rates), to 3.9 mm year−1 (mean of maximum growth rates) for trees
of DBH ≥ 10 cm. Lieberman et al. [52] reported growth rates from tropical wet forests in Costa Rica
from 0.8 mm year−1 (mean of minimum growth rates), 2.7 mm year−1 (mean of medium growth
rates), to 5.1 mm year−1 (mean of maximum growth rates) for trees DBH ≥ 10 cm. Mean growth
rates of 2.3 mm year−1 for trees from logged tropical forests of French Guiana were published by
Herault et al. [53]. For this study, we used fixed mean growth rates of 1.6 mm year−1, 2.7 mm year−1,
and 4.5 mm year−1.

Table 4. Mean growth rate references

References Mean Growth Rates (mm year−1)

Minimum Medium Maximum

Werger [36], Jonkers et al. [49] 2.3 4.6
Vieira et al. [51] 1.7 3.1 3.9

Lieberman et al. [52] 0.8 2.7 5.1
Herault et al. [53] 2.3

A mean annual mortality rate of 2.6% year−1 in logged forests was observed by Sist and
Nguyen-Thé [54]. Vidal et al. [20] published mortality rates of 1.4% year−1 for RIL, 1.7% year−1 for
CL within 15 years after logging and 5.9% year−1 for RIL and 6.3% year−1 for CL within 20 years
after logging. Johnson et al. [55] observed mortality rates from the Guyana shield of 1.66% year−1.
In order to compensate for the recruitment of young trees, which was not included in our calculations,
we applied a mean annual mortality rate of 1% year−1 for the overall volume of the stand over the
entire simulation period [50,54,56].

2.7.2. Harvesting Percent and Recovery Time

We calculated the harvesting percent (Equation (2)) based on the ratio of initial commercial volume
and harvested volume. Recovery time (Equation( 30) here means (1) the time the forest needs to
recover its initial commercial volume ignoring the commercial DBH classification and (2) the time the
forest needs to recover its initial commercial volume of trees with DBH ≥MHD. The recovery time
was calculated using the annual volume increment and the volume of the initial commercial stand.
The results of the growth simulation are presented in graphical form showing the residual volume
in relation to initial volume and harvest volume and the time needed for recovery (see Figure 3 as
an example).

Harvesting percent =
harvested volume

initial volume
∗ 100, (2)

Recovery time =
initial volume− residual volume

volume increment
, (3)

2.7.3. Simulation Scenarios

We calculated the time needed for the stand to reach its initial volume after harvesting (recovery
time, see Section 2.7.2). On the one hand, a diameter-independent initial volume, which ignores the
commercial DBH classification, was taken as a basis and on the other hand, an initial volume which
only takes trees with a DBH ≥ 45 cm (MHD) into account (Table 5). To calculate the recovery time,
we assumed three diameter growth levels (see Section 2.7.1): 1.6 mm year−1 (G1.6), 2.7 mm year−1

(G2.7) and 4.5 mm year−1 (G4.5). A mean mortality rate (MR) of 1% year−1 was applied.
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Table 5. Simulation subjects

No Indicator Mean Annual
Mortality Rate

Mean Annual
Diameter Growth

1 Time to recover from harvest to initial volume 1%
1.6 mm
2.7 mm
4.5 mm

2 Time to recover from harvest to reach initial
volume of trees with DBH ≥MHD 1%

1.6 mm
2.7 mm
4.5 mm

2.8. Descriptive Statistics

We used the statistical computing environment R in version 3.6.0 [57] and the R-package lme4 [58]
to perform a linear mixed effects analysis of the effect of the present forest tenure type on the harvested
and commercial residual volume. With a mixed effects model we were able to incorporate both fixed-
and random-effects terms in a linear predictor expression. As fixed effects, we entered tenure type into
the model. As random effects, we added the study sites.

We used the R-package emmeans [59] to calculate the 95%-confidence intervals of the least-squares
means from the fitted linear mixed effects model. To evaluate the differences in volume between
the forest tenure types, we used pairwise comparisons of the least-square means and calculated the
95%-confidence intervals of the differences.

3. Results

3.1. Forest Stock Assessment

As described in Section 2.3, all trees with DBH≥ 25 cm were recorded at the forest stock assessment.
Total volumes (Figure 4) of 288 m3 ha−1 (224–352 m3 ha−1) and 291 m3 ha−1 (227–355 m3 ha−1) were
found at large scale concession (LSC) and periodic block system (PBS), respectively. As indicated by the
confidence intervals, significantly lower total volume was found at private forest (PR) with 146 m3 ha−1

(82–210 m3 ha−1). As explained in Section 2.4, only a proportion of the total volume is made up of
commercial species. Commercial volumes of LSC (258 ± 62 m3 ha−1) and PBS (276 ± 62 m3 ha−1) were
significant higher than commercial volumes of CM (93 ± 62 m3 ha−1) and PR (104 ± 62 m3 ha−1).
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The percentage of commercial volume was 90% in LSC and 95% in PBS, while the proportion of
commercial volume was 44% in CM. Commercial volume was present at all diameter classes in LSC as
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However, only the commercial stand of marketable or potentially marketable trees (all CSC,
LG 1 & 2) is relevant for the following considerations, which is why the non-commercial stand is not
discussed further. The results for the mean volumes and the corresponding 95%-confidence intervals
of the commercial stand (all CSC, LG 1 & 2) are presented in Figure 6. The two tenure types large
scale concession (LSC) and periodic block system (PBS) had the highest initial volumes of 254 m3 ha−1

(201–307 m3 ha−1) and 255 m3 ha−1 (202–308 m3 ha−1) respectively. The lowest initial volumes were
found in private forest (PR) with 71 m3 ha−1 (18–124 m3 ha−1) and community forest (CM) with
37 m3 ha−1 (−0.5–74 m3 ha−1). While the volumes of LSC and PBS as well as CM and PR did not differ
significantly from each other, we could find strong differences between the volumes of the two tenure
types LSC and PBS compared to CM and PR. The tenure types also differed in the distribution of the
harvestable and residual volume. While the harvestable volume of 172 m3 ha−1 (128–215 m3 ha−1) for
LSC and 179 m3 ha−1 (136–223 m3 ha−1) for PBS was significantly higher than the residual volume of
82 m3 ha−1 (56–109 m3 ha−1) and 76 m3 ha−1 (49–102 m3 ha−1), respectively, the harvestable volume
at CM with 19 m3 ha−1 (−12–50 m3 ha−1) and PR with 37 m3 ha−1 (−6–81 m3 ha−1) did not differ
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significantly from the residual volume of 18 m3 ha−1 (−0.8–37 m3 ha−1) for CM and 34 m3 ha−1

(7–60 m3 ha−1) for PR.
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In order to analyze the effect of the tenure types on the volume in more detail, a pairwise
comparison was applied (see Section 2.8). The results of the pairwise comparison is presented in
Figure 7. The effect of the tenure type differed significantly from zero except in the comparisons LSC
with PBS and PR with CM. In all other comparisons, the tenure types LSC and PBS had a positive effect
on volume compared to PR and CM. The largest differences were found in the comparisons between
LSC or PBS and CM.
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3.2. Tree Selection and Species Class Composition

Highest harvest intensities in terms of removals from the growing stock could be found at CM
forests showing a harvesting percent of 36%. Despite the high harvesting percent, the harvest volume
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was the lowest (13 m3 ha−1) of all tenure types. The low harvest volume with the simultaneously high
harvesting percent resulted from the low initial commercial volume (37 m3 ha−1) of CM. In contrast,
the relatively high initial commercial volume (254 m3 ha−1) at the LSC resulted in the highest harvest
volumes (42 m3 ha−1) of all tenure types, while the harvesting percent was low (17%) compared to the
CM and PR stands. The comparison of the national harvest tree selection with the standardized harvest
tree selection (see Section 2.5) showed that CM used almost the entire potential of the harvestable
volume when selecting the harvest stand. All three other tenure types used only part of the potentially
harvestable stand.

Figure 8 shows the distribution of the harvest intensity (see Table 6) over the diameter classes.
In LSC, PBS, and PR managed forests, the harvest trees were mostly selected from DBH ≥ 45 cm.
Trees with DBH < 45 cm were selected for harvest only at the community managed forests and a
small amount at the PBS managed forest. The highest commercial residual stand remained at the LSC
and PBS sites, whereas the lowest commercial residual stand was found at the community forests.
The highest distribution of the commercial residual stand over the DBH classes was found at the LSC
and PBS managed sites.
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Table 6. Mean harvest intensities per forest tenure type

National Harvest Tree Selection Criteria Standardized Harvest Tree Selection Criteria

Tenure Type Harvest
Volume

Residual
Commercial

Volume

Harvesting
Percent

Harvestable
Volume

Residual
Commercial

Volume

Harvestable
Percent

m3 ha−1 m3 ha−1 % m3 ha−1 m3 ha−1 %

LSC 42 212 17 172 82 68
PBS 28 227 11 179 76 70
PR 20 51 29 37 34 52
CM 13 24 36 19 18 51

Figures 9 and 10 show the tree species class distribution of the harvest stand and the residual stand
across the diameter classes. The amount of marketable timber species of class ‘A’ harvest trees was
highest at the LSC managed sites and lowest at the PBS. At the commercial residual stand, the highest
amount of class ‘A’ species was found again at the LSC managed sites, but lowest amounts were found
at the CM sites.
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3.3. Scenario Analysis

The analysis of the growth scenarios (Figure 11) resulted in a recovery time from 13 to 292 years
to recover from harvest back to the initial volume, ignoring the commercial DBH classification of the
trees (see Section 2.7.3). We found shortest recovery times at the PBS (13 years) and the LSC (18 years)
managed stands at the highest diameter growth rate of 4.5 mm year−1. Applying the highest growth
rate at CM and PR managed stands resulted in a recovery time of 48 years (CM) and 26 years (PR).
Applying a medium growth rate of 2.7 mm year−1 resulted in recovery times from 43 years in PBS
managed forests to 108 years in CM forest. At the lowest growth rate of 1.6 mm year−1, recovery times
from 194 years in PR forests to 292 years in CM forests were calculated.

Considering only trees with DBH ≥ MHD for the growth simulation (Figure 12) resulted in
recovery times from 12 years (PBS) to 87 years (CM). Applying the highest growth rate (G4.5) of
4.5 mm year−1 we found shortest recovery times at the PBS stands (12 years) and LSC managed stands
(14 years). Longest recovery times at the highest growth rate were calculated for PR forests (21 years)
and CM forests (27 years). At a low growth rate of 1.6 mm year−1 (G1.6) shortest recovery times were
reached by PR stands (69 years) and the PBS managed sites (73 years). The CM stand recovered after
87 years, applying a low growth rate (G1.6).
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4. Discussion

In defining sustainable forest management, economic, ecological, and social aspects can be
combined and emphasized differently. Accordingly, the chosen definition plays a decisive role in the
assessment of sustainability. For monocyclic management systems in which harvesting operations are
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carried out at long time intervals without interim maintenance operations, we define sustainability
as the time a stand takes to recover the volume used. The recovery time is used to determine the
sustainable cutting cycles. From this it can be deduced whether the cutting cycles of 30 to 40 years
currently practised in the region under study are in fact sustainable. The initial volumes were
determined for all commercial trees (total volume) as well as for commercial trees with a DBH over
45 cm.

Assuming an average annual growth rate of 1.6 mm for each tree, none of the stands studied reach
the initial total volume within the currently practiced cutting cycles of 30 to 40 years. Assuming the
highest annual growth rate of 4.5 mm for all trees, LSC, PBS, and PR reach the initial total volume. If the
sub-set of trees with a diameter over 45 cm is considered, all stands reach the initial volume within
30 years only, if the highest annual growth rate (4.5 mm) is assumed. The time needed by a stand to
recover the initial stand volume before harvesting serves as an indicator for sustainability. This renders
the assessment of the initial stand before any logging operations necessary, because otherwise a stand
volume that has already been degraded is used as a comparative measure. This does not permit an
assessment of sustainability, as—on the contrary—this would in retrospect legitimize stand degradation.

The stands studied show clear differences in initial volumes and diameter distribution of
commercial species classes. The initial volumes of commercial tree species of the systems PBS and
LSC exceed the initial volumes of CM and PR by 200 m3 ha−1. No significant differences could be
found between the initial volumes of PBS and LSC and between CM and PR. For forests of the Guyana
Shield studies of Jonkers [60] as well as Alder and van Kuijk [48] indicate commercial volumes of 172
to 243 m3 ha−1 and 195 to 237 m3 ha−1, respectively. Alder and van Kuijk [48] consider these volumes
as relatively low for tropical forests. The volumes of CM and PR are well below the volumes reported
by Alder and van Kuijk [48] and Jonkers [60] while the volumes of PBS and LSC are higher.

The reasons for the observed volumes are not only due to the different management activities,
but also to differences in site conditions and geographical location. Three of the four CM stands, as well
as the LSC stands, are located in regions with poor soils [61,62]. The two PR stands have been hit
several times by hurricanes in the past [40]. LSC and CM are both in similar geographical locations
and yet show large volume differences, so that the differences in stand volumes are likely caused by
previous management practices. Compared to LSC, stands managed under CM are subject to a less
restrictive set of rules and fewer controls. The connection between looser rules and controls for their
compliance and the current CM stand structures is obvious.

Beside the market driven, selective extraction of timber species, the management of the LSC
stands studied is subject to a code of practice and government controls [2,37], which define parameters
such as maximum logging intensities, cutting cycles, or distance rules. The largely regulated use has
led to stands with the highest proportion of merchantable volume within the stands studied. To ensure
sustainability, it is not so much the permitted harvesting volumes as the cutting cycles that are decisive.
This applies as well to individual timber species, which can be harvested in two or more successive
cycles. Nevertheless, the Code of Practice [37] alone does not guarantee sustainable use, unless the
currently defined cutting cycles of 30 years in LSC allow forests to regenerate. The currently practiced
cutting cycles of 30 years have to be corrected in order to safeguard sustainable use. Currently practiced
cutting cycles were also criticized by Piponiot et al. [25], Piponiot et al. [26], and Sist and Ferreira [50]
who studied forest stands in Amazonia.

The upper limits set for harvest volumes refer only to the extracted stem volume. However,
during harvesting operations, additional stand volume are caused by logging losses, e.g., due to skidding
trails, or felling gaps [63,64]. Without taking these harvesting losses into account, the anticipated
growth assumptions would require a cutting cycle for LSC to be extended to at least 40 years if average
growth is assumed, so that the extracted volume can be compensated by growth. If logging losses are
taken into account, the recovery periods are extended accordingly.

While distinct rules for the utilization of concessions are enforced, the use of CM is usually
uncontrolled. This led to strong harvesting interventions in the past, which benefited from the
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exploitation of the access infrastructure created by large-scale concessions. As a result, CMs today
contain significantly fewer numbers and volumes of commercial trees than LSCs and PBSs. Likewise,
the volume of trees with larger diameters is smaller than in LSC and PBS, so that only small harvest
volumes are available for future utilization. The uncontrolled and still on-going harvesting activities
have put the CM stocks in a state from which they can no longer recover within the periods considered.
The available data do not allow an indication of the period over which harvesting measures would need
to be suspended to ensure recovery of stocks. However, it is evident that the current management of
these stands is not sustainable. Our results therefore show, that community based forest management
does not necessarily safeguard sustainability and therefore contradicts studies that see community
forestry as a guarantee of the sustainability of forests [65–67].

The PR stands were subject to uncontrolled exploitation until 1988, which resulted in a low
commercial volume of 36 m3 ha−1 [40]. Despite the uncontrolled previous use and regular past
disruptions by hurricanes, the volume under current management doubled during the last 30 years.
This was made possible by management adapted to the individual stands. Before each intervention,
a pre-harvest inventory is conducted and forms the basis for adjusting the harvesting levels to the
respective stand conditions. The PR managed stands are thus an example for the improvement of stand
conditions by introducing control measures and silvicultural measures adapted to the current status
of stands. However, it remains to be proven through permanent observations that such an approach
ensures sustainability in the long term.

Our work is based on case studies, which limits its validity. Specific management alternatives
were examined for the countries considered. Therefore, no conclusions for the overall sustainability of
forest management in the individual countries are possible. The simulations carried out have some
limitations. Constant growth values were used, which do not take into account diameter distributions,
neighborhood relations, or the social position of the individual trees. Recruitment and mortality
were also not taken into account. Thus, the differences in individual tree growth, which show a
high variability, especially in tropical natural forests, cannot be mapped [68,69]. Since there are no
long-term observations in the investigated forest populations that allow a differentiated consideration
of individual tree growth, mortality and recruitment, a simplifying approach based on stand volume
and unified growth functions had to be chosen.

Despite the case study approach, our study allows some general statements. Our results clearly
show that the sustainable use of tropical natural forests is not guaranteed by applying general harvesting
rules. Rather, the current conditions of the stands must be assessed by pre-harvest inventories and
taken into account when planning harvest interventions. Harvesting operations must be based on
the current volume of commercial trees, their number, and diameter distribution. If these are not
sufficient, harvesting operations must be postponed to a later point in time. This allows stand growth
and recovery time to be used as benchmarks for determining harvesting intensities and harvesting
cycles. The resulting flexible consideration of the specific conditions of any stand is a prerequisite for
sustainable forest management.

5. Conclusions

Forest management through selective logging in the tropics aims at the production of valuable
timber over several cutting cycles without fostering measures to stabilize or increase the population
size of valuable timber species. When a species disappears, the next valuable species is used instead.
We show that the investigated forest tenure types lead to different stand structures after earlier
harvest and recovery cycles, and cause tensions between degradation and sustainable harvest volume.
The simulated growth scenarios clearly show, that not under all local conditions will past harvest regimes
enable sustainable forest management in the future. This also applies when past harvesting operations
have been in accordance with existing harvest codes. The application of universal harvesting codes for
the use of tropical forests is therefore no guarantee of sustainable forest management. Past experience
of close-to-nature sustainable forest management practiced in other regions of the world (e.g., Western
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Europe, North America, and New Zealand) indicated that the law of locality must be taken into
account when assessing sustainability; this is no exception for tropical forests if their sustainable forest
management is desired.

Our study shows that the sustainability of forest utilization according to rigid rules must be
critically evaluated. The application of rigid rules, which do not take into account the current conditions
of the stands, entails the long-term risk of forest degradation. The harvesting quantities and harvesting
cycles often defined in harvesting codes must therefore be reconsidered. Rather, local stand conditions
must always be the guiding principle of sustainable use. Two demands for the sustainable management
of tropical forests can be derived from this. On the one hand, pre-harvest inventories must be carried
out in order to provide an objective information basis for the planning of harvesting interventions.
Minimum standards, such as standing volume or balanced DBH-distribution, should also be defined
for the stand conditions that must be met in order to justify any harvesting intervention. On the other
hand, for already logged-over stands, repeated inventories must be carried out to determine growth
patterns, natural mortality, and recruitment under local conditions.

Further research on the regeneration ecology and growth dynamics of heterogeneous tropical
forests is urgently needed to safeguard the sustainable utilization of timber. Studies on silvicultural
treatments are also indispensable to improve diameter growth and to reduce the recovery time until
the next intervention. Silvicultural treatments are mainly aiming at (value) growth and tree species
distribution, while costs and profitability are the guiding criteria for management measures. Therefore,
studies on the economic aspects of silvicultural treatments are necessary. In order to expand the range
of marketable species and to reduce the pressure on the relatively few merchantable timber species,
studies on the market potential of lesser-known species need to be urgently addressed.
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