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Abstract: Continuous cover forestry (CCF) aims to emulate small natural disturbances and take 
advantage of natural regeneration. To implement these management practices successfully, 
knowledge of advance regeneration under the canopy in different conditions is crucial. Therefore, 
the aim of this study was to assess the influence of stand inventory parameters of canopy layer (age, 
basal area, height, and density) on the probability and density of advance regeneration of the 
Norway spruce (Picea Abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.) in hemiboreal forests 
in Latvia. The data were obtained from the National Forest Inventory, from a total of 879 plots. In 
the study, only Norway spruce or Scots pine dominated stands were used and the sampled stand 
age ranged from 21 to 218 years. The probability of advance regeneration differed between stands 
dominated by Scots pine versus Norway spruce. The probability and density of the advance 
regeneration of Norway spruce were positively linked to increased stand age, whereas the 
probability of the advance regeneration of Scots pine was negatively linked to the basal area of the 
stand. In stands dominated by Norway spruce and Scots pine on mesic soils, the advance 
regeneration of Norway spruce has a high density, whereas the advance regeneration of Scots pine 
is sporadic and scarce. 

Keywords: undergrowth; Picea abies; Pinus sylvestris; regeneration under canopy; continuous cover 
forestry 

 

1. Introduction 

A deeper ecological understanding of the structural and functional complexity of forest 
ecosystems has led to specific management implications and increasing awareness that forests should 
be governed as complex adaptive systems [1–3]. Ecosystem-based silviculture approaches promote 
the improvement of adaptability of forest ecosystems and increase the resilience of forests to future 
uncertainties related to climatic, social, and economic challenges [4]. The concepts of management 
approaches such as close-to-nature or continuous cover silviculture systems first appeared in the 18th 
and 19th century in Central Europe when overexploited monocultures failed to maintain forest 
vitality and soil fertility [5]. The first book in which small-scale group selection was suggested as way 
to maintained structural diversity of mixed stands by Karl Gayer was published at the end of 19th 
century [6]. his concept was further developed by Engler [7], Möller [8], Mlinšek [9], and Schütz [10–
12]. Continuous cover forestry (CCF) aims to emulate the small-scale tree mortality pattern 
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(gap/patch dynamics) to maintain forest stands, soil integrity, and productivity [5,13]. The CCF 
system relies on natural regeneration, which preserves the genetic variation of the local gene pools 
in a tree population [14,15] and the costs of establishment are low [16,17]. The advance regeneration 
will form a new stand in a canopy layer opening, which is created by selective cutting [18]; hence, 
occurrence and specific traits are crucially important for the success of CCF [19].  

The overall regeneration pattern of trees species can be characterized by species-specific 
resource-use strategies based on morphophysiological and ecological traits [20]. In hemiboreal forest 
zones in Latvia, Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) are the 
two most common coniferous tree species which grow in pure and mixed stands according to the 
National Forest Inventory (NFI) [21,22]. Scots pine is a light-demanding tree species adapted to 
growth in low-nutrient habitats [23]. Wave-like regeneration of Scots pine has been observed 
following natural or human-made disturbances which expose bare mineral soil and substantially 
increase light availability for the understory [24–28]. As a light-demanding tree species, advance 
regeneration of Scots pine only develop under a low-density canopy [29,30]. For example, in the 
Caledonian pinewoods of Scotland, on dry podzolic soils, the optimal canopy tree density for natural 
Scots pine regeneration was 63 trees per hectare, but on wet soils, 20 trees per hectare [29]. In Sweden, 
the ingrowth of Scots pine occurs when the basal area of the canopy layer is 4 to 8 m2 ha−1, and in the 
case of a higher basal area, the ingrowth success of pine drastically decreases [30]. As a light-
demanding tree species, Scots pine more strongly responds to increasing radiation than does a shade-
tolerant tree species like the Norway spruce [31]. Shade-tolerant tree species have a lower specific 
leaf mass, photosynthetic rate at saturation, root-to-shoot ratio, and light compensation point than 
light-demanding tree species [32]. In contrast to Scots pine, Norway spruce seedlings successfully 
recruit and develop under partial shade conditions [33–36]. These characteristics help the trees to 
establish and survive for a longer time period in shaded understory [18]. Small gaps in the canopy 
facilitate the regeneration of shade-tolerant tree species such as Norway spruce, rowan (Sorbus 
aucuparia L.) [29], European beech (Fagus sylvatica L.), and silver fir (Abies alba Mill.) [37].  

Stand characteristics (basal area, species composition, and age) significantly affect advanced 
regeneration patterns. Canopy trees influence the biotic and abiotic site variables, like light 
transmittance [18,29,35,38–41], below-ground root competition for water and nutrients [42,43], soil 
organic layer, litter accumulation [44], and seed crop yield [19], which are important factors in 
determining establishment, growth, and survival of advance regeneration. The development of 
advance regeneration is significantly altered by disturbances (natural or human-made) which create 
openings in canopy layer [45–47]. Thinnings of the canopy of various intensities are an efficient way 
to improve the establishment and growth of advance regeneration [43,48] as well as to maintain 
regeneration for tree species with different shade tolerances [49].  

In the eastern Baltic Sea region, forests are commonly managed using the clear-cutting system 
[50,51]. However, in many forest areas, clear-cuts are forbidden due to nature protections and 
recreation as the primary management objectives [52]. Hence, these forests are likely to be managed 
according to the CCF principles. To provide the best results, management guidelines for the CCF 
system must be adjusted to the local (ecological and economic) conditions [5,53]. In the hemiboreal 
forest zone, several studies have been conducted to analyse the height growth of advance 
regeneration of Scots pine [54] and Norway spruce following partial harvest, clear-cut, or windthrow 
[55–58]. However, the information about the relationships between stand characteristics (dominant 
tree species, basal area, and stand age) and the occurrence of advance regeneration is limited in 
hemiboreal forests. Therefore, the aim of our study was to assess the influence of the stand inventory 
parameters on the occurrence and density of advance regeneration of Norway spruce and Scots pine. 
Such information would be of vital importance of the silvicultural recommendations as well as the 
modeling of stand development to compare different alternatives in strategic planning and policy 
decision making. We hypothesised that the probability of advance regeneration is similar in stands 
dominated by Norway spruce and Scots pine. We also hypothesised that based on stand age, the 
density and probability of the advance regeneration could be characterized.  
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2. Materials and Methods  

2.1. Study Area and Sample Design 

Latvia is located in the hemiboreal forest zone, 55°–58° N, 21°–28° E [22]. According to the NFI, 
forests cover approximately 52% of its territory. The most common tree species are Scots pine, birch 
(Betula pendula Roth and B. pubescens Ehrh.), and Norway spruce, and they comprise 28.3%, 27.8%, 
and 17.6% of the total forest area, respectively [21]. According to the Latvian Environment, Geology, 
and Meteorology Centre, during 1981–2010, the mean annual temperature was 6.4 °C. The coldest 
month was February, with a mean temperature of −3.7 °C, and the warmest month was July, with a 
mean temperature of 17.4 °C. The mean annual precipitation amount was 692 mm and the wettest 
months were July and August, with 77 and 76 mm of precipitation, respectively.  

We selected stands dominated by Norway spruce or Scots pine (>50% of the stand basal area), 
growing in mesotrophic soil conditions with a normal moisture regime (Hylocomniosa and Oxalidosa 
forest type). These are the two most common site types in Latvia, occupying ~42% of the total forest 
area, according to NFI [21]. In these forest site types, the herbaceous layer is dominated by common 
wood sorrel (Oxalis acetosella) and European blueberries (Vaccinium myrtillus) but the moss layer by 
glittering woodmoss (Hylocomium splendens), and wind-blown mosses (Dicranum spp.) [59]. In this 
study, we used NFI data [21]. The NFI sampling plots are systematically placed to cover all territory 
of Latvia. Additional sampling plots were established in old-growth Norway spruce and Scots pine-
dominated stands in nature protection areas where could be observed multi-cohort structure, 
deadwood of different sizes and decay classes and no indication about past management activities 
could be observed [60], and mean stand age corresponded to over-mature forests according to NFI 
[21]. Depending on tree size at the breast height (dbh), trees were measured at four different subplot 
levels [42]. The size of the main sampling plot was 500 m2, where all trees with a dbh greater than 14 
cm were measured. The advance regeneration (dbh < 2.1 cm) was identified in a subplot of 60 m2 (20 
× 3 m), which was systematically placed at the centre of the main sampling plot. Trees with dbh 6.1–
14.0 cm were measured in a subplot of 100 m2 within the main sampling plot. Trees with dbh 2.1–6.0 
cm were measured in a subplot of 25 m2 within the main sampling plot. The height of five trees of 
each tree species from the canopy and understory layers were measured. In our study, we selected, 
in total, 879 plots (measured during period 2014–2018) (Figure 1). The age of the studied stands 
ranged from 21 to 218 years. 

 
Figure 1. The locations of the sampling plots in the territory of Latvia. 
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2.2. Data Analysis  

We tested the effect of the five explanatory parameters of the stand canopy layer (age, height, 
diameter, basal area, and density) and their interaction with the dominant tree species regarding the 
probability and density of advance regeneration. Each stand inventory parameter was included in a 
separate model as the multicollinearity is high between the explanatory variables. To assess the 
effects of stand properties on the probability of advance regeneration (presence/absence), we applied 
a binomial generalized linear model (GLM). To assess the effects of the stand properties on the 
density of advance regeneration, we implemented linear regression. To fit a normal distribution and 
reduce the data heterogeneity, the density values were log transformed. The separate models were 
built to investigate the effects of explanatory variables on the density and the probability of advance 
regeneration in general (including all tree species) and specifically for the advance regeneration of 
Scots pine and Norway spruce. The best model was selected based on the Akaike information 
criterion value (AIC) [61]. All calculations were completed using R, v3.5.0 (R Foundation for 
Statistical Computing, Vienna, Austria) [62]. 

3. Results 

In stands dominated by Scots pine and Norway spruce, an average of 2000 trees of advance 
regeneration per hectare were observed in all age groups (Figure 2). In stands dominated by Scots 
pine, the mean density of the advance regeneration was rather similar between all analysed age 
groups, varying between 2825 ± 1771 (mean ± standard deviation) and 3379 ± 4033 trees per hectare. 
In stands dominated by Norway spruce, greater variations were observed, ranging from 2592 ± 3555 
to 5080 ± 3920 trees per hectare (Figure 2). No distinct trend of increasing or decreasing density of 
advance regeneration with increasing stand age was observed. 

 
Figure 2. The density of advance regeneration in Norway spruce- and Scots pine-dominated stands 
in Latvia. 

The density of the advance regeneration of Norway spruce was considerably higher than that of 
Scots pine in all age groups (Figure 3). The occurrence of advance regeneration of Norway spruce 
(minimum of 100 trees per hectare) was observed in 61% and 50% of stands dominated by Scots pine 
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and Norway spruce, respectively. In addition to Norway spruce, rowan was a common tree species 
in advance regeneration, observed in 60% and 55% of stands dominated by Scots pine and Norway 
spruce, respectively. In contrast, the occurrence of advance regeneration of Scots pine was observed 
only in 6.8% and 2.9% of stands dominated by Scots pine and Norway spruce, respectively. Moreover, 
in addition to Norway spruce, rowan and common oak (Quercus robur) were widely common tree 
species in stands dominated by Scots pine and Norway spruce. 

 

Figure 3. The density of advance regeneration of Norway spruce and Scots pine in different stand age groups. 

The GLM showed that the probability of advance regeneration was significantly affected by the 
stand height, dominant tree species, and the interaction between these two factors (Table 1). In stands 
dominated by Scots pine and Norway spruce, the advance regeneration had contrasting slopes 
(Figure 4). In stands dominated by Scots pine, the probability of advance regeneration was high (>0.9) 
and it decreased when the mean height of the stand increased above 25 m. In contrast, in stands 
dominated by Norway spruce, the probability of advance regeneration steadily increased with an 
increased mean stand height.  
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Figure 4. The influence of mean height (m) on the occurrence probability of advance regeneration in 
Scots pine and Norway spruce-dominated stands. The grey area represents the ±95% confidence 
interval. 

Table 1. Parameter estimates of the best (by AIC) fitted binomial generalized linear model (GLM) 
models for advance regeneration. (Df): degree of freedom, *: interaction between factors. 

Dependent Variable Explanatory Variables Chi-Squared Df p-Value 

Regeneration in general 
(all tree species) 

Mean height 22.2 1 <0.001 
Dominant tree species 20.3 1 <0.001 

Mean height * Dominant 
tree species 19.1 1 <0.001 

Regeneration of Norway 
spruce 

Stand age 32.1 1 <0.001 
Dominant tree species 8.5 1 <0.01 
Stand age * Dominant 

tree species 8.3 1 <0.01 

Regeneration of Scots 
pine 

Basal area 7.6 1 <0.01 
Dominant tree species 5.3 1 <0.05 
Basal area * Dominant 

tree species 
0.1 1 0.6 

The probability of advance regeneration for spruce was significantly affected by the stand age, 
dominant tree species, and interaction between these two factors (Table 1). In stands dominated by 
both Norway spruce and Scots pine, the probability of advance regeneration of Norway spruce 
increased with the increasing stand age; yet, the slopes differed (Figure 5). The probability of advance 
regeneration of spruce was higher in stands dominated by Scots pine by up to ~70 years of stand age.  

The GLM model shows that the probability of advance regeneration of Scots pine was 
significantly affected by canopy basal area, dominant tree species, and the interactions between these 
two factors (Table 1). In stands dominated by Scots pine and Norway spruce, the probability of 
advance regeneration of Scots pine decreased with the increasing basal area (Figure 6). The advance 
regeneration of pine was observed only in stands with a basal area of <20 m2 ha−1 and in stands with 
a higher basal area, the probability of advance regeneration was close to zero.  

The linear model shows that the density of the advance regeneration was significantly affected 
by the stand density and interaction between the stand density and dominant tree species (Table 2). 
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The density of the advance regeneration of spruce was significantly affected by the stand age, 
dominant tree species, and the interactions between these two factors (Table 2). None of the tested 
explanatory variables had a significant effect on the density of the advance regeneration of pine.  

 
Figure 5. The influence of stand age on the probability of advance regeneration of Norway spruce in 
Scots pine and Norway spruce-dominated stands. The grey area represents a ±95% confidence 
interval. 

 
Figure 6. The influence of the basal area on the probability of advance regeneration of Scots pine in 
Scots pine and Norway spruce-dominated stands. The grey area represents a ±95% confidence 
interval. 
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Table 2. Parameter estimates of the best (by AIC) fitted linear models. (Df): degree of freedom, *—
interaction between factors. 

Dependent 
Variable 

Explanatory 
Variables 

Sum of 
Squares 

Df F-Value p-Value 

Log 
regeneration 

density in 
general (all 
tree species) 

Intercept 11,945.1 1 10,827.8 <0.001 
Stand density 11.7 1 10.5 <0.01 
Dominant tree 

species 
3 1 2.7 0.09 

Stand density * 
Dominant tree 

species 
19.7 1 17.8 <0.001 

Log 
regeneration 

density of 
Norway 
spruce 

Intercept 1600.13 1 1326.1 <0.001 
Stand age 17.77 1 14.7 <0.001 

Dominant tree 
species 

1.32 1 1.1 0.2 

Stand age * 
Dominant tree 

species 
10.01 1 8.2 <0.01 

4. Discussion 

In stands dominated by Norway spruce and Scots pine on dry-mesic soil, the advance 
regeneration of an average of 2000 trees per hectare was observed in all age groups (from 20 to 161+ 
years) (Figure 2), suggesting that light, nutrients, and water availability are sufficient for seedling 
establishment [63,64]. Norway spruce was one of the most common tree species in the advance 
regeneration. The high abundance of Norway spruce is likely explained by suitable growth 
conditions in nutrient-rich sandy loam soils in the Hylocomniosa and Oxalidosa forest types [59,65] and 
adaptation to growth in shade conditions [34,37,55]. In addition to Norway spruce, rowan was a 
widely common tree species in the advance regeneration. Young rowan trees are shade-tolerant and 
can be successfully established under the canopy [66]. Rowan timber has a low market value; hence, 
the advance regeneration of this tree species is commonly removed during thinning operations in 
Latvia.  

The probability models of the advance regeneration (Table 1) revealed substantial differences 
between the stands dominated by Scots pine and Norway spruce (Figure 4). We assume that these 
differences are linked to species-specific stand development patterns [67], which determine the light 
transmittance, moisture regime, and nutrient cycling in the stand [68,69]. Subsequently, growth 
conditions for the advance regeneration in the understory change over time as the stand develops 
[69]. A high probability of advance regeneration in young Scots pine stands (Figures 2 and 4), could 
be explained by a high light transmittance in young Scots pine stands that gradually decreases as the 
stand develops [70]. The amount of light that penetrates the canopy layer and reaches the understory 
is a crucial factor for seedling establishment, survival, and development [18,29].  

In contrast to stands dominated by Scots pine, in Norway spruce-dominated stands, light 
availability for the understory considerably increases with stand age, when the tree density decreases 
due to natural processes like self-thinning, competition, and disturbances [71,72], or due to human-
made silvicultural operations (thinning and partial harvesting). Commonly, in stands dominated by 
Norway spruce in Latvia, at least two thinnings at the of age of 30 years and 50–60 years are carried 
out before the final harvest at age above 80 years [73]. We assume that the sharp increase of 
probability of advance regeneration of Norway spruce in stands dominated by Norway spruce 
(Figure 5), could be linked to the stand thinning.  

The highest probability and density of advance regeneration of Norway spruce were observed 
in Norway spruce stands of the oldest age group (161+ years) (Figures 5 and 7). The stands older than 
161+ years were located in nature conservation areas where management activities have not been 
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conducted in at least the last 50 years. Establishment and growth of advance regeneration might have 
been enhanced by the gradual senescence of canopy trees and the subsequent gap formation [74], 
which occur when an individual or a small group of canopy trees dies due to autogenic or allogenic 
processes [75]. In such conditions, when the canopy gaps are rather small, regeneration of shade-
tolerant tree species, such as Norway spruce, is enhanced [18].  

The density of advance regeneration in stands dominated by Scots pine and Norway spruce had 
similar patterns; in both cases, it was negatively linked to increasing stand density (Figure 8). This 
result is most likely explained by a higher competition for light, water, and nutrient resources with 
the canopy trees in denser stands [30,76,77]. Overall, Scots pine-dominated stands have a 
considerably higher light transmittance than Norway spruce forests [78]; however, in many cases 
Scots pine-dominated stands growing on fertile soils are two-storied (the second story dominated by 
Norway spruce) [59]. It is likely, therefore, that the relationship between the density of advance 
regeneration in stands dominated by Scots pine has a significantly sharper decline than in Norway 
spruce forests.  

 
Figure 7. The influence of stand age on the density of advance regeneration of Norway spruce in Scots 
pine and Norway spruce-dominated stands. The grey area represents a ±95% confidence interval. 

The density of advance regeneration of Norway spruce in stands dominated by Scots pine did 
not change with increasing stand age (Figure 7), suggesting that regeneration conditions are 
favorably stable for Norway spruce establishment. On fertile soils, the ingrowth of naturally 
regenerated Norway spruce is a common characteristic in stands dominated by Scots pine [73].  
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Figure 8. The influence of tree density on the density of advance regeneration in Scots pine and 
Norway spruce-dominated stands. The grey area represents a ±95% confidence interval. 

Overall, the advance regeneration of Scots pine was scarce in all the analyzed age groups, and it 
sharply decreased with the increasing canopy basal area (Figures 3 and 6.). Studies have shown that 
light transmittance decreases with increasing stand basal area, which hampers the natural 
regeneration of Scots pine [29,30,78,79]. Abundant regeneration of Scots pine under the canopy is 
enhanced by disturbance, which not only increases the light availability in the understory but also 
expose bare mineral soil; both these factors are crucial for pine seedling establishment [29,30]. Studies 
have shown that in the long-term, without substantial disturbances, Scots pine dominance and 
regeneration can be maintained only on dry and nutrient-poor soils where the establishment of other 
tree species is hindered by unsuitable soil conditions [28,80]. In our study, the stands dominated by 
Scots pine were found to be growing in mesic growth conditions where the ground vegetation is 
dominated by thick layer of mosses, heath (Vaccinium spp)., and other perennial plant species [59]. 
Presumably, the lack of ground vegetation disturbances [28,80], and high competition for 
aboveground- and belowground resources with canopy trees and ground vegetation [54,81], 
hampers the natural regeneration of Scots pine. Ground vegetation is removed following forest fires; 
however, this has been a rather rare disturbance in the last century [82]. Our study results are in line 
with the results obtained by Hale et al. [79], which also observed that natural regeneration of Scots 
pine can be achieved when the basal area is less than 24 m2 ha−1 (Figure 6). Hence, to improve the 
natural regeneration of Scots pine under canopy, manipulation of the stand basal area and soil 
scarification is one straightforward possibility [76,79,83]. 

5. Conclusions 

The probability and density patterns of the advance regeneration in stands dominated by 
Norway spruce and Scots pine are substantially different. This suggests that the CCF silviculture 
system must be adapted to the species-specific dominant trees to take advantage of the probability 
and density patterns of advance regeneration. Norway spruce is more suitable for the CCF 
silviculture system than Scots pine, due to the high density of advance regeneration, especially in 
older stands, suggesting a high opportunity for ingrowth. However, in such growth conditions in 
stands dominated by Scots pine, the ingrowth of Scots pine is negligible due to the very low density 
of advance regeneration of this tree species. Hence, the regeneration and ingrowth in stands 
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dominated by Scots pine most will likely be formed by other tree species, such as Norway spruce, 
common oak, or silver birch. Most likely, a moderate-severity disturbance is needed to enhance the 
regeneration of Scots pine. Further research could assess the light requirements for the successful 
growth of Norway spruce and Scots pine in different growth conditions and different stand 
development stages. 
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