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Abstract: The Comprehensive Commercial Logging Ban in All Natural Forests (CCLB) policy,
introduced in April 2015, aims to protect all natural forests in China. It has impacted both China’s
domestic timber supply and imports. We investigated price transmission in China’s hardwood
lumber imports resulting from the implementation of this policy. We selected three hardwood
lumber species, i.e., Sapelli (Entandrophragma), Mandshurica (Fraxinus), and Laurel (Terminalia), and
used their daily prices from 30 April 2015 to 30 November 2017. Threshold co-integration and
threshold error correction models are employed for this analysis. We identified a structural
breakpoint on 30 November 2016, and consequently partitioned the data series into two parts for
the two subperiods separated by the breakpoint. The empirical results indicated that there was
asymmetric price transmission (APT) for both subperiods. Adjustment of positive price deviations
to the long-term equilibrium levels was slower than that of negative price deviations. In the short
term, the price of high-quality lumber evolved independently, whereas the price of lower-quality
lumber tended to return to the equilibrium. The APT reflects a redistribution of welfare, benefiting
the exporters more than the importers. We find that positive discrepancies in each price pair were
inclined to be more persistent in the first subperiod than in the second subperiod. This could
attribute to the fact that the degree of CCLB intervention in the former one was higher than in the
latter one.

Keywords: hardwood lumber; China; asymmetric price transmission; threshold co-integration
model; threshold error correction model

1. Introduction

China is heavily dependent on timber imports because of its limited forest resources [1,2].
China’s timber (logs and lumber) imports reached 97 million m? valued at US $19.9 billion and
accounting for 32% of all timber trade value worldwide in 2014 [3]. A sizable portion of China’s
timber imports, especially in value, is hardwood imports, which reached approximately 29.8 million
m? (US $10.6 billion) in 2014. The import value of hardwood lumber alone reached US $4.3 billion in
that year, accounting for 33% of the total global hardwood lumber trade [3] and making China the
world’s largest importer of hardwood lumber.

To further protect its natural forests, China enacted the Comprehensive Commercial Logging
Ban in Natural Forests (CCLB) on 1 April 2015. As a result, the major state-owned forests in Inner
Mongolia, Liaoning, Jilin, and Heilongjiang ceased commercial logging completely. In 2016, all state
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forests suspended commercial logging activities. On 15 March 2017, the CCLB was implemented in
all state, collective, and private natural forests. The effects have been remarkable. The timber harvest
from natural forests was 5.27 million m? in 2015, falling to 1.71 million m? in 2016, and further to 1.26
million m? in 2017 [4]. Given the immaturity of forest plantations, most domestic large-diameter
hardwood came from natural forests [5-7]. Thus, China’s hardwood lumber imports soared by
16.38% (in volume) in 2016 and by another 10.61% in 2017 [3].

The CCLB is likely to trigger the asymmetric price transmission (APT) of imported hardwood
lumber as well. APT reflects the inability of the market to respond similarly to positive and negative
price disequilibria [8], usually because of policy interventions [9-12]. Faced with a major decline in
timber production by natural forests, exporters are apt to believe that any price reduction in
hardwood lumber imports would be temporary, and any price increase permanent. Exporters tend
to respond slowly to positive price deviations from the long-term equilibrium, but comparatively act
quickly to negative price deviations.

APT, a microeconomic concept [10] that has received increasing attention, can be divided into
several types. For instance, there are positive and negative APTs. A positive APT indicates that an
increase in price is transmitted more rapidly or completely than a decrease, while a negative APT
indicates the opposite. APT can also be grouped into vertical and spatial components. The vertical
APT refers to price transmission of a single product along the supply chain. The spatial APT indicates
that prices are transmitted among congeneric products in the same region of an industrial chain.

APT has received growing attention in the past few decades [13]. In an extensive study of 282
products and product categories, Peltzman found asymmetric price transmission to be the rule rather
than the exception [14]. The research objects of APT are mainly agricultural products [15-22]. Vertical
APT is evident in the supply chains of many such products, including pork in Switzerland and U.S.
[19,21], wild cod in France [11], imported salmon in Germany [20] and rice in Bangladesh [22]. Their
conclusions were similar: downstream prices react more rapidly to disequilibria induced by
upstream price increases than by upstream price decreases. On the contrary, for farmed salmon in
France, the downstream retail price responded more slowly to rises than declines in upstream
production prices, because the loss of the unit margin was offset by increased sales [11]. Spatial APT
focuses on agriculture markets. Using a threshold co-integration framework, Abdulai demonstrated
that local maize markets in Ghana responded more quickly to rising prices than to falling prices in
the central markets [23]. Ganneval showed that if the price volatility of four commodities (rapeseed,
corn, feed barley, and protein pea) was high in France, any price deviations from the long-term
equilibrium were corrected rapidly; forward prices became more relevant as price volatility increased
[24]. The study on APT of wheat exported from North America showed that USA enterprises
exporting low-quality wheat may reduce prices faster (to maintain market share) than Canadian
exporters of high-quality wheat [8,25]. The causes of APT (principally transaction costs and market
forces) have also been explored extensively for agricultural products markets in Europe, Asia, and
Africa [26-30].

APT is also detected in forest product markets. Vertical APT was evident in the Greek
roundwood market; consumer prices adjusted more slowly to increases than to decreases in domestic
producer prices [31]. The Korean fiberboard industry exhibited a reverse price adjustment that was
vertically asymmetric; wholesale prices reacted more rapidly to rises than to fall in factory prices [32].
Similarly, vertical APT was evident in lumber supply chains for the southern and western USA,
where prices were more responsive when price margins increased rather than decreased [33]. Sun
showed that, in the USA, spatial price transmission of imported wooden beds (from China and
Vietnam) was asymmetric, and that Vietnamese exporters aiming to meet the price of Chinese
wooden beds responded faster to a price spread expansion than to a price spread contraction [34].

Although studies exploring asymmetry in agricultural product price adjustments have been
extensive, few studies have addressed APT in the context of forest products. In particular, to the best
of our knowledge, no report has yet evaluated the spatial APT of forest products after a policy
intervention. Hence, we investigate the spatial APT of hardwood lumber imported by China in the
era of the CCLB. We focus on three representative hardwood trees: Sapelli (Entandrophragma),
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Mandshurica (Fraxinus), and Laurel (Terminalia) (For all three species, the Latin names are given in
parentheses. The English names used to describe the Terminalia differ in the countries of origin.
“Laurel” is the name used in the leading exporting country (Myanmar)), because they are major
hardwood lumber species imported by China and reflect different wood qualities and prices with
similar end-uses. We examine their price dynamics and APT using threshold co-integration models
and threshold error correction models (TECMs). We show that APT is evident in the market of
China’s imported hardwood lumber after implementation of the CCLB. Our findings are informative
for both policymakers, importers, and exporters while enriching the literature on forest products
markets and trade.

2. Materials and Methods

2.1. Preliminary Analysis of Data

Sapelli, Mandshurica, and Laurel are the major hardwood lumber species imported by China.
Sapelli is imported primarily from Africa, Mandshurica from Russia, and Laurel from Myanmar,
Vietnam, and several African countries [35]. The import values of Mandshurica (US $291 million) and
Sapelli (US $52 million) are the second-and fifth-largest among all species of hardwood lumber
imported in 2016. Laurel has many subspecies, the trade indices of which are not distinguished in
United Nations Comtrade. Given their superior properties, these three species are widely used to
produce wooden furniture, floors, doors, and interior decorations, and they are substitutes in
consumption. We obtained their price data from the China Timber Price Index Network of China’s
Development and Reform Commission. The database provides daily price information on most
timber trading markets in China. All price data were obtained from the Great Southwest Building
Material Market in Sichuan, one of the largest timber markets in China. The daily price series were
based on the price for the highest single-deal volume for that day. Freight and transportation costs
were not included, and for the study period no tariff was imposed on imported lumber. The market
prices of all three species, measured in Chinese yuan (CNY)/m?3, were hierarchical (Figure 1). The
average prices of Sapelli, Mandshurica, and Laurel over the study period were CNY6718 (US
$1027)/m3, CNY5691 (US $870)/m3, and CN'Y4006 (US $612)/m?, respectively, reflecting their quality
difference. Sapelli is of higher quality than Mandshurica and Laurel, especially in terms of weathering
and crack resistance. Given the price fluctuations, we considered that a structural break might have
occurred at the end of 2016. The annual average volatility (calculated using the price data) prior to
December 31, 2016 was 28% for Sapelli, 34% for Mandshurica, and 49% for Laurel, thus significantly
higher than 7%, 8%, and 15% calculated for 2017 for these three species, respectively. Then, we aimed
to identify a structural break in the price series using the breakpoint unit root method [36]. The break
date was around 30 November 2016, as also supported by the Chow test (Table 1). Thus, the entire
sample period was split into two subperiods: the first one was from 30 April 2015 to 30 November
2016, and the second one ran from 1 December 2016 to 30 November 2017. The break date corresponds
to the end of the second implementation phase of the CCLB, which is an inflection point in terms of
the decline in timber harvests from China’s natural forests. The price fluctuations closely reflected
the impact of the CCLB.

Table 1. Chow test results.

Breakpoint F-Statistic Log Likelihood Ratio
From Sapelli to Mandshurica 11/30/2016 ~ 1.522 *** 597.324 ***
From Mandshurica to Laurel 11/30/2016 1.651 *** 633.557 ***

Notes:* Significant at the 10% level. ** Significant at the 5% level. *** Significant at the 1% level.
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Figure 1. The price series of three species of hardwood lumber imported by China between 30 April
2015 and 30 November 2017 (unit: CNY/m3).

2.2. Methodology

All price series were converted to natural logarithms to reduce possible heteroscedasticity
[24,33]. Two logarithmic price pairs were formed: Sapelli/Mandshurica and Mandshurica/Laurel.

2.2.1. The Linear Co-Integration Model

Linear co-integration has been widely used to explore relationships among price variables. The
Johansen and Engle-Granger two-step approaches are the major methods employed. The integration
order of price series data is first derived using the Dickey-Fuller GLS (DF-GLS) test or the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. The null hypothesis of the DF-GLS test is that the
variable is nonstationary; the KPSS test assumes that the variable is stationary. If all price series have
the same unit roots, Johansen co-integration analysis is appropriate. Johansen (1988), Johansen and
Juselius (1990) showed that two-dimensional vector autoregression could be written in the following
“error correction” form [37,38]:

Z,=mZ,+.. Lyt g 1)
N-1

AZ, = YTAZ,, +IIZ,  + ¢ @)
i=1

where Z, =(Y,, X )" is the pair of prices Y, and X,, N is the lag number, and &, is the two-

dimensional error vector with a zero mean (A is the variance-covariance matrix). Two quantitative
relationships hold among the coefficients (I}, m;, my:r, =-1+ Z,:”j and IT = -1 + hirch, where I
i1 -

is an identity matrix and i is the lag order. The Johansen trace and maximum eigenvalue statistics are
used to determine the number of co-integrations between the two price variables. Co-integration of
each price pair was tested over both subperiods. The number of lags in each vector autoregressive
model (VAR) was determined by reference to the lowest Akaike information criterion and Bayesian
information criterion (AIC and BIC, respectively).

Depending on the results of the Johansen test, the Engel-Granger two-step method can be
employed to explore the co-integration relationship. The method focuses on the time series properties
of residuals under long-term equilibrium [39]. The Engle-Granger two-step formulae are as follows:
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i=1

where ¢, @, p, @ are coefficients, & is the error term, 5: is the estimated residuals, A is the
first difference, 4 is a white noise disturbance term, and P is the lag number. The method involves

two steps. The first step estimates the long-term relationship of Equation (3) in terms of the price
variables. It is essential to define the direction of information flow between long-term equilibrium
prices; the Granger causality test may be helpful to this end [24]. We constructed two long-term
relationships (Sapelli/Mandshurica and Mandshurica/Laurel). In the second step, the estimated

residuals (ft are used to perform a unit root test [39]. The lag number must be selected to ensure the
absence of any serial correlation in the regression residuals ; the Ljung-Box Q test, and the AIC
and BIC are helpful. Once the null hypothesis of p =0 is rejected, the residual series derived from

the long-term equilibrium is deemed to be stationary, thus demonstrating that the two price variables
are co-integrated [40].

2.2.2. The Threshold Co-Integration Model

The linear co-integration model assumes the symmetry of price transmission to capture
symmetric price adjustment. However, to obtain empirical evidence of APT, Enders and Siklos [41]
developed a two-step approach for examining threshold co-integration based on the approach of
Engle and Granger [39]. It was suggested that the new, nonlinear co-integration model can be used
as an alternative method to capture sharp asymmetric movements in a series of estimated residuals.
The threshold co-integration model has advantages over other econometric methods for APT,
including partial adjustment model [42,43], deterministic regime switching model [44,45], and so on.
First, it can apply the standardized cointegrating Dickey-Fuller technique to survey asymmetric
adjustment to the long run equilibrium [10]. Second, it can be used to investigate the magnitude and
speed of price transmission [31].

Estimation proceeds as follows. First, using the ordinary least-squares method, the long-term
equilibrium relationships between price series are derived using Equation (3). Second, the estimated
residuals and forming indicators are used to create a threshold autoregression (TAR) model and a
momentum threshold autoregression (MTAR) model. The principal equation is Equation (5);
Equation (6a,b) yield the indicator variables:

A A A P A
A& =pH &+ py(1=H)E L+, @ 0E i+, ©)
i=1
H, =1, ifét_1 >7, 0 otherwise;or (6a)
H,=1, ifA é,,l >7, 0 otherwise (6b)

where H, represents the Heaviside indicator, P is the lag number, p;,p, and ¢, are coefficients,
and t is the threshold value. The lag P deals with serially correlated residuals, and is selected using
the AIC, BIC, or Ljung-Box Q test. Equations (5) and (6a) represent the TAR model (¢ =0), where the

indicator variable depends on the previous period residual ¢, . The adjustment is modeled using
P ¢, if &, isabove the threshold; ) £, isusedif f, isbelow the threshold. Similarly, Equations
(5) and Equations (6b) represent the MTAR model (1 = 0); the previous period change Aéu now

becomes the key adjustment variable, similar to &, above. In this manner, the TAR captures

potential asymmetric deep movements in the residuals; the MTAR model considers steep variations
in the residuals. Both methods can be used to capture the potential APT. However, as the MTAR uses
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the first-order differences of the previous-period estimated residuals as indicator variables, it
optimally considers sharper asymmetric price changes [39,41].

If the threshold value is zero, some bias may be introduced. Chan [46] proposed an improved
method for threshold selection, which includes three steps as follows. The first step involves placing

the possible residuals :5,_1 of the TAR model or the Aé,_l values of the MTAR model in ascending

order. Next, after excluding 15% of both the largest and smallest values, the best threshold values are
determined using the remaining 70% of the values. In the final step, by calculating and comparing
the sum-of-squares errors of all potential thresholds, the threshold with the minimum sum serves as
a consistent estimate of the threshold value t . Models with consistent thresholds are termed
consistent TAR (CTAR) or consistent MTAR (CMTAR) models, which possess the similar features of
the TAR and MTAR models described above.

Given the estimated threshold values, consistent models (CTAR—Equation (6a) with an
estimated ¢, and CMTAR—Equation (6b) with an estimated ) were employed to evaluate each
price pair. Furthermore, two F-statistics were used to test the features of the two models. The rejection
of the null hypothesis (no co-integration) indicates that co-integration relationships exist between the
two price series, as revealed by the unique critical values [41]. Another standard F-test was employed

,01| <

to examine the null hypothesis of symmetric adjustment. A negative residual deepness (i.e.,

|p2| ) suggests that increases are likely to persist; decreases tend to revert faster toward the

equilibrium. According to Enders and Granger [47], the model with the lowest AIC and BIC will be
optimal for further analysis.

The convergence rates of price deviations to the long-term equilibrium in the threshold
regression model can be estimated as follows [25]:

_ log(1-4)
" log(1- o)) @)

where n denotes the number of days, g is the proportion of price adjustment, and the absolute value
of p represents the speed of price adjustment to the equilibrium.

2.2.3. Threshold Error Correction Model

To incorporate the effects of asymmetry into the models of price transmission, a TECM was
initially developed and then extended by many authors [47-49]. We decompose the error correction
terms into positive and negative components to focus on whether positive and negative price
differences exert asymmetric effects on short-term dynamic price behaviors. The error correction
models are built based on long-term correction of asymmetric relationships, as follows:

A A ] I
Axt = 61 + 61+Hf Erf-l + 6i(1_Hf)ét'1 + zal;‘Aytfj + ZF’];‘AXH + ’91]' (8)
j=1 j=1
. A 5 A J J
Ayt = 62 + szr 51"7 + bz(l'Ht)éffl + zaszyt-j + ZABZJ‘AX{-]' + ‘92/‘ (9)
j=1 j=1

where 0, @, pand O are coefficients and constants, & is an error correction term, f is the time, and
j is the lag order. The maximum lag ] is chosen using the AIC statistic and the Ljung-Box Q test; the
latter test deals with serial correlation. The error correction term is split into positive and negative
components (+ and -); H, EH and (1-H, )EH are both defined using the best-fit model. After

estimating short-term asymmetric adjustments by threshold, two F-tests are performed: one to
explore the weak exogeneity of price variables (H,, : 6" = =0) and the other to examine asymmetry

status (H,, : 6" =07).
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3. Results

3.1. Linear Co-Integration Analysis

The KPSS and DF-GLS indicated that the price series was non-stationary; all prices exhibited a
single order of integration in both subperiods (Table 2). When the Johansen approach was used to
analyze the first and second subperiods (Table 3), the appropriate lag numbers were 2 and 4,
respectively. For both price pairs, the Johansen trace and maximum eigenvalue test results rejected
the null hypothesis (no co-integration); both price pairs exhibited single co-integration relationships
in both subperiods. As shown in Table 4, in each subperiod, Sapelli was the Granger cause of
Mandshurica, and Mandshurica was the Granger cause of Laurel. Thus, Sapelli is the independent
variable for the price pair Sapelli/Mandshurica, and Mandshurica is the independent variable for the
price pair Mandshurica/Laurel (Equation (3)). The Engle—Granger estimates yielded by Equation (4)
are shown in Tables 5 and 6. The null hypothesis of p =0is rejected at the 10% significance level (at
least) for each price pair over the entire period. The Engle-Granger approach clearly shows that both
price pairs are co-integrated in both subperiods.

Table 2. Unit root test results.

Subperiod 1 KPSS DEF-GLS Subperiod 2 KPSS DE-GLS
Level (T,C) Level (T,sC)

Sapelli 0.268 *** -1.542 Sapelli 0.187 ** -2.257

Mandshurica 0.157 ** -1.710 Mandshurica 0.242 *** -1.782

Laurel 0.264 *** -2.130 Laurel 0.168 ** -2.401

First difference (T,C) First difference (T,C)

ASapelli 0.149 -9.311 *** ASapelli 0.112 -3.088 **
AMandshurica 0.228 —8.883 *** AMandshurica 0.054 -2.981 **
ALaurel 0.135 -10.750 *** ALaurel 0.136 -3.068 **

Notes: KPSS, Kwiatkowski-Phillips—Schmidt-Shin; DF-GLS, Dickey—Fuller GLS. * Significant at the
10% level. ** Significant at the 5% level. *** Significant at the 1% level.

Table 3. Results of Johansen co-integration test of pairwise logarithmic prices.

Sapelli/Mandshurica Mandshurica/Laurel 5% Critical Value 10% Critical Value

Subperiod 1
Atrace
None 17.3777 ** 23.7400 ** 15.4947 13.4288
At most 1 5.0404 4.7252 3.8415 2.7055
)\max
None 12.3373 * 19.0145 ** 14.2646 12.2965
At most 1 5.0404 4.7252 3.8415 2.7055
Subperiod 2
Atrace
None 31.8877 ** 20.2612 ** 15.4947 13.4288
At most 1 5.5698 2.6484 3.8415 2.7055
/\max
None 26.3179 ** 17.6127 ** 14.2646 12.2965
At most 1 5.5698 2.6484 3.8415 2.7055

Notes: * Significant at the 10% level. ** Significant at the 5% level. *** Significant at the 1% level.

Table 4. Causality test results.

Dependent variable ~ Chi-Sq.  Prob. Lag Dependent Variable Chi-Sq. Prob. Lag

Subperiod 1 Subperiod 2
Sapelli/Mandshurica Sapelli/Mandshurica
Mandshurica 15.4502 **  0.0432 8 Mandshurica 7.9088 ** 0.0192 2
Sapelli 11.1817 0.1916 Sapelli 11.8903 ***  0.0026
Mandshurica/Laurel Mandshurica/Laurel
Laurel 6.2876*  0.0431 2 Laurel 17.1264 ***  0.0043 5
Mandshurica 1.3284 0.5147 Mandshurica 20.7198 ***  0.0009

Notes: * Significant at the 10% level. ** Significant at the 5% level. *** Significant at the 1% level.
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Table 5. Results of the Engle-Granger and threshold cointegration model for the first subperiod.

8 of 14

Sapelli/Mandshurica Mandshurica/Laurel
EG CTAR CMTAR EG CTAR CMTAR
lag 4 4 4 2 4 4
Threshold N/A -0.0295 -0.0039 N/A -0.0760 -0.0237
p1 -0.0528 ** -0.0141 -0.0019 —0.0883 *** —0.0468 ** -0.0347
(-3.4859) (-0.7908) (-0.1129) (~4.2455) (-1.7598) (-1.4892)
p2 N/A -0.0576 *** -0.0869 *** N/A -0.1114 *** -0.2132 ***
N/A (-3.0046) (-4.1320) N/A (-3.4368) (-4.9987)
AIC -4.999 -4.996 -5.009 -4.227 -4.237 -4.259
BIC -4.944 -4.948 -4.962 -4.203 -4.190 -4.212
Qus (1) 0.886 0.938 0.978 0.722 0.873 0.839
Qs (4) 0.999 0.919 0.996 0.152 0.999 0.999
Qts (8) 0.483 0.566 0.459 0.160 0.688 0.636
@ (Ho: p1=p2=0) N/A 4.729 8.537 *** N/A 7.032* 13.099 ***
C.V (5%) N/A 7.560 6.320 N/A 7.560 6.320
C.V (1%) N/A 10.180 8.470 N/A 10.180 8.470
F (Ho: p1=p2) N/A 2.886 * 10.411 *** N/A 2.567 14.451 ***
[0.090] [0.001] [0.110] [0.000]

Notes: EG, Engle-Granger; CTAR, consistent threshold autoregression; CMTAR, consistent
momentum threshold autoregression; AIC, Akaike information criterion; BIC, Bayesian information
criterion. In terms of the Engle-Granger co-integration model, p1 refers to the p of Equation (4). The
corresponding critical value is —3.087, -3.398, and —4.008 at the 10%, 5%, and 1% level, respectively
(Enders, 2010), and the numbers in the parentheses are t-values. Qs (p) denotes the significance level
of the Ljung-Box Q statistic, which is used to determine serial correlations based on p autocorrelation
coefficients (p =1, 4, 8). @ is the threshold co-integration test using the critical values of Enders and
Siklos (2001). F is the standard F-test, and the numbers in brackets are p-values. * Significant at the
10% level. ** Significant at the 5% level. *** Significant at the 1% level.

Table 6. Results of the Engle-Granger and threshold co-integration model for the second subperiod.

Sapelli/Mandshurica Mandshurica/Laurel
EG CTAR CMTAR EG CTAR CMTAR
lag 5 5 5 4 5 5
Threshold N/A 0.0313 -0.0028 N/A -0.0450 -0.0037
p1 -0.0493 * -0.0671 *** -0.0342 ** -0.0352 * -0.0083 -0.0295 ***
(-3.2289) (-3.1930) (-1.9600) (-3.3327) (-0.5828) (-2.4364)
p2 N/A -0.0306 -0.0991 *** N/A -0.0789 *** -0.0812 ***
N/A (-1.4182) (-3.1936) N/A (-5.1361) (-3.4502)
AIC -7.157 -7.156 -7.172 -5.675 -5.730 -5.737
BIC -7.089 -7.077 -7.092 -5.607 -5.650 -5.657
Qus (1) 0.709 0.697 0.801 0.523 0.910 0.740
Qus (4) 0.889 0.892 0.955 0.950 0.999 0.998
Qus (8) 0.453 0.487 0.502 0.693 0.758 0.675
@ (Ho: p1=p2=0) N/A 5.980 6.900 ** N/A 13.358 *** 9.325 ***
C.V (5%) N/A 7.560 6.320 N/A 7.560 6.320
C.V (1%) N/A 10.180 8.470 N/A 10.180 8.470
F (Ho: p1=p2) N/A 1.518 3.388* N/A 11.388 *** 3.672*
[0.219] [0.067] [0.001] [0.056]

Notes: EG, Engle-Granger; CTAR, consistent threshold autoregression; CMTAR, consistent
momentum threshold autoregression; AIC, Akaike information criterion; BIC, Bayesian information
criterion. In terms of the Engle-Granger co-integration model, p1 refers to the p of Equation (4). The
corresponding critical value is -3.087, -3.398, and -4.008 at the 10%, 5%, and 1% level, respectively
(Enders, 2010), and the numbers in the parentheses are t-values. Qs (p) denotes the significance level
of the Ljung-Box Q statistic, which is used to determine serial correlations based on p autocorrelation
coefficients (p = 1, 4, 8). @ is the threshold co-integration test using the critical values of Enders and
Siklos (2001). F is the standard F-test, and the numbers in brackets are p-values. * Significant at the
10% level. ** Significant at the 5% level. *** Significant at the 1% level.
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3.2. Threshold Co-Integration Analysis

The threshold co-integrations of the two price pairs in both subperiods, as revealed by the CTAR
and CMTAR models, are shown in Tables 5 and 6. All estimated thresholds were near zero; there was
no “subjective setting” bias. The Ljung-Box Q tests were used to check the autocorrelation of the
residuals g [41]. The Ljung-Box Q statistics showed that none of the models had the problem of

serial correlation at least in a lag of 8. AIC and BIC were common criteria for model selection. After
initial imposition of a maximum lag of 8, the AIC and BIC statistics revealed that lags of 4 and 5 in
the first and second subperiods (respectively) are sufficient. Given the AIC and BIC statistics, the
CMTAR model was selected as optimal to reveal the asymmetry of steep price movements
irrespective of price pair and subperiod. The following analysis is based on this model. The point
estimates of the ps have signs indicating convergence in the first subperiod (Table 5). The p, values

are not significant for either price pair, but the p, values differ significantly from zero at the 1% level.

Thus, positive discrepancies converged slowly toward the long-term equilibrium; negative
discrepancies exhibited relatively rapid convergence. The estimated @-statistics are 8.537
(Sapelli/Mandshurica) and 13.099 (Mandshurica/Laurel); the null hypothesis (no co-integration of
either price pair) can thus be rejected at the 1% significance level. Furthermore, the estimated F-
statistics are 10.411 (Sapelli/Mandshurica) and 14.451 (Mandshurica/Laurel), allowing for the
rejection of the null hypothesis (symmetric adjustment of both price pairs) at the 1% significance level.
The price transmission process is asymmetric in the first subperiod for both price pairs. In the second
subperiod, all point estimates of p, and p, are negative, and lie remotely from the zero (Table 6).

| p1| is much smaller than | p2| for each price pair. Thus, the convergence speed of a positive deviation

from the long-term equilibrium is significantly slower than that of a negative deviation. The null
hypothesis (no co-integration) is rejected by the ®-statistics (6.900 for the Sapelli/Mandshurica price
pair and 9.325 for the Mandshurica/Laurel price pair); both exceed the critical value at the 5%
significance level. The null hypothesis (F-test symmetry) is rejected at the 10% level for each price
pair. Therefore, price adjustment asymmetry was evident for both price pairs in the second
subperiod. For the Sapelli/Mandshurica price pair in the first subperiod, only the point estimates of

negative deviations were significant, with a statistic of -0.0869. Thus, negative deviation ( AéH<

—0.0039) from the long-term equilibrium, caused by an increase in the price of Sapelli or a decline in
the price of Mandshurica, could disappear at a rate of 8.69% per day. If the proportion of a
disequilibrium to be corrected is taken to be 90%, then, for | p2| =0.0869, the number of days taken to

log(0.1)
log(0.9131)

eliminate 90% of the negative disequilibrium. Similarly, for the Mandshurica/Laurel price pair in the
first subperiod, about one-third of a month is needed to correct 90% of the negative change. In the
second subperiod, for the Sapelli/Mandshurica price pair, the point estimates of positive and negative

correct 90% of the disequilibrium will be: ; = ~ 25 . It thus requires less than a month to

deviation are significant at —0.0342 and -0.0991, respectively. Thus, the positive deviation (AéHz
-0.0028) from the long-term equilibrium, caused by a fall in the Sapelli price or rise in the
Mandshurica price, could disappear at a rate of 3.42% per day. Similarly, the negative deviation (A?;,l

< —0.0028) could disappear at a rate of 9.91% per day. It would thus require over two months to
eliminate 90% of the positive discrepancy, but approximately two-thirds of a month to correct 90%
of the negative discrepancy. For the Mandshurica/Laurel price pair in the second subperiod,
disappearance of 90% of the positive disequilibrium would require more than 2.5 months; the
negative disequilibrium would be corrected in less than one month.

3.3. Threshold Error Correction Analysis

In terms of short-term APT, the estimated TECMs given by Equations (8) and (9) are shown in
Tables 7 and 8, respectively. The Ljung-Box Q tests rejected the autocorrelation of the residuals y at
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least in a lag of 8, and the AIC and BIC statistics indicated that a lag of 5 for each model was
appropriate. The weak exogeneity indicated that the null hypothesis (5" =5 =0) cannot be rejected in
terms of the price of the higher-quality lumber of each price pair, except for Sapelli of the
Sapelli/Mandshurica pair in the second subperiod at the significance level of 1%. However, the
coefficient §" in the Sapelli equation for Sapelli/Mandshurica is significantly larger than zero, and
5 is essentially zero. Thus, the prices of the higher-quality lumber of each price pair evolve
independently. By comparison, the weak exogeneity tests reject the null hypothesis for the lower-
quality lumber of each price pair at the 5% significance level (at least). Thus, the prices of both lower-
quality lumbers tend to counter the price disequilibrium. The F-statistics of the null hypothesis 6" =6
verify that Mandshurica of the Sapelli/Mandshurica price pair and Laurel of the Mandshurica/Laurel
price pair exhibit short-term APT. In the first subperiod, for the Sapelli/Mandshurica price pair, the
coefficients of the threshold error correction terms in the Sapelli equation (6" and 6 ) are not
significant, implying that the price of Sapelli may have evolved independently from that of
Mandshurica in the short term (Table 7). Only the coefficient of the negative error correction term of
the Mandshurica equation (§7) is significant, being -0.0729, suggesting that 7.29% of the negative
price differential can be eliminated in one day, whereas the Mandshurica price does not respond to
any positive price differential. A similar result is obtained for the Mandshurica/Laurel price pair. The
price of Mandshurica may fluctuate independently; the negative price differential of Laurel can be
adjusted by 24.01% per day, but little adjustment of the positive price differential is evident. In the
second subperiod, for the price pair Sapelli/Mandshurica, Sapelli exhibited relatively autonomous
price variation. Mandshurica does not react to positive deviation; the negative deviation in
Mandshurica price can disappear at a rate of 8.96% per day (Table 8). Similarly, the price change of
Mandshurica is undisturbed by that of Laurel in the Mandshurica/Laurel price pair. However, the
Laurel equation shows that the daily adjustment speed (7.99%) of a negative change from the
equilibrium is more than twice that of a positive change (2.99%).

Table 7. Results of the threshold error correction model for the first subperiod.

Sapelli/Mandshurica Mandshurica/Laurel
ASapelli AMandshurica AMandshurica ALaurel
Estimate T-Ratio Estimate T-Ratio Estimate T-Ratio Estimate  T-Ratio
o* 0.0180 1.3570 0.0101 0.6123 -0.0007 -0.0456 -0.0386 -1.6225
o 0.0164 0.9767 -0.0729 *** -3.5081 -0.0265 -0.8877 -0.2401 **  -5.3421
a1 -0.0277 -0.7850 -0.1215 *** —2.7788 0.0260 0.8455 -0.2082 ***  -4.4948
az 0.0110 0.3069 0.0208 0.4684 -0.0072 -0.2318 -0.1639 ***  -3.5078
as 0.0135 0.3783 -0.0089 -0.2015 -0.0029 -0.0925 -0.1297 ***  -2.7938
o 0.0203 0.5726 0.0512 1.1661 -0.0280 -0.9247 -0.0773*  -1.6960
as 0.0628* 1.7903 -0.0869* -2.0010 -0.0634 ** -2.1843 0.0191 0.4365
B —0.1744 *** -4.0274 -0.0239 -0.4452 -0.1569 *** -3.4719 0.0168 0.2465
B2 -0.0864 ** -1.9674 0.0813 1.4943 0.0312 0.6940 0.0899 1.3278
B3 -0.0399 -0.9025 -0.0385 -0.7022 -0.0183 -0.4078 0.0599 0.8857
P4 -0.0422 -0.9560 -0.0261 -0.4773 0.0467 1.0408 0.0193 0.2861
Bs -0.0079 -0.1810 -0.0197 -0.3657 -0.0851 * -1.9289 -0.0593  -0.8932
AIC -5.477 -5.049 -5.032 -4.214
BIC -5.382 -4.955 -4.938 -4.120
Qs (1) 0.985 0.961 0.976 0.939
Qus (4) 0.999 0.999 0.999 0.997
Qus (8) 0.996 0.987 0.953 0.967
F (Ho: 6*=06-=0) 1.333 [0.265] 6.469 ** [0.017] 0.395 [0.674] 14.923 ***  [0.000]
F (Ho: 6* = 0) 0.006 [0.938] 10.323 *** [0.001] 0.629 [0.428] 16.956 ***  [0.000]

Notes: AIC, Akaike information criterion; BIC, Bayesian information criterion. Qus (p) denotes the
significance level of the Ljung-Box Q statistic, which is used to determine serial correlations based on
p autocorrelation coefficients (p =1, 4, 8). F is the standard F-test, and the numbers in brackets are p-
values. * Significant at the 10% level. ** Significant at the 5% level. *** Significant at the 1% level.
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Table 8. Results of the threshold error correction model for the second subperiod.

Sapelli/Mandshurica Mandshurica/Laurel
ASapelli AMandshurica AMandshurica Alaurel

Estimate T-Ratio Estimate T-Ratio Estimate T-Ratio Estimate T-Ratio
o 0.0518 *** 3.2707 -0.0201 -1.1532 0.0074 12335  -0.0299 **  -2.5213
o 0.0014 0.0482  -0.0896 ***  -2.7819 0.0152 13188  -0.0799 **  -3.4742
ai -0.1748 ***  -3.4704  -0.2091**  -3.7699 0.0370 1.312 -0.1855 ***  -3.3082
az -0.1028 ** -2.1329 0.0141 0.2653 -0.0245 -0.923 -0.0505 -0.9548
as -0.0688 -1.4517 0.0399 0.7633 0.0094 0.3536 -0.0597 -1.1334
a4 -0.0966 ** -2.0649  -0.3134**  -6.0803 0.1044 *** 3.9733 0.1041 ** 1.9927
as 0.0135 0.2774 0.1105 ** 2.0543 -0.0029 -0.1088 -0.0291 -0.5507
B -0.1828 ***  -3.2024 -0.1066 * -1.6951  -0.2859 ***  -5.2339 0.3977 *** 3.6602
p2 0.0281 0.4936 0.0798 1.2709 0.0854 1.6569 0.1628 1.5879
B3 —0.1965 *** -3.533 -0.3007 ***  -4.9100 -0.0586 -1.1384 -0.0922 -0.9007
P4 -0.1387 ** —2.3683 0.0310 04807  —0.2945 *** -5.801 —0.2254 ** —2.2323
Bs —0.0986 * -1.7623 -0.0554 -0.8983 0.0599 1.1533 0.0988 0.9564

AIC -7.377 -7.184 -7.114 -5.739

BIC -7.240 -7.047 -6.978 -5.603

Qus (1) 0.596 0.977 0.647 0.627

Qus (4) 0.958 0.897 0.782 0.984

Qs (8) 0.519 0.441 0.449 0.986
F (Ho: 6*=06-=0) 5.349 *** [0.005] 4.492 ** [0.012] 1.707 [0.183] 9.625 *** [0.000]
F (Ho: 6*=6) 2.320 [0.129] 3.642 % [0.057] 0.355 [0.552] 3.601 * [0.059]

Notes: AIC, Akaike information criterion; BIC, Bayesian information criterion. Qus (p) denotes the
significance level of the Ljung-Box Q statistic, which is used to determine serial correlations based on
p autocorrelation coefficients (p =1, 4, 8). F is the standard F-test, and the numbers in brackets are p-
values. * Significant at the 10% level. ** Significant at the 5% level. *** Significant at the 1% level.

4. Discussion

Our empirical results show that APT is evident in China’s market of imported hardwood lumber
in the whole period. Whether in the first or second subperiod, the price series present positive
asymmetric price transmission in the long and short term. This is, the negative price differential is
adjusted by a faster convergence speed than the positive one. This is consistent with the conclusions
from the majority of previous studies on spatial APT [13,34]. APT reflects a redistribution of welfare
compared to the symmetrical situation, modifying the timing and/or magnitude of changes
associated with price adjustments [10]. Hardwood lumber exporters respond more rapidly to
negative price deviations than to positive price deviations in the Chinese market. These exporters can
better take advantage of the price increases that are unavailable under symmetrical conditions; on
the other hand, the hardwood lumber importers seem less responsive or lacking the ability to respond
to the price reductions created by APT.

In both the long-and short-term, we find that positive differential in each price pair converges
slowly in the first subperiod, while relatively fast in the second subperiod. This indicates that the
hardwood lumber exporters are likely to benefit more from an increase of price in the former
subperiod than in the latter. The main reason could be that the degrees of the CCLB policy
intervention between both subperiods are different. Harvesting from natural forests in China fell
sharply over the first subperiod, but less so in the second subperiod. The amount of logging from
natural forests in China decreased by 3.56 million m? from 2015 to 2016, while only dropped by 0.45
million m? from 2016 to 2017 [4]. Exporters’ expectations of price rises would thus be stronger in the
first subperiod than in the second one. Thus, positive price discrepancies tended to be more persistent
in the former subperiod than in the latter.

5. Conclusions

We disclose that APT was evident in Chinese imported hardwood lumber market when the
CCLB was implemented. By examining the Shapelli/Mandshurica and Mandshurica/Laurel price
pairs, we detect a structural break at the end of the second CCLB phase, which prompts us to divide
the study period into two subperiods. The break reflects the different degree of impact of different
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CCLB implementation phases. The CMTAR model best-fitted the price series of both subperiods,
suggesting that price adjustment may be steep when asymmetry is present. The empirical results
from both subperiods show that the import prices of both hardwood lumber pairs were co-integrated
in a long-term relationship, and that both short-and long-term asymmetric price adjustments were
evident. In the long term, the convergence rates of positive price discrepancies to the equilibrium
were slower than those of negative price discrepancies. In the short term, for each pair, the price of
higher-quality lumber was minimally affected by the price of lower-quality lumber, but the price of
the latter type of lumber tends to follow the price of the former type. Positively asymmetric spatial
price transmission in the imported hardwood lumber market of China was uncovered; interactions
among price pairs were evident after the forest conservation policy was introduced.

The APT identified herein emphasizes that the hardwood lumber market is inefficient. More
effective trade policies would be helpful in the CCLB era to correct for the asymmetries. It may be an
effective way for China to reduce import dependence on a few countries by diversifying import
sources of hardwood lumber. Furthermore, it is suggested that timber import channels should be
unified by industry associations. This aims at increasing the bargaining power of China’s importers
in trade negotiations. However, APT allows both importers and, to a lesser extent, foreign suppliers
to strategize with respect to their responses to future price fluctuations. Various threshold co-
integration models can be used to examine the markets for logs, pulpwood, and other major forest
products. Such efforts would improve knowledge on the price transmission characteristics of forest
products, especially in the international context.
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