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Abstract: The importance of the height-diameter (H-D) relationship in forest productivity is well
known. The general nonlinear regression model, based on the mean regression technical, is not able to
give a complete description of the H-D relationship. This study aims to evaluate the H-D relationship
among relative competition levels and develop a quantile regression (QR) model to fully describe
the H-D relationship. The dominance index was applied to determine the relative competition
levels of trees for the Chinese fir. Based on the basic Weibull growth model, the mean regression
for five relative competition levels and 11 QR models was constructed with 10-fold cross-validation.
We have demonstrated that the H-D relationship for the Chinese fir strongly correlated with relative
competition states, but the five curves from mean regression models did not show a notable difference
between the trends of H-D relationship under different competition levels. Similar regression results
were found in QR models of the specific quantiles; the average tree height of five competition levels
varied between 5.78% and 17.65% (i.e., about 0.06 and 0.18 quantiles). In addition, some special
curves of the H-D relationship such as the QR models of the 0.01 and 0.99 quantile showed the
H-D relationship under certain conditions. These findings indicate that the QR models not only
evaluated the rates of change of the H-D relationships in various competition levels, but also described
their characteristics with more information, like the upper and lower boundary of the conditional
distribution of responses. Although the flexible QR curves followed the distribution of the data and
showed more information about the H-D relationships, the H-D curves may not intersect with each
other, even when the trees reached their maximum height. Hence, the QR model requires further
practice in assessing the growth trajectory of the tree’s diameter or tree height to gain better results.

Keywords: quantile regression; height-diameter relationship; relative competition; Chinese fir

1. Introduction

The relationship between diameter at breast height (DBH) and tree height (H) is an important
factor in forest research and is often used to estimate forest resources and wood production [1–3].
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In the study of forest ecology and forest management, the height-diameter (H-D) relationship is one of
the most important elements in estimating the stand volume and biomass, and is used as a reliable
indicator of forest growth and sustainable forest management [4–6]. The precise estimation of the
H-D relationship is essential for giving a clear description of the stand conditions and its changes
over time, and can further be employed in the estimation of stand growth and yield projection [7,8].
For example, Parresol [9] described the relationship between the height and diameter of a stem as
important components in yield estimation, stand description and damage appraisal. Hence, the H-D
model has been widely used as an important method for obtaining tree heights and evaluating forest
productivity in even or uneven-aged forests [10,11].

Various H-D models have been developed and applied for the management of different forest
types [12]. The H-D model varies between stands and species; depending on the variables used, the
models were classified into two types: the locally applied model and the generalized use model [13,14].
The locally applied models commonly are only dependent on tree diameter or tree age and only
applicable to the stand where the data were collected [15]. On the other hand, the generalized use
models, with other stand-level variables (such as site condition, competition status, environment, and
climatic factors), can be applied to a large area [2,16]. According to Meyer [17], the H-D relationship
is probably the most sensitive and reliable measure indicator of site productivity under natural
competition. Huang and Titus [18] described the stand quality for four major species forests based on
the H-D relationship of dominant and codominant trees. Kearsley et al. [19] built several H-D models
and thought those useful tools improved the accuracy of forest aboveground biomass estimation,
which further proved that the H-D relationship is an important feature for evaluating the competition
effect on tree growth and stand yield. However, those H-D models are often modeled by the ordinary
least squares (OLS) regression technique, and this method is a mean regression that may not be reliable
when random and independent observations are included into the calculation [5]. Other estimation
methods such as maximum likelihood (ML) and restricted estimation maximum likelihood (REML) for
mixed-effect models addressed this problem and have been applied in the study of height-diameter
and crown diameter prediction models [14,20]. Although these modeling approaches are better at
estimating the H-D relationship, the description for the distribution of the H-D relationship may still
be weak. It is difficult to predict some extremely distributed observations without prior information
supported by the mixed-effect model.

Quantile regression (QR) is a method to estimate the full conditional distribution of dependent
variables or quantile functions of interest, presented by Koenker et al. in 1978 [21,22]. This method is
flexible in terms of describing the different distribution of the relationship between independent and
dependent variables [23]. In recent years, QR has increasingly been used to study forest inventory [24],
stand density [25], diameter distribution prediction [26], diameter growth [27], tree taper [28], and the
aboveground biomass of forests [29]. Up to now, QR has been used in the study of tree height prediction
and stand tree height simulation, but rarely reported in the relationship between age and height or
diameter and height [5,30]. Unlike the mean regression method, the QR method can describe the trend of
the dependent variable at any quantile. Thus, it may able to extract more information from the data, and
obtain a more comprehensive analysis of the relationship between height and diameter [31,32].

The Chinese fir (Cunninghamia lanceolata(Lamb.)Hook.) has the largest afforestation area in South
China. Due to its rapid growth and excellent wood quality, this species has remarkable economic value
and important ecological benefits [33,34]. To the authors’ knowledge, although there have been a large
number of studies conducted based on the H-D models to estimate the relationship between height and
diameter in Chinese fir plantations [35,36], few studies have considered the QR approach. In addition,
only scant attention has been paid to a comprehensive analysis of the relationship between height and
diameter, especially for the application to non-dominant trees [1,11,37]. Therefore, the ability of the QR
models to describe and evaluate the H-D relationships of the Chinese fir has not been fully validated.

To address the aforementioned problems, the goals of this study were to: (i) quantify the five relative
competition levels of the Chinese fir, (ii) develop and evaluate H-D models applying mean regression
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and quantile regression approaches for the five competition levels, and (iii) compare the H-D curves in
different competition levels to analyze the growth relationship between DBH and H at each level.

2. Materials and Methods

2.1. Data Collection

The data used in this study were collected from the National Forest Farm at Jiangle County,
northwest Sanming City, southeastern China (117◦05′–117◦40′ E, 26◦26′–27◦04′ N) in July 2018.
The region experiences a subtropical monsoon climate, with an annual average temperature of 18.6 ◦C
and annual average precipitation of 1721.6 mm. Precipitation is concentrated in the summer. Plantation
species in the forest farm include Chinese fir, Pinus massoniana Lamb., Schima superba Gardn. et Champ,
Michelia macclurei Dandy, and Phyllostachys heterocycla (Carr.) Mitford cv. Pubescens.

Data for this study were obtained from the even-aged and pure stands plantation (more than 85%)
throughout the forest farm. A total of 3133 trees in 28 sample plots (five temporary and 23 permanent)
were investigated from the study area and set up in five age groups, including young forests (1–10
years), middle-age forests (11–20 years), nearly mature forests (21–25 years), mature forests (26–35
years) and over-mature forests (≥36 years). The projected area size of plots ranged from 400 to 900 m2,
depending on the stand density. The plot size of dense stands is 400 and 600 m2, while the plot size
of sparse stands is 600 and 900 m2. In each plot, we recorded its coordinates, elevation, slope aspect,
degree, and position. The tree characteristics such as species, DBH (>4 cm, measured at 1.3 m above
ground), H, crown width (CW), and the dominance tree height (DH) of the stand were measured
(Table 1). The tree positions (relative x, y coordinates) were recorded by grids of subplots (10 × 10 m)
and a distance measurer. The southwest corner of each plot was assigned as the origin point for tree
position measurement, and the x, y coordinates were measured to the nearest 0.05 m.

Table 1. Summary statistics of tree and stand variables in plots considered for five distinct age groups.

Age groups Measurement Mean S.D. Min. Max.

Young
(575 trees in three plots)

DBH (cm) 8.47 2.47 4.00 18.90
H (m) 6.34 2.23 2.30 14.40

CW (m) 2.25 0.75 0.50 5.50
N (trees/ha) 3255 456 2625 3689

DH (m) 10.49 2.92 6.24 12.86

Middle-aged
(866 trees in eight plots)

DBH (cm) 15.64 4.52 5.00 31.00
H (m) 14.82 3.17 5.80 23.90

CW (m) 3.05 1.24 0.50 9.30
N (trees/ha) 2208 391 1367 2644

DH (m) 19.38 1.51 17.40 23.24

Nearly mature
(645 trees in six plots)

DBH (cm) 15.46 6.23 4.40 36.50
H (m) 16.24 4.50 3.40 26.50

CW (m) 3.29 1.55 0.20 6.90
N (trees/ha) 2247 553 1000 3083

DH (m) 22.48 1.55 20.56 26.18

Mature
(755 trees in seven plots)

DBH (cm) 18.21 7.71 4.70 53.50
H (m) 17.32 5.00 6.00 31.99

CW (m) 3.59 1.68 0.40 10.20
N (trees/ha) 1846 685 1025 3000

DH (m) 24.29 1.15 22.74 27.66

Over-mature
(292 trees in four plots)

DBH (cm) 23.77 6.87 4.00 41.10
H (m) 21.01 4.31 4.50 27.40

CW (m) 3.77 1.67 0.50 8.10
N (trees/ha) 1217 395 700 1767

DH (m) 25.99 0.43 25.54 26.62

Note: S.D., Min. and Max. is an abbreviation for standard deviation, minimum and maximum.
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In order to avoid the edge effect in the dominance index calculation, a 2-m buffer was set up along
the sample plot boundaries [38]. The trees in the buffer zone were only considered in the neighborhood
structure [39].

2.2. Relative Competition Quantification

Based on the neighboring trees, the Hegyi competition index and the dominance index were
both used to quantifying the competition at the individual tree level [40,41]. The former has a
higher accuracy of quantification, which is applied to the study of competition intensity with growth.
The latter estimates the relative competition pattern, which simplifies the process of quantification
and weakens the effects of abnormal trees [42]. Due to these characteristics, the dominance index
is more applicable to our objective. Therefore, the trees were divided into five relative competition
levels by using the dominance index (Di). The index expresses the degree of difference in the tree’s
characteristics (such as DBH, H, volume, and biomass) [43]. The dominance index is defined as the
ratio of a certain number of neighboring trees that are larger than the reference tree. The equation is
as follows:

Di =
1
n

n∑
j=1

ki j, (1)

where ki j =

{
0, i f re f erence tree i larger than neighboring tree j,
1, otherwise.

In this study, difference in DBH was used to obtain the value of kij, and the number of neighboring
trees n was set as 4. Therefore, the value of dominance included 0, 0.25, 0.5, 0.75 and 1, representing five
competition levels, i.e., predominant (D0), dominant (D0.25), co-dominant (D0.5), suppressed (D0.75),
and inferior (D1) (Figure 1). A larger Di value indicates that the reference tree is under competitive
pressure [44].
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The dominance indices of trees were calculated using the “forestSAS” package (version 1.0.1) [45]
in R (version 3.6.0).

2.3. Base Model

Several base H-D relationship functions were selected based on previous studies [12,13,15,46].
Based on a preliminary analysis (not shown), the Weibull function fits the data best, which is similar to
the findings of studies of Özçelik [5] and Yang [47]. The base function is as follows:

Hi j = 1.3 + (a + b·DHi)·[1− exp(−c·DBHi j)]
d, (2)

where Hij and DBHi are, respectively, the total height (m) and diameter at breast height (cm) of
the jth tree in the ith plot; DHi is the dominant height of the ith plot; and a, b, c, and d are the
regression parameters.
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2.4. Quantile Regression Model

For a nonlinear QR model, Equation (2) was used to predict the τth quantile. The quantile
regression model is as follows:

Ĥτ

(
DBHi j

)
= 1.3 + (a + b·DHi)·[1− exp(−c·DBHi j)]

d, (3)

where Ĥτ

(
DBHi j

)
is the predicted value of the τth quantile of tree height at diameter DBHij. The

function computes an estimate on the τth conditional quantile function of the response, given the
covariates, as specified by the formula argument [21,48].

Parameters from the quantile regression were obtained by minimizing the following problem [49]:

min


∑

H≥Ĥτ(DBHi j)

τ
[
Hi j − Ĥτ

(
DBHi j

)]
+

∑
H≥Ĥτ(DBHi j)

(1− τ)
[
Ĥτ

(
DBHi j

)
−Hi j

]. (4)

The “quantreg” package (version 5.51) was used to develop a set of series quantile regression
models; the observations and parameters belong to the moderate-sized (n� 5000, p� 20) category, so
it is recommended that the default “br” method be used [48].

2.5. Evaluation and Testing

To compare the fit of basic H-D models, 10-fold cross-validation [50] and the following criteria for
evaluation were chosen: Akaike information criterion (AIC), Bayesian Information Criterions (BIC),
log-likelihood value (logLik), root mean squared error (RMSE), coefficient of determination (R2), and
mean absolute error (MAE).

AIC = 2k− 2ln
(
L̂
)

(5)

BIC = ln(n)2k− 2 ln
(
L̂
)

(6)

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2, (7)

R2 = 1−

∑n
i=1(yi − ŷi)

2∑n
i=1

(
yi − yi

)2 , (8)

MAE =
1
n

n∑
i=1

∣∣∣yi − ŷi
∣∣∣ , (9)

where L̂ is the likelihood function for the model; yi and ŷi are the observed and predicted values of tree
height, respectively; and yi is the average value of yi. All calculations were performed using R (R 3.6.0
for Windows). The core code can be found in Appendix A.

3. Results

3.1. The Quantification of Five Relative Competition Levels

The statistical results (Table 2) showed the characteristics of DBH and H in each relative competition
level, and their changes with competition levels. The difference in the DBH between the competition
levels ranged from 11.33% to 23.31% with the increase in competitive pressure (D0 to D1 level), while
the difference in tree height ranged from 5.78% to 17.65%. The proportions of trees, starting from the
competition level D0 to D1, are 22.73%, 20.43%, 18.82%, 19.30%, and 18.72%, respectively, which shows
that the number of trees at the five levels is not very different.
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Table 2. Summary statistics of trees for each relative competition levels without trees in buffer.

Relative
Competition Levels

No. of
Trees

DBH H

Mean S.D. Min. Max. Mean S.D. Min. Max.

D0 425 20.6 7.3 5.9 41.1 17.3 5.8 2.9 28.2
D0.25 382 17.8 6.5 5.5 38.3 16.3 5.5 3.7 26.7
D0.5 352 15.0 6.0 4.2 37.6 14.7 5.7 2.7 27.2
D0.75 361 13.3 5.3 4.0 32.0 13.6 5.1 2.3 25.6
D1 350 10.2 4.8 4.0 33.0 11.2 4.9 2.3 25.0

Total 1870 15.6 7.1 4.0 41.1 14.8 5.8 2.3 28.2

S.D. is an abbreviation for standard deviation.

According to the plotting of H-D relationships for five levels (Figure 2), the distribution and trend
changes of H-D for the D0 level (Figure 2a) are relatively lower than (or to the right of) the other levels,
whereas for the D0.75 and D1 levels (Figure 2d,e), they are relatively higher than (or to the left of) the
other levels. To an extent, the clear distribution of the H-D relationships among the five competition
levels proved the applicability of the dominance index in the relative competition quantification.
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Figure 2. The plotting of H-D relationships for D0, D0.25, D0.5, D0.75 and D1 competition levels (a–e,
respectively). The white symbols are trees of Di level, and black symbols are trees of the other levels.
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3.2. Base H-D Model Validation

The parameter estimates and fit statistics for base H-D models of the Chinese fir are listed in
Table 3. All of the models that produced the H-D relationship performed well, with R2 ranging from
0.8982 to 0.9027 in the training group, and with low RMSE and MAE ranging from 1.6479 to 2.0886 and
1.2747 to 1.6167, respectively, in the testing group. The fold-6th model had the lowest values of AIC,
BIC, and the largest values of logLik; R2 predicted the best results for training data. The coefficients of
this model are a (5.6653), b (0.7755), c (0.0832), and d (1.3265). Hence, this model was further tested,
and the residual plot (Figure 3) shows homoscedasticity, which confirms that other weights were
unnecessary. Therefore, the base model is suitable for H-D relationship fitting.

Table 3. Details of 10-fold cross-validation for base models.

Fold AIC BIC logLik Training Group Testing Group

RMSE MAE R2 RMSE MAE R2

1 6881.5 6908.6 −3435.7 1.8636 1.449 0.901 1.8707 1.4747 0.8931
2 6888.2 6915.3 −3439.1 1.865 1.4545 0.9003 1.8555 1.4217 0.8999
3 6926.6 6953.8 −3458.3 1.8864 1.4703 0.8982 1.6479 1.296 0.9193
4 6863.7 6890.8 −3426.8 1.856 1.4494 0.9006 1.9349 1.4941 0.8974
5 6895.0 6922.1 −3442.5 1.8734 1.4595 0.8993 1.7779 1.389 0.9087
6 6833.8 6861.0 −3411.9 1.8374 1.4357 0.9027 2.0886 1.6167 0.8791
7 6885.5 6912.6 −3437.7 1.8658 1.4475 0.8997 1.8493 1.5116 0.9053
8 6869.7 6896.9 −3429.9 1.8571 1.4459 0.9014 1.9263 1.5266 0.8898
9 6853.3 6880.4 −3421.6 1.848 1.4419 0.9014 2.0025 1.5416 0.8908

10 6919.8 6946.9 −3454.9 1.8849 1.4723 0.8983 1.6660 1.2747 0.9180

Note: The coefficients (a, b, c and d) of models (not shown) are all significant (p-value < 0.001).
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3.3. Mean Regression Models for Five Competition Levels

The parameters and summary statistics of H-D models for five competition levels are listed
in Table 4, and the different model coefficients with 95% confidence interval (CI) between the five
competition levels are shown in Figure 4. Depending on the coefficient change trend of the models
between each level, the difference among the competition levels could be observed by the change
ratio of the coefficients. In the Weibull model we used, the coefficients before the natural logarithm
“e” (including a and b) are directly proportional to the ratio of H-D and the maximum tree height.
The coefficients c and d related to the rate at which the tree height reaches the maximum tree height
with increasing DBH. For example, the model coefficients c and d of the D1 are 36.46% and 9.69%



Forests 2020, 11, 183 8 of 15

smaller than D0.75. Therefore, the difference of H-D relationship trend between each competition level
can be judged by the rate of change of the model’s coefficients. However, the rates of change for the
H-D relationships near the upper boundary of the conditional distribution of H-D relationships are
still unclear [31], which shows that the conventional mean regression may be inappropriate or limited
for estimating the H-D relationships with ungraded data for competition level.

Table 4. The summary statistics of optimal H-D models for five competition levels from
10-fold cross-validation.

D0 D0.25 D0.5 D0.75 D1

AIC 1463.3 1338.3 1271.8 1364.1 1326.2
BIC 1483.1 1357.5 1290.6 1383.0 1344.9

logLik −726.7 −664.2 −630.9 −677.1 −658.1
RMSE (Training) 1.6135 1.6683 1.7817 1.9432 1.9677
MAE (Training) 1.2978 1.3250 1.3699 1.5277 1.5641

R2 (Training) 0.9256 0.9086 0.9069 0.8537 0.8440
RMSE (Testing) 2.0513 1.9273 2.3651 2.2568 2.4648
MAE (Testing) 1.5157 1.5042 1.8294 1.7752 1.8375

R2 (Testing) 0.8724 0.8844 0.7998 0.8334 0.7431

Note: Training and Testing in brackets indicate the training group and testing group of data for modeling
and validation.
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3.4. Quantile Regression Models

According to the results of the quantile process for all trees (Figure 5), the variation trends of the
QR models in some specific quantiles were similar to the other competition model’s parameters (a, b, c
and d). This means that the QR model may be used to predict the H-D relationship of trees at different
competition levels. The median quantile (τ = 0.5) model and multiple quantiles like τ = 0.4 and τ = 0.6
were similar to the basic model, while other quantiles were also informative. The prediction of the
QR model for τ = 0.01 and τ = 0.99 may indicate the upper and lower boundary of the conditional
distribution of the H-D relationship. Trees in the 0.01 and 0.99 quantile have only 1% of trees showing
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their respective H-D relationship trend, so may commonly be considered as outliers or prediction
errors in the modeling process.
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3.5. Comparison of Modeling Approaches

In order to illustrate the behavior of the H-D model and to compare the application capabilities
of the two methods in practice, the H-D curves (as a stand height curve) fitted by the two methods
were plotted (Figure 6). The comparison results showed that the H-D relationships of the five different
competition levels fitted by the mean regression (Figure 6a) might not be clearly distinguished. On the
other hand, the quantile regression fitted the H-D curves of different shapes based on the different
distribution characteristics of tree height increasing with DBH, which is flexible and more informative
about the H-D relationships (e.g., combined with the H-D relationship distributions of the five
competition levels, the dominant trees (D0) were mostly distributed in the 0.01 to 0.25 quantile range;
the medium trees (D0.5) were mainly distributed in the 0.25 to 0.75 quantile range; the suppressed
woods (D1) were mostly distributed in the 0.75 to 0.99 quantile range). However, the limitations of
quantile regression are also obvious: the fitted curve of the model follows the distribution of the
observed data and the basic shapes dictated by the quantile regressions [5], thus preventing the curves
from crossing one another (when the tree reached its maximum height; the maximum height of the
Chinese firs in this study area is about 24 m).
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4. Discussion

To clarify the relationship between the height and diameter in different competition conditions, the
mean regression and QR models for the H-D relationship were developed based on the Weibull growth
model, and compared in this study. With the same coefficients of the H-D models, the estimation of
the QR covered most of the predicted observations from the five competition level mean regression
models. To compare the variation of the model parameters, the parameters in the five competitive mean
regression models were consistent with the parameters in the QR model on the quantile between 0.3
and 0.7, which shows that the average tree height of five competition levels varied between 5.78% and
17.65% (i.e., about 0.06 and 0.18 quantiles). This shows that it is feasible to predict the H-D relationship
curves of different competition levels or describe the various types of growth patterns with specific
quantile regression models [51,52]. In addition, we can deduce the current growth and competition
of trees by referring to the conditional distribution of the H-D relationship in the QR model. If the
tree does not reach the maximum tree height, the current H-D relationship can be used to estimate its
respective competition level. The H-D relationship of the dominant tree is closer to the lower boundary
of the H-D distribution [31], i.e., the low quantile (0.01–0.3), while the suppressed tree is closer to
the upper boundary of the H-D distribution, i.e., the high quantile (0.7–0.99). This rule is consistent
with the general situation of tree growth [27,37], while the mean regression model cannot effectively
quantify this phenomenon under this distribution range [30].

For most H-D growth relationship research in the forestry and ecology fields, the conditional mean
of dependent variables is most important for statistical modeling, but sometimes researchers are more
interested in the outliers or extreme values of the dependent variable. The quantile regression results in
the median quantile range are similar to the mean regression results [31,53], and this is also confirmed
by the fitting results of model parameters in this study. However, based on the characteristics of
the QR model, the conditional distribution of the dependent variable is fully described by quantile
regression and is therefore of more interest to researchers. The curves of the QR model are often used
to explore the abnormal growth in the study of growth charts [54,55]. On the one hand, the QR model
provides a more detailed view of the growth trend (e.g., the H-D relationship in this study) of trees in
describing the structural distribution and changes to the H-D relationship. On the other hand, the QR
models predict the H-D relationship assuming that the predictor variables have a specific distribution
in response to different conditions, in this case, the competition levels [31].

Although the QR model is reliable in some studies, there are two problems that have to be solved
for its practical application. First, when the distribution of the dependent variable (i.e., tree height) is
concentrated in the data, there was no significant difference between the QR models. The QR models
in this study showed concentrated distribution of dependent variable from 0.4 to 0.6 quantiles, similar
to the previous study of the tree height prediction [27]; as a result, these QR models did not differ
significantly. However, when the standard deviation of the tree height was large, or the dispersion
degree of the H-D relationship was obvious, as in this study, the QR models of different quantiles were
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significantly different. Therefore, for the QR model, the distribution of the data may be as important as
the quantile selection. Second, the growth trends of trees in fact crossed each other, while the growth
trend curves fitted by QR are not allowed to do so as the QR curves usually follow the distribution of
the data and the guidance of the base shape [22,48]. Therefore, the QR model may be more suitable for
research about classification by models (such as the site index model and growth dynamics model).
In conclusion, the distribution of data and the base guiding curve are the main issues that should be
considered for QR model fitting.

5. Conclusions

An accurate and complete description of the H-D relationship is key to forest monitoring and
decision-making for sustaining and improving the understanding of ecological functions in plantation
systems. In our study, the five relative competition levels of the Chinese fir were quantified by the
dominance index. The difference in the DBH between the competition levels ranged from 11.33% to
23.31% with the increase in competitive pressure (D0 to D1 level), and the tree height ranged from
5.78% to 17.65%. To describe the various H-D relationship, the mean regression and the QR models of
the H-D relationship were compared. The H-D relationships between each competition level were not
markedly different for the fitted curves of mean regression. However, the regression curves based on
different quantiles showed various trends that can clearly describe the H-D relationship among these
competition levels. The average tree height between the five competition levels varied between 0.06
and 0.18 quantiles. The flexible and informative QR models showed some special curves of the H-D
relationship in the 0.01 and 0.99 quantile, which might cover the particular H-D relationships under
extreme conditions. However, the limitation of the QR models is obvious: the fitted curves are unable
to cross one another because the curve of the model follows the distribution of observed data and the
basic shapes dictated by the quantile regressions. Hence, the QR model requires further improvement
in assessing the growth trajectory of the tree’s diameter or height to gain better results.
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Appendix A. The Core Code in R

# library the request packages
library(xlsx, stats, spatstat, forestSAS, quantreg, broom, caret)
data<-read.xlsx(mydata,1) # input the data
head(data)
> ID Age.G plot S.plot No. species x y DBHcm CWm Hm Remark DH
> 1 1 Young YN1 YN1-1 C046 Chinese fir 9.5 2.55 6.8 4.1 6.2 Live 12.86
> 2 2 Young YN1 YN1-1 B033 Chinese fir 8.2 0.79 7.1 2.2 6.3 Live 12.86
. . . . . .

plot.1<-subset(data,plot==“YN1”)
ppp.1<-ppp(x=plot.1$x,y=plot.1$y,window=owin(c(0,30),c(0,30)),marks=plot.1[,c(1:13)])
nnindices<-nnIndex(ppp.1),N=4,smark=c(“ID”,”species”,”DBHcm”,”Hm”,”DH”,”CWm”,”x”,”y”),

buffer=FALSE,buf.xwid=2,buf.ywid=2)
Dindex <-fsasN4( nnindices$nnDBHcm,match.fun=dominance)
Dindex
. . . . . .

mod1<-function(DBHcm,DH,a,b,c,d){1.3+(a+b*DH)*(1-exp(-c*DBHcm))ˆd}
head(mod.data)
> ID Age.G plot species DBHcm Hm Dindex DH
> 4 5 Young YN1 Chinese fir 14.5 11.8 0.00 12.86
> 6 7 Young YN1 Chinese fir 6.3 6.8 0.75 12.86
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# fit models with 10-fold cross-validation
set.seed(65536)
sumtable<-data.frame(Stat.=c(“AIC”,”BIC”,”logLik”,”RMSE”,”MAE”,”R2”,”RMSE2”,”MAE2”,”R22”))
coftable<-c()
folds <- createFolds(y=mod.data$Hm,k=10)
for(i in 1:10){

fold_test <- mod.data[folds[[i]],] # set folds[[i]] as test data
fold_train <- mod.data[-folds[[i]],] # others as train data

fold_fit <- nls(Hm~mod1(DBHcm,DH,a,b,c,d),start = list(a=5,b=1,c=0.05,d=1.5),data=fold_train)
fold_AIC <- AIC(fold_fit)
fold_BIC <- BIC(fold_fit)
fold_logLik <- logLik(fold_fit)

fold_predict1 <- predict(fold_fit,type=‘response’,newdata=fold_train)
fold_RMSE = sqrt(mean((fold_predict1-fold_train$Hm)ˆ2))
fold_MAE = mean(abs(fold_predict1-fold_train$Hm))
fold_R2 = 1-(sum((fold_predict1-fold_train$Hm)ˆ2)/sum((fold_train$Hm-mean(fold_train$Hm))ˆ2))

fold_predict2 <- predict(fold_fit,type=‘response’,newdata=fold_test)
fold_RMSE2 = sqrt(mean((fold_predict2-fold_test$Hm)ˆ2))
fold_MAE2 = mean(abs(fold_predict2-fold_test$Hm))
fold_R22 = 1-(sum((fold_predict2-fold_test$Hm)ˆ2)/sum((fold_test$Hm-mean(fold_test$Hm))ˆ2))

Fold<-c(fold_AIC,fold_BIC,fold_logLik,fold_RMSE,fold_MAE,fold_R2,fold_RMSE2,fold_MAE2,fold_R22)
cofnew<-tidy(fold_fit,conf.level=0.95,conf.int = TRUE)
coftable<-rbind(coftable,cofnew)
sumtable<-data.frame(sumtable,Fold)
}

coftable
sumtable

#quantile regression model fitting
tuslist <- c(0.01, 0.05, 0.1, 0.25, 0.3, 0.5, 0.7, 0.75, 0.9, 0.95, 0.99)
coftable<-c()
cfMat <- matrix(0, 11, 5)
for(i in 1:length(tuslist)) {

tau <- tuslist[i]
cat(“tau = “, format(tau), “.. “)
fit <- nlrq(Hm~mod1(DBHcm,DH,a,b,c,d),

start = list(a=3,b=1,c=0.1,d=1),
data = mod.data, tau = tau,
trace = F)

cfMat[i,1] <- tau
cfMat[i,2:5] <- coef(fit)
cat(“\n”)

cofnew<- tidy(fit,conf.level=0.95,conf.int = TRUE)
coftable<-rbind(coftable,cofnew)
}
colnames(cfMat) <- c(“Quantile”,names(coef(fit)))
cfMat
coftable
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