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Abstract: Hydraulic redistribution (HR) of water from wet- to dry-soil zones is suggested as an
important process in the resilience of forest ecosystems to drought stress in semiarid and tropical
climates. Scenarios of future climate change predict an increase of severe drought conditions in
temperate climate regions. This implies the need for adaptations of locally managed forest systems,
such as European beech (Fagus sylvatica L.) monocultures, for instance, through the admixing of
deep-rooting silver fir (Abies alba Mill.). We designed a stable-isotope-based split-root experiment
under controlled conditions to test whether silver fir seedlings could perform HR and therefore
reduce drought stress in neighboring beech seedlings. Our results showed that HR by silver fir does
occur, but with a delayed onset of three weeks after isotopic labelling with 2H2O (δ2H ≈ +6000%�),
and at low rates. On average, 0.2% of added 2H excess could be recovered via HR. Fir roots released
water under dry-soil conditions that caused some European beech seedlings to permanently wilt.
On the basis of these results, we concluded that HR by silver fir does occur, but the potential for
mitigating drought stress in beech is limited. Admixing silver fir into beech stands as a climate change
adaptation strategy needs to be assessed in field studies with sufficient monitoring time.
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1. Introduction

Hydraulic redistribution (HR) is the passive flux of water between wet- and dry-soil zones through
plant roots as conduits. It is driven by soil-water potential gradients between dry- and wet-soil layers,
and between roots and soil matrix [1,2]. Typically, HR occurs during the night, when transpiration
has ceased [3–5]. Water can be redistributed in the upward (i.e., hydraulic lift [2,6,7]), downward
(i.e., hydraulic descent [8–11]), and lateral directions [12–15]. Field observations showed that HR plays
an important role in terrestrial ecohydrological cycles. Plants can benefit from HR through enhanced
photosynthesis and transpiration [16], alleviated soil-moisture loss during the dry season [17], and a
prolonged growing season [18,19]. These immediate benefits of HR consequently enhance nutrient
acquisition [20], increase nutrient mobility, and facilitate root-litter decomposition [21,22].
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HR has been documented in more than 100 species [23], including agricultural crops and
grasses [24–26], and forest trees and shrubs [27–29]. Although HR has been observed in diverse climatic
settings [16,23,30,31], it is most prevalent in arid and semiarid ecosystems, such as savannas [16,32,33],
arid climates and semideserts [5,34–36], Mediterranean-type ecosystems [10,37–39], and tropical
forests [40–42]. However, HR may become increasingly relevant in temperate ecosystems that are
subject to intensified drying–wetting cycles due to extreme drought events in projected climate-change
scenarios [27,43].

Several techniques can be used to identify HR under laboratory or field conditions. Reverse
water flow in roots can be identified by sap-flow techniques like the heat-balance [29,44] or -ratio
method [45,46]. However, quantification of reverse water flow in roots by sap-flow measurements can
easily be disrupted by fluctuations in ambient temperature [46,47], or small-scale soil and geomorphic
variability [10]. Furthermore, sap flow can only be measured in individual roots and upscaling to the
root system is a significant source of error [48]. Contrastingly, measurements of soil-water potential near
plant roots, accompanied by water stable isotope analyses, have been used to track water movement in
soil [30,49,50]. In this context, stable isotopes, either at natural abundance or by using heavy isotope
enriched water (i.e., H2

18O, 2H2O) as a tracer, are used as a novel technique to quantify water flow
between dry- and wet-soil layers through plant roots and water uptake by adjacent plants [3,27,51].

In temperate forests, HR was only detected in a few tree species in the field, such as Norway
spruce (Picea abies (L.) Karst.), Douglas fir (Pseudotsuga menziesii), ponderosa pine (Pinus Ponderosa),
loblolly pine (Pinus taeda), and sessile oak (Quercus petraea) [51–55]. In an adult mixed oak/European
beech forest, Zapater et al. [51] showed HR by oaks using an 18O-labelling approach but did not
find any tracer material in European beech. However, both HR and the uptake of redistributed
water by neighboring plants was detected in studies with seedlings of English oak, Norway spruce,
and European beech under moderate drought in split-root systems in the greenhouse [27].

In Central Europe, European beech, being both an abundant natural tree species and a key
species in forestry, was reported to be particularly vulnerable to drought [56,57]. As extreme drought
events and intensified drying–wetting cycles are projected to become more prevalent [43,58,59], beech
forests in Central Europe face consequences such as declining growth and drastic economic losses for
forestry [60–62]. Admixing deep-rooting tree species could potentially increase the resilience of beech
stands. In this context, silver fir was proposed due to its high productivity and presumably higher
drought resistance [63,64]. Furthermore, recent studies indicate that water supply to European beech
in mixed forest stands may be supported by the presence of silver-fir neighbors [65,66].

The aim of this study was to show if silver fir can perform HR under extreme drought conditions.
For this purpose, we applied an improved split-root approach under controlled conditions, combined
with the 2H2O labelling of water and in situ stable isotope analysis of soil moisture. We hypothesized
that fir roots were able to allocate 2H2O from moist- to dry-soil zones by HR.

2. Materials and Methods

2.1. Mesocosm Setup

This study was conducted using plant-soil mesocosms under controlled conditions in the scientific
greenhouse at the KIT Campus Alpin in Garmisch-Partenkirchen, Germany. Temperature (T) and
relative humidity (rH) were controlled and underwent daily cycles (T = 20.5 ± 4◦C, and rH = 58 ±
12 % on average). Ambient CO2 concentration showed diurnal fluctuations between 380 and 450 ppm
without long-term trends during the timespan of the experiment.

Six mesocosms, each comprising 2 nested polyvinylchloride (PVC) compartments (dimensions
of inner and outer compartment: length ×width × height = 90 × 38 × 40 cm3 and 20 × 20 × 10 cm3,
respectively) were set up as shown in Figures 1 and 2. Soil for the mesocosms was collected in autumn
2015 in the Black Forest close to Emmendingen (SW Germany). The material was taken from the Ah
horizon of a Dystric Cambisol that originated from Triassic sandstone and showed a sandy loam texture
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(see [67] for site and soil details). The soil material was mixed with perlite at a volume ratio of 1:1.
Perlite is a highly porous mineral that improves soil drainage and aeration properties while retaining
moisture. These properties helped with the homogenization of soil moisture and isotope equilibration.
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Decagon Devices, Inc., Pullman, WA, USA) was vertically installed in each beech compartment at 
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Figure 1. Experiment mesocosms. Two fir and 1 beech saplings were planted in polyvinylchloride
(PVC) compartments, whereas a beech sapling was isolated within a smaller compartment in the center.
A root strand of each fir was redirected into the beech compartment. Soil moisture was extracted via
diffusion into dry air passing through gas-permeable tubing connected to a water isotope analyser
(Picarro L 2130-i). Experiment comprised 6 such mesocosms; 3 were used as replicates and 3 as controls
(see main text for more detail).
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3. Results and Discussion 

Figure 2. Photo of two mesocosms with silver-fir and European beech saplings in separate
compartments.

Two silver-fir seedlings (3.5 years of age) were planted in the outer compartment (hereafter
referred to as the fir compartment), and a single European beech seedling (2 years of age) in the inner
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compartment (hereafter referred to as the beech compartment). Root length of the fir and beech seedlings
was, on average, 30 and 15 cm, respectively. A first-order coarse root with intact second- and third
order fine roots of each silver fir seedling was redirected to the beech compartment. The mesocosms
were then wrapped with plastic film to avoid evaporation and consequent contamination of the lab
environment with 2H2O vapor. The fir-root strands were the only hydraulic connection between beech
and fir compartments. As experiment control, 1 mesocosm was left unplanted but otherwise received
identical treatment (Figure 1).

2.2. Environmental Parameters

Volumetric soil moisture and temperature were measured using DECAGON EM50 loggers
(Decagon Devices, Inc., Pullman, Washington, DC, USA). A soil-moisture sensor (Type GS1 and 5TM,
Decagon Devices, Inc., Pullman, WA, USA) was vertically installed in each beech compartment at
approximately 10 cm depth. Volumetric water content (VWC) was recorded every 2 hours. Reported
soil-moisture data were calibrated against gravimetric measurements of the same soil material used in
the HR experiment. We observed erratic readings from soil-moisture sensors at very low soil-water
contents. This had implications on the calculation of soil-water potential, as is explained in the
following section.

2.3. Soil-Water Potential

Soil-water potential was calculated for the beech compartments with a widely used model for
water retention in soils [68]:

θ = θr +
(θs − θr)

(1 + (α|Ψ|)n)
m (1)

where |Ψ| = 1
α ×

( (θ−θr)
(θs−θr)

)− 1
m
− 1


1
n

, and Ψ is the absolute value of soil-water potential (hPa/cm water

column) at a specific volumetric water content θ (cm3 cm−3). θs and θr were the saturated and residual
water content of the soil, respectively. Parameters α (hPa), n, and m are shape parameters. For fitting,
θs and θr were determined from measurements, and α and n were estimated using the soil texture of
the potting substrate (sandy loam texture) according to Hodnett et al. [69]. For calculation, we used
gravimetrically calibrated volumetric soil moisture. We conducted predawn water potential (Ψpredawn)
measurements on 2 October to validate model results. Ψpredawn was measured on beech branches
using a Scholander pressure chamber [70] (Model 1000 Pressure Chamber Instrument, PMS Instrument
Company, Albany, Oregon, USA). Plant Ψpredawn could be used as an estimate for soil Ψ on the basis of
the assumption that plant Ψpredawn was in equilibrium with soil Ψ adjacent to roots. Water potential
is expressed as pF values, which is the logarithm of the absolute values of Ψ (hPa). Due to potential
biases inherent to VWC measurements at very dry soil conditions, pF calculation can be subject to
large uncertainty leading to pF values above the physical limit of ~6.9.

2.4. Leaf–Gas Exchange Measurements

Leaf–gas exchange measurements on beech seedlings were performed from August to October,
and captured the drought response of beech. We measured light-saturated photosynthesis (Asat) and
stomatal conductance (gs) using a portable leaf–gas exchange system (Li-6400, LI-COR Inc., Lincoln,
NE, USA) equipped with a light source (Li-6400-02B LED, LI-COR Inc., Lincoln, NE, USA). One green
leaf per beech tree was measured under predetermined saturated light conditions (PAR = 1200 µmol
m−2s−1), an average leaf temperature of 27.7 ◦C, and average relative humidity of 54%.
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2.5. Hydraulic-Redistribution Experiment

Prior to the experiment, the VWC of beech compartments was maintained at roughly 15% by
irrigation. Each mesocosm was then exposed to drought conditions by withholding irrigation for
25 days. On the night from 27 to 28 August, 2 L (i.e., 5.8 L m−2) of deuterated water (δ2H ≈ +6000%�)
was injected into the bottom-soil zone of the fir compartment of 3 mesocosms containing trees and the
unplanted control mesocosm. For each fir compartment, 6 evenly spread-out irrigation tubes (Figure 1)
were used as injection ports in order to ensure the homogeneous distribution of deuterated water. The
two remaining mesocosms containing trees received no label injection. Isotopic composition of soil
moisture in the beech compartment was measured on 15 separate days during the 10 following weeks.
Measurements generally took place during the morning hours until noon. Each beech compartment
was re-watered on 29 October with 1.5 L of tap water in order to weaken the water-potential gradient
between the fir and beech compartments, and, thus, the required conditions for HR.

2.6. Deuterated-Water Tracing

We used a membrane-inlet water-vapor sampling technique in soil coupled to a cavity ringdown
laser spectrometer [71,72] to trace 2H2O transport from the fir to the beech compartment. For this
purpose, the beech compartment of each mesocosm was equipped with gas-permeable tubing (Accurel
PP V8/2HF polypropylene tubing, Membrana GmbH, Germany: 30 cm long sections buried at 5 and
10 cm depth) that was flushed with synthetic dry air (20% O2 in N2) during measurements (Figure 2).
The dry air absorbed moisture upon passing the gas-permeable section. This approach resembled in
situ soil air probes [72], but with double the length of gas-permeable tubes in each beech compartment.
Accurel tubes are suitable for isotopic measurements, as they do not cause isotopic fractionation across
a wide range of soil-moisture contents, and render possible vapor measurements in equilibrium with
soil water [71].

A Picarro L 2130-i cavity ringdown spectrometer was used to analyze the stable isotopic
composition (δ2H) of the gas stream. On measurement days, gas streams exiting each of the 6
mesocosms were continuously measured for at least 15 min. To minimize carryover artefacts, lines were
flushed for 20 min between each measurement, and the values for the first 5 min of each measurement
were ignored. Stable isotope data reported in the results section of this study refer to the average
values of the remaining measurement time. Results of each day were scale-normalized to 2 in-house
standards (δ2H = –235.0 ± 1.8 %� and 1.8 ± 0.9 %� VSMOW) that were calibrated against international
reference materials (VSMOW2, SLAP2).

HR was quantified in this study as a percentage of excess deuterium (d) added to the fir
compartment by labelling, that was recovered in the beech compartment. In other words, 2H excess
recovery (∆d) corresponds to the needed amount of 2H from labelled water to reach the measured
isotopic composition of a defined volume of water. We used isotopic measurements to calculate a
mixing ratio between labelled water (i.e., δ2H = +6000%�) and background moisture using the isotopic
composition of the control mesocosm as a baseline to account for natural variability. This mixing ratio
is used to determine the amount of excess 2H in beech compartments, relative to excess 2H in the label
water based on the VWC (θ) of the beech compartment and the amount of added label water (Equation
2):

∆d =
∆dbeech
∆dlabel

× 100 =

(
ε2Hbeech − ε

2Hcontrol
) mbeech

mO
θ

(ε2H label − ε2Hcontrol)
mlabel
mO

Mlabel
× 100, (2)

where ∆d is the percentage of 2H excess recovered in beech compartments, ∆dbeech and ∆dlabel are the
2H excess [g] in the respective water reservoir (i.e., beech compartment or deuterated label water),
ε2Hbeech, ε2Hbeech, and ε2Hbeech are the isotopic enrichment of the respective water reservoir (given in
atomic % of deuterium calculated from δ2H values), mbeech

mO
and mlabel

mO
are the molar weight ratio between

hydrogen and oxygen in the respective water reservoir at the measured isotopic composition, θ is
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the VWC of beech compartments, and Mlabel is the absolute amount of label water added to the fir
compartment [g].

3. Results and Discussion

After 25 days of drought treatment, the VWC in the planted beech compartments declined to
6% ± 2%, while VWC in the unplanted control compartment was still at 16%. Soil-water potential in
the beech compartments of the mesocosms ranged between pF values of ca. 2.0 and 3.5 (Figure 3c).
Net beech photosynthesis had declined to an average of 8 µmol m−2 s−1 (Figure 3a), and stomatal
conductance showed values of around 0.14 mol m−2 s−1 (Figure 3b). After the fir compartments were
labelled with 2 L of deuterated water, the net photosynthesis and stomatal conductance of beech
continued to decline to 4 µmol m−2 s−1 and 0.05 mol m−2 s−1, respectively, one week after labelling.
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These data showed that the beech trees experienced severe drought stress during the experiment 
that was not significantly counteracted by the silver-fir seedlings. Previous studies also reported a 
similar development for mature trees in the field under severe drought conditions at mixed fir and 
beech cultivation [66]. 

In unlabeled mesocosms and the labelled control mesocosm, δ2H values of soil moisture in the 
beech compartment remained between –120‰ and –80‰ VSMOW throughout the entire incubation 
period (Figure 4a). Labelled mesocosms showed similar or slightly enriched values for the first three 
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during that time. This suggested that no detectable HR occurred for three weeks after label injection. 

Figure 3. (a) Time series of light-saturated photosynthesis (Asat) and (b) stomatal conductance (gs)
of beech seedlings as measurement averages ± standard error (n = 5). (c) Soil matrix potential in
beech compartments (daily means) as pF-values, log(|hPa|) for three labelled (black, grey, light grey),
two unlabelled (green, light green), and one unplanted control (light blue) mesocosms. Solid vertical
line: time of deuterium labelling; dotted vertical line: re-watering of beech compartments. Very high
pF values of some replicates from 10 April onwards were likely related to volumetric-water-content
(VWC) measurement bias in very dry soil conditions.

These data showed that the beech trees experienced severe drought stress during the experiment
that was not significantly counteracted by the silver-fir seedlings. Previous studies also reported a
similar development for mature trees in the field under severe drought conditions at mixed fir and
beech cultivation [66].

In unlabeled mesocosms and the labelled control mesocosm, δ2H values of soil moisture in the
beech compartment remained between –120%� and –80%� VSMOW throughout the entire incubation
period (Figure 4a). Labelled mesocosms showed similar or slightly enriched values for the first three
weeks after labelling. In addition, 2H excess recovery in the beech compartments was negligible during
that time. This suggested that no detectable HR occurred for three weeks after label injection.
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Figure 4. (a) Time series of δ2H in soil moisture in beech compartment of 2H-labeled mesocosms (grey),
planted unlabelled mesocosms (green), and labelled control mesocosm without plants (light blue).
Dashed lines: time series of each respective replicate; solid lines: their mean values. Re-watering
was with unlabelled water. (b) Time series of 2H excess recovery in beech compartments expressed
as percentage of 2H excess added by deuterated water to fir compartment. Isotopic composition of
control mesocosms’ beech compartment used as baseline for excess calculation. Grid was spaced at
14 day intervals.

During this initial three-week period, soil pF further increased in the beech compartments
(Figure 3c). Values for δ2H in the beech compartments started to notably rise afterwards (Figure 4a).
On the basis of 2H excess recovery, we could assume that traceable amounts of water were reallocated
to the beech compartment through the fir roots (Figure 4b). Hence, HR occurred in this experiment with
a delay of ca. 2–3 weeks after label application. However, this delayed HR occurred at pF values above
the permanent wilting point (i.e., pF = 4.2 according to Amelung et al. [73]; Figure 3c), and partially
resulted in the wilting of the beech seedlings. Seedling wilting is also represented by the concurrent
drop of photosynthetic activity and stomatal conductance to values close to zero (Figure 3a,b).

Prior to re-watering, 2H excess recovered in the beech compartments amounted to an average
of 0.2% of 2H excess added with the 2 L of deuterated water (Figure 4b). Re-watering of the beech
compartments with 1.5 L of water at the end of October clearly diluted the δ2H signal (Figure 4a).
Furthermore, pF values increased above the permanent wilting point. However, 2H excess recovery
was initially doubled by re-watering, followed by rapid decline (Figure 4b). We assumed that the
unexpected doubling of 2H excess upon re-watering was caused by overestimated VWC measurements
directly after re-watering the beech compartments (water amount was part of the calculation of 2H
excess recovery; see Equation 2). As indicated by δ2H dynamics, re-watering seemed to eliminate
the large gradient in water potential, which was needed to sustain HR through water loss from the
fir roots.

Overall, δ2H was correlated to pF values in the beech compartments (Figure 5). This suggests
that water-potential gradients largely drove HR by the silver-fir roots, and HR was stronger at high
pF values. A similar observation was made in a loblolly pine stand, where hydraulic redistribution
was determined by reverse root flow and was shown to increase with soil drought [74]. However,
in split-root experiments for Norway spruce, European beech, and English oak, Hafner et al. [27]
observed hydraulic redistribution already under moderate drought (water potential of ca. –0.5 MPa/

–5000 hPa/pF value of 3.7) after only several days. In these conditions, we could not find evidence
to support HR at similar time scales. Still, our results were consistent with the observation that, in
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a mature mixed beech–fir forest, the presence of fir slightly improved the xylem-sap flow density
of beech compared to a beech monoculture [66]. However, this improvement was not enough to
counteract the negative effect of drought on xylem-sap flow density. In addition, the positive effect of
the presence of fir on xylem-sap flow density in beech upon drought was reversed when the forest
stand was subjected to precipitation after drought. These data indicated that cocultivation of beech
and fir may not enhance the resilience of beech to drought events through HR.
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4. Conclusions

We set up a split-root experiment with silver-fir and European beech seedlings using 2H labelled
water to track HR from wet- to dry-soil zones through silver-fir roots. In situ measurements of the
isotopic composition of soil moisture showed detectable HR at 2–3 weeks after label application.
A positive correlation between soil pF values and the isotopic composition of soil moisture confirmed
that changes in water potential drive HR. Considering that only 0.2% of the added 2H could be
recovered at the permanent wilting point, we concluded that the admixing of silver fir to European
beech stands likely does not increase the resilience of beech monocultures to severe drought conditions.
The delayed onset of HR of 2–3 weeks in this study led us to recommend that future field studies allow
for a longer monitoring time to fully detect hydraulic redistribution.
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