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Abstract: This article deals with the topic of modelling the log-yard of one of our industry partners.
To this end, our framework is based on discrete-events modelling (DEM), as consequence that
many stages of the process run as a sequence of events. The sequence starts when trucks, trains or
ships arrive loaded with logs to the log-yard. A machine unloads these logs and accumulates
them in different storage areas. Consequently, a machine transports logs from these areas to
the pulp mill, thus finishing the process. As using probability density functions is the core
concept of DEM, the necessary process data to build these PDFs have been partly provided by
the company. Other necessary data have been acquired through time studies, and by defining
operational requirements. The company data tell when trucks, trains, or ships arrive to the log-yard,
and the amount of volume they carry. The objective is to develop the necessary formulations,
model calibration techniques, and software, such that computer simulations reproduce the quantities
observed in these data. To this end, this work suggests two alternatives to analyse the data itself.
These two alternatives lead to two different models: (1) The first being a hybrid model, in the sense
that it involves the events in the process, and the logic decisions taken by machine operators for
handling the incoming load, and (2) the second containing only the main mathematical essence of the
process. After running 100 simulations, both mathematical models show that the simulated values for
input and output, in terms of transport units and their volume, differ only by less than 3% compared
to company data. The first model has also shown the ability to replicate the decision making that
a machine operator undergoes for driving the logs to the storage areas, and from there to the mill.
Therefore, the framework adopted provides the necessary mathematical tools and data analysis to
model the log-yard and obtain highly reliable results via simulations.
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1. Introduction

In Nordic countries, the forest industry is a capital-intensive sector, looking constantly into
increasing the efficiency and performance of its processes [1]. This sector counts with different
sawmills, paper mills, particleboard, oriented strand board, fiberboard, just to mention a few. For many
of these wood production factories, the log yard is the initial step to store and sort raw materials, before
any other production begins. Due to the size of these sites great potential exists for the optimization
of internal logistics. However, performing trial-and-error modifications, by simply purchasing new
machines, or increasing storage areas, can lead to solutions that do not necessarily result in higher
efficiency. However, understanding the mathematical details of the log-yard process can lead to better
possibilities to optimize these systems.
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Optimization has traditionally been applied to improve the efficiency of how processes run in
different industries. On one hand, optimization can be done according to human experience, but this
approach often leads to expensive trial-and-error cases with low efficiency improvements. On the
other hand, optimization can be done using modern mathematical tools, which rely on computing
power to provide highly successful results. In fact, computer optimization is the core technology
helping a variety of industries to tackle current challenges in a variety of market domains. The core
success of computer optimization is system analysis, which is a process where one tries to understand
the parameters that have a high impact in the operation. To this end, computer optimization
uses mathematical models that can be coded to represent the system as a computer simulator.
These software simulators are useful to quickly simulate a process under different conditions.

In forestry, simulations have been used to investigate, design and optimize operational
processes, from timber harvesting to wood supply and processing. For example, Asikainen [2],
Karttunen et al. [3] and Väätäinen et al. [4] have shown simulation studies to investigate logging
and transportation via barges, intermodal container supplies of forest chips and feed-in biomass
terminals. Arriagada et al. [5] used simulation as a tool to estimate the costs for forest thinnings.
Eriksson et al. [6] and Berg et al. [7] simulated stump harvesting and supply chains. Pinho et al. [8]
have built a simulation model for road side chipping and wood chip deliveries to the customers.
The work of Chiorescu and Gronlund [9] and Salichon [10] focused more on harvester bucking
accuracy on saw-log features as well as sawmill performance itself. Other researchers focused on
optimizing log in-feed to the sawmill and optimization of log sorting bins, as well as overall description
of sawmill log yards [11–13]. Another example is the work of Puodziunas and Fjeld [14] and LeBel
and Carruth [15], who looked for improvements in wood delivery scheduling for a sawmill and
paper mill in order to reduce the amount of material handling necessary at the log-yard. In summary,
literature shows that a lot of focus has been devoted to understanding wood supply chains and specific
case studies. Despite the amount of studies presented in literature, many studies do not present the
general steps required to model log-yard operations using fundamental mathematical concepts.

In the area of mathematical modelling, several methods exist to analyze the processes undergoing
at a log-yard [16–18]. In literature, one of the most adopted methods to model forestry processes is
via discrete-event modelling (DEM), because many of these processes operate as a sequence of events.
These events are determined by the amount of time it takes to perform different tasks, and the physical
variables under operation. For instance, volume, weight, etc. In our case, the interest is to derive a
mathematical model of a log-yard, using the DEM framework. A model of this kind is useful as an
initial step to understand the parameters that can influence the working performance of the machines
and storage areas.

1.1. Discrete Event Modelling (DEM)

To briefly understand the concepts used in DEM, let us look at a simple log-yard sequence. In a
log-yard, the trucks carrying logs represent the input to the system. Considering that there is only
one log-stacker to unload them, then the trucks are individually unloaded one by one. During the
time it takes to unload one truck, the remaining trucks wait in a queue. After a truck has been
unloaded, then it exits the system leaving a pile of logs in the storage area. Each truck on the queue
repeats the same sequence of events. This example allows introducing the following terminology.
In DEM, the input of a model is known as an entity and often represents a physical object, e.g.,
a truck. The entity can possess an attribute helping the model take decisions, e.g., the volume of
logs. Each entity becomes part of a waiting queue, until a server, e.g., a log-stacker, provides a service
to the entity. To exit the system, the entity leaves another physical object into the process related to
some entity attribute, e.g., a pile of logs. Thus, the core concepts of DEM are entities, attributes, events,
resources, queues, and time. Figure 1 shows a graphical representation of a general case. Combinations
of this general model, in either serial or parallel, lead to developing processes that are more complex.
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Figure 1. Flowchart depicting the flow and the main components of a discrete event model.

One of the challenges behind using DEM is the amount of functions and variables required
to properly describe a process. In its most standard form, DEM uses different probability density
functions (PDF) to describe entities, attributes, and service time [19,20]. Although assigning PDFs
to define the behaviour of events is not difficult, finding the PDF and the parameters that reliably
describe the dynamics of a given process is challenging without data information. Therefore, DEM,
or any other modelling approach, require real process data to understand the sort of PDF that best fits
the behaviour of this process, and the parameters needed to make a model useful for analyses.

1.2. Problem Formulation

The company under study is running a log yard for a pulp mill. The company’s log yard receives
logs from three types of transport methods: trucks, trains, and ships. Unloading these logs can cause
challenging decision making in daily operations, when there is limited amount of space and machines.
The interest of this company is to understand their system to find out whether there are possibilities
for improvements. To this end, they can provide data to help in analysis. The data they have contain
detailed information about when trucks, trains, and ships arrive and how much volume of logs they
are bringing. The rest of the information about how the actual log yard operates is much less detailed
due to high traffic intensity, safety reasons and contractors’ unwillingness to be observed at the log
yard. Therefore, information about log yard storage capacity, different storage areas, log-stacker work,
decision making at the log yard and daily volume requirements from the pulp mill is provided through
interviews with log yard and logistics managers.

The goal is to develop a mathematical model capable of replicating this data reliably. From the
engineering perspective, our framework is based on DEM to describe the log yard processes, from the
moment logs arrive until the moment they go into the pulp mill. As the decision making within a
log-yard is complex, there is a variety of modelling complexities that can be considered in such a case.
They depend on the level of details that one wants to observe, and how one decides to analyse data.

To understand this clearer, let us explain how the data look like. Depending on whether the
company decides to provide a single or several months of data, these data can be formed by hundreds or
thousands of entries for every single truck, train, and ship arriving to the log-yard. Each of these entries
contains the time they arrive and the volume they carry. This information gives estimations of how
often entities need to be produced by a model, and how much volume that represents. The problem,
however, is that the data can be interpreted either daily, or weekly, or monthly. In addition,
data of trucks, trains, and ships can be considered as separate forms of entities, or as a single form
of entity.

If one would consider them as separate entities, this choice would lead to the possibility of
observing details of how these entities move through the process, at the cost of using complex
conditional statements in programming for showing the pathways of these entities. On the contrary,
if one would consider them as a single form of entity, this choice would lead to a simpler mathematical
representation of the system, which is also simpler to program. The following are some of the
advantages and disadvantages for these two modelling approaches:
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• First modelling approach analyses trucks, trains, and ships as different entities which is useful
to observe detailed information at every stage of the process, and can be interesting when the
company does not record data at those stages. This model is also useful to perform modifications
in the logic decision making of the company to evaluate their effect in the process. However,
the main disadvantage is that the amount of details in such a model involve a large number of
parameters. Thus, defining the specific places that could lead to optimizing the system becomes
difficult. Similarly, using mathematical optimization is rather difficult, if not impossible, in such
a model.

• Second modelling approach analyses trucks, trains, and ships as a single entity form which is
useful to quickly observe the process ability to cope with the incoming logs, and the demands of
the pulp mill. It is also useful to observe whether the system can cope with higher amounts of
trucks, trains, and ships, or the influence of using new machines. As the number of parameters is
small, mathematical optimization is feasible with such a model. However, the main disadvantage
is that this model cannot provide the internal details of the decision-making undergoing in
the process.

Under all these considerations, the remaining of this article shows how to model the system in
these two ways. To this end, it presents our methods to formulate and tune these models according to
company data. If both models prove to be an acceptable representation of real-life operations, they can
be useful as a first step of analysis. This can lead to understand what happens if some changes are
done to the actual process, and later, perform optimization.

DEM and simulations have been widely used to study forestry supply chains and log yards.
However, these studies have largely focused on answering specific questions based on case studies.
Consequently, there is little general guidance on the step-by-step process of constructing and
implementing a model. A major issue with modelling is that models are always built with a
specific purpose using methods appropriate for the available data and knowledge about the system
in question. However, lengthy descriptions are often needed to fully explain the model building
process, including details of individual components and data processing steps. Unfortunately,
academic publications are often constrained by word limits, and authors who have created a new
model generally wish to report both its development and at least one application showcasing its
capabilities. Therefore, many publications omit or simplify key details of the modeling process.
This paper seeks to avoid this issue by presenting a detailed step-by-step description of the process
used to construct a DEM model of operations at a pulp mill’s log yard based on real production data,
similar to the one used by Väätäinen et al. [21] at a power plant in Finland. Both the analysis and the
processing of the production data are described, showing how they were used to generate a robust
representation of the modeled system.

2. Materials and Methods

This section presents the steps to develop log-yard models following DEM concepts. The two
models described earlier will be referred to as model 1 and model 2. As data analysis is the main
difference between these models, data analysis will be fully explained separately for each one of them.
This section will initially provide the general formulations applied in this work, but all the values for
the parameters in these formulations will be provided in a table at the end of the section. This section
also presents a method to quantitatively verify if the simulated input and output results of these
models are within reasonable expectations.

Referring to Figure 2, the general layout of the log-yard process consists of two stages. The first
is the arrival of logs at the gate via one of the transport methods: trucks, trains or ships. All these
transport methods can arrive independently or simultaneously at any time during the working hours
of the day. Vehicles arriving enter a waiting queue for unload by one out of four log-stackers (servers),
and the load is placed in a designated storage area within the log-yard. There are four storage areas.
In Figure 2, they are labelled as A, B, C and D, and correspond to the storage space for each specific
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method of transport, i.e., A is for trucks, B is for trains, and C is for ships. An external storage area D
works as a buffer for the case when these areas are full.

Figure 2. A general model 1 system layout of log-yard logistics at a pulp mill.

The second stage of the process consists on feeding the debarking drum with logs coming from
any of the four storage areas. To this end, the same log-stacker from stage 1 takes the logs to a debarking
drum. The process concludes once the logs enter the debarking drum.

2.1. Data Processing and Normalization

When a truck, train, or ship arrives at the log-yard, the company writes the hour and minute it
arrived, and the volume of logs loaded in it. The time is entered in a 24 h format, i.e., 13:30, 14:45,
etc. The first step in data processing consists on transforming time, such that all entries in the data
have time consecutive, even when days shift. It should also be in a numerical format allowing making
mathematical operations. To this end, time is converted into seconds, such that subtracting two
consecutive times tells how often entities arrive.

The second step is normalization, which is used to place the data of volume into a similar scale.
This step is performed for facilitating the programming of servers, representing the machines working
on the log-yard. The difficulty has to do with defining the PDFs formulating the average time it takes
to work on an entity. To put it simple, if a truck is unloaded in a given time T1 (usually minutes), and a
train is unloaded in time T2 (usually hours), where T1 is much greater than T1, it is mathematically
impractical to create one single probability density function for the unloading time that can take
into account this large variation. Similarly, the storage area is programmed as a queue having logs
waiting to be fed into the pulp mill. Thus, the time it takes to transport these logs to the pulp mill is
somewhat proportional to T1 and T2. If a machine is used in stage 2, it becomes unavailable to stage 1
and vice-versa. In real life however, stage 1 has the main priority, particularly when trains and ships
arrive. Therefore, a machine in stage 2 will interrupt its work when some of these entities arrive at
the gate. However, interrupting server work is not something possible in the DEM framework. So,
if a server works on an entity, it will do it until it is finished. Thus, it becomes unrealistic to expect
that a server will be unavailable a whole time T2. However, if we consider that T2/T1 is a proportional
value η , then it is possible to think that a train is just η number of trucks, all arriving simultaneously,
i.e., dt = 0. In fact, it is possible to assume that trains and ships are just η1 and η2 number of trucks,
thus making trucks the smallest unit of transport to scale the system. After all, they all bring the same
objects, i.e., logs, and thus the volume of logs immediately also becomes proportional to one another.
A service time T1, in such a case, becomes also more realistic and removes the idea that the model
needs to wait time T2 before it can serve the next entity, either at the gate or storage area. This method
of parameterizing a model according to a proportional multiplier is known as normalization and
standardization, and it is often done in DEM as a way to develop the mathematics of complex systems
involving different entities [22]. Additionally, normalization is a method widely used to facilitate
analysis of complex data, and avoid sequences of conditional statements (e.g., if–else commands)
in software. Avoiding conditional statements is important to further optimize the system using
mathematical optimization.

The remaining steps involve cutting the data into separate vectors from which according to theory
of system identification half is used for model calibration and the whole data set later is used to verify
the model [23]. All these steps are summarized in Figure 3.
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Figure 3. Data processing steps.

2.2. Model 1

The reasoning behind model 1 has to do with treating trucks, trains, and ships as different entity
forms. Under this concept, each one of them can be given its own PDF, if data show that they follow
some forms of these functions. However, the entity generation can only produce a single entity
whenever it is time to produce one. Therefore, it is necessary to define an approach, so that the entity
generator selects one of these three forms of entities when needed. The selection has to follow similar
proportions of these entities as observed in the data. According to data, trucks come in the largest
proportion, followed by ships, and last trains (see Figure 4). These procedures are detailed below.

Figure 4. Layout representing three different transport methods, going into an algorithm to produce a
single entity out of them.

2.3. First Stage

To model the first stage of our system we need four main parameters. These parameters respond
to the questions of (1) what is coming (truck, train, or ship), (2) when is it coming (dt), (3) how much
volume is it bringing (attribute), and (4) how much time do we need to service it (service time)?

The entities to our first part of the process are the trucks, trains, and ships. The attribute for each
entity is the volume of logs they carry in cubic meters (m3). The intergeneration time (dt) describes
how much time passes between two arriving entities. The service time for the unloading machine
depends on the size of the entity, i.e., it takes longer time to unload a train than a truck. The output of
this stage is the volume of logs accumulated in areas A, B, C and D. The methods to define each one of
these parameters are as follows (Figure 5).
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Figure 5. After an entity has been selected (see Figure 4), the remaining of the operation is to define its
attribute (volume of logs), and an id tag to differentiate them throughout the simulation process.

2.3.1. Entity Generation and Attributes

To define entities, we start by considering the case of trucks. One year of company data show that
99.2% of all coming entities correspond to trucks (see Figure 4). For the case of the intergeneration
time (dt), these data follow a Generalized Pareto’s PDF:

dt1 =
∫
(x1|k1, σ1, θ1) =

1
σ1

+

(
1 + k1

x1 − θ1

σ1

)−1−
1
k1 (1)

where x1 is the input value, k1 is the shape parameter, σ1 is a scaling parameter and θ1 is the threshold
parameter (see Table 1).

For the case of volume, referring to Figure 6, data show that 22% of the truck volume is distributed
from 1 to 30 m3 following an almost uniform PDF (2c). Above this value, the remaining 78% of data
follows a normal PDF (2b). Since these two cases represent two different levels that cannot be captured
by a single PDF, our method involves combining them by using a weighted probability density
function (2a):

V13 = V11 ·W1 + V12 ·W2, (2a)

V11(x3, µ2, σ2) =
∫
(x3|µ2, σ2) =

1
σ2
√

2π
e
−(x3−µ2)

2

2σ2
2 , (2b)

V12(x5, a3, b3) =
∫
(x5|a3, b3) =

1
b3 − a3

[a3, b3]
x5 , (2c)

where W1 and W2 are the weights 22% and 78% according to data, and V11 , V12 are the PDFs defined as
(2b) and (2c), where x3 and x5 are the input values, µ2 is the mean value, σ2 is standard deviation, a3 is
the lower end point (minimum), b3 is the upper endpoint (maximum) (see Table 1).
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Figure 6. Histogram showing the amount of volume for trucks.

The case of trains and ships is using normalized data. To this end, the modelling approach
responds to two questions: (1) How often do trains and ships arrive, and (2) What are the values of
η1 and η2 to relate them to trucks. According to these questions, one year of data shows that trains
and boats arrive three to four times a month, i.e., only once per week, any day of the week. Therefore,
in relation to trucks, boats and trains do not follow any deterministic PDF. Hence, they have to be
modelled as a random appearance in relation to trucks. As shown in Figure 4, data show that trains
come with a frequency of 0.3%, and boats 0.5%.

In terms of mathematical modelling, selecting one of these transport methods corresponds to
selecting a number out of a pool of possibilities ω, where ω is in the set {ω1, ω2, ω3}, corresponding to
trucks, trains and ships. This set is allocated with a set of probabilities µ(ω), such that µ(ω)=
{µ(ω1), µ(ω2), µ(ω3)} in percentage value, and µ(ω1) + µ(ω2) + µ(ω3) = 100%. If our computer
package can return a random integer in the set ω according to the probability set µ(ω), then we simply
make this value correspond to trucks, trains and ships, having trucks with the highest probability.
To define this in software, we can use a uniformly distributed random real number r in the interval
(0,1), then the expression

1 +
3

∑
i=1

100 · r > Ci (3)

will be a random integer between 1 and 3 according to the probability set µ(ω). Ci is the cumulative
sum of the set µ(ω), and the inequality is a logical comparison of the random number with C. Once a
boat or a train appear during a given week, it is removed from the pool of possibilities through
software. In relation to our second question, to define the values for η1 and η2, the incoming volume of
logs in trains and ships in proportion to trucks is taken from the data itself.
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2.3.2. Control over the Size of the Entity Queue and Server Work

A second aspect of our process is the amount of servers (log-stackers) that can work
simultaneously at a given moment. To put it simple, if the queue of entities grows because a single
server works too slow, then more resources are allocated to keep the system running effectively. In our
process, there is a maximum queue length to maintain as an ideal condition, given as a value q1.
As long as the process remains below this value, one single server (log-stacker) is sufficient to provide
service to entities. However, when the queue overpasses q1, more servers are allocated to account for
the increasing amount. There is a procedure to increase the amount of servers. This procedure consists
on adding servers, once at a time, when the queue reaches specific threshold values. More specifically,
when the queue overpasses q1, then two servers work on the service side. Then, when the queue
overpasses q2, three servers work on the service side. If the queue length overpasses q3, then all
four servers work on the service side. Instead of using conditional if-else coding, the following logic
equation gives a mathematical formulation to select the amount of servers:

Y1 = 1 · (q < q1) + 2 · (q < q2) · (q < q1) + 3 · (q < q3) · (q < q2) + 4 · (q < q3) (4)

where q is the number of entities in the queue, and (q1, q2, q3) are the values to decide upon the queue
length. Figure 7 is a graphical representation of this stage of the process.

Figure 7. Block scheme of controlling queue length of incoming entities and number of working servers.

Once the amount of servers is defined according to queue length, the next step is to define the
service time (TS1), referring to the amount of time it takes to unload a given entity. The service time
was measured through time studies of work cycles directly at the log-yard. The resulting data show
that the server work follows the normal distribution defined as:

VS1(x6, µ3, σ3) =
∫
(x6|µ3, σ3) =

1
σ3
√

2π
e
−(x6−µ3)

2

2σ2
3 , (5)

where x6 is the input value, µ3 is the mean value, σ3 is standard deviation (see Table 1).

2.3.3. Selecting an Storage Queue for Unload

To send logs to the corresponding storage area A, B, C or D, the model needs a way to keep
track of the type of entities passing through the process and the amount of entities being queued in
each storage area. To this end, an entity id number is created and is attached as part of the entity
information once it has been created by the entity generator (Figure 5). The server sends the load
to the corresponding area using the id number (Figure 8). However, if the corresponding storage
area for trucks, trains and ships has reached its maximum inventory capacity, the load is redirected
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to the storage area D. The following logic equation gives a mathematical formulation to select the
storage area:

Y2 = 1(id = 1)(A ≤ INVA) + 2(id = 2)(B ≤ INVB) + 3(id = 3)(C ≤ INVC) + ...

... + 4(id = 1)(id = 2)(id = 3)(A ≥ INVA)(B ≥ INVB)(C ≥ INVC)
(6)

where id is the entity type, A, B, C is the storage area and INVA,B,C is the maximum inventory capacity
for each storage area (see Table 1). The result of Y2 will be in the set{1, 2, 3, 4}, representing areas A, B,
C, D, correspondingly.

Figure 8. Block scheme of controlling entity path to the right queue in the storage area.

2.4. Second Stage

The second stage follows the principles of the simple example described in Section 1. To begin,
the accumulated logs in the storage areas represent the incoming entities to this stage of the model.
Then, performing service represents the action of taking these logs to the debarking drum.

2.4.1. Server Work in Stage Two

Usually, the log-stacker in the first stage stacks logs in piles from the bottom up. However,
the same machine in the second stage will carry logs from top to bottom. Thus making the system
follow a last-in-first-out (LIFO) working method. A second consideration for modelling has to do
with the service time for this stage of the process. As explained earlier, when a machine is busy
in this second stage, it becomes unavailable to the first stage, and vice versa. However, the first
stage has priority, especially when trains or ships arrive in the system. Hence, a machine used in
this stage might be interrupted if trucks, trains or ships arrive at the first stage. Interrupting the
service time is not something that can be done via DEM. Therefore, the normalization done initially
becomes an important mathematical tool to this end. Without normalization, the service time for the
volume brought by trains and ships would demand hours of work at the second stage without any
possibility to interrupt it during simulation. The PDF for service time would be different for each
case (trucks, trains, and ships), and to use them in software would demand conditional statements
(e.g., if–else commands), and interrupting them would demand quite extensive and unnecessary
programming efforts. Contrary to this, normalization makes the system scaled to the volume of logs in
trucks. As result of normalization, the model needs a single PDF to define the service time for this case.

The service time (TS2) can be formulated with a normal PDF (2b), but using different parameters
for µ4 and σ4. The service time corresponds to how long it takes to transport logs from these areas to a
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debarking drum. More specifically, the time it takes to carry logs from the center of the storage area to
the debarking drum.

2.4.2. Selecting Logs out of a Storage Area for Log In-Feed to the Mill

One important aspect at the second stage of the process consists on deciding the storage area
from which the server will take logs from. According to the process in our study, area A receives
the highest priority, followed by C, B and finally D. To this end, our algorithms follow similar
procedure described by (3), but with four values to form the set {ω4, ω5, ω6, ω7} corresponding
to areas A, B, C, and D. Then the probability pool is given by µ(ω)= {µ(ω4), µ(ω5), µ(ω6), µ(ω7)},
having µ(ω4) + µ(ω5) + µ(ω6) + µ(ω7) = 100%.

2.5. Defining Model Parameters According to Data

So far, we have presented the formulations of PDFs needed to define how the entity intergeneration
time and attributes work in our system. However, as observed from (1) to (5) these PDFs contain
parameters to define the model behaviour when we perform numerical simulation. The values for
these parameters have to be extracted from data.

As explained earlier, there are plenty of ways in which data of this kind can be treated. In our
particular case, the data are analysed per week, because the company has information of weekly
demands. Therefore, one year of data is divided into 52 vectors through software (1 vector for each
week). The total data contain 16,131 trucks during one year, with a total volume of 600,000 m3. Half of
these vectors are used to derive the parameters of the PDFs required for the model. For simplicity,
our software uses the first half. Nevertheless, this procedure can be done by selecting half of these
vectors in any way, i.e., randomly, or by portions. Using half of the data is done to prevent over-fitting.
Over-fitting in data analysis often leads to models that very well capture the behaviour of a data set,
but they also learn the noise and outliers, and they becomes unreliable to predict new data sets.

2.5.1. Parameters that Can Be Derived from Data

PDFs functions can be observed by plotting the histogram of the data. Consequently, the method
of least-square regression can be used to fit the data to different PDFs (Hayes 2017). In our case,
the functions that best fit the data were given from (1) to (2c) and (5). Figure 9 shows the data fitting
for the portion of data used for model tuning. The result of the parameters that fit our models given by
Equations (1) to (2c) and (5) is given in Table 1.

(a) (b)

Figure 9. Data fitting of intergeneration time (a) and attribute for delivered log volume (b). Where the
grey area is a empirical data from company and bold line is showing fitting of the PDF.
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Table 1. Model 1 parameters.

Parameter Value

Solver Fixed Step Discrete
Fixed Step Size (fundamental sample time), s 300
Model 1 Total Simulated Time, s 2.7388 × 107

η1 36
η2 132
k1 0.3680
σ1 0.0078
θ1 0.00361
µ2, m3 45.4302
σ2, m3 4.5819
a3, m3 1
b3, m3 30
W1 0.78
W2 0.22
q1, entities 3
q2, entities 5
q3, entities >7
µ3, sec 319
σ3, sec 75
µ4, sec 832.9049
σ4, sec 249.8715
INVA, Storage A, m3 40,000
INVB, Storage B, m3 15,000
INVC, Storage C, m3 7000
INVD, Storage D, m3 ∞
µ(ω1)), % 99.2
µ(ω2)), % 0.3
µ(ω3)), % 0.5
µ(ω4)), % 55
µ(ω5)), % 8
µ(ω6)), % 35
µ(ω7)), % 2

2.5.2. Parameters that Cannot Be Derived from Data

Mathematically, queue lengths can be infinite because they only represent vectors. In practice,
however, the control over the queue lengths have to be done in software by defining vectors of a
given size and defining conditions to avoid overflowing them. In our particular case, (4) shows
the conditional statements to properly use the four available servers according to a given queue
length. The purpose of (4) is to maintain the queue length below the threshold values {q1, q2, q3}.
Information given by the company sets these values to {3, 5, 7}. However, one of the problems with
the process is that despite using all servers at once, it can also happen that the queue size will exceed
these numbers, especially when trains or ships arrive in the process. An important performance
criterion for the company in this study is raised at this point, because although this happens in reality,
it is important to find a working condition in which the ideal situations q1 is maintained, or managed
by the process.

The ideal condition of the queue length allows defining parameters for the remaining of the
model, for which there are no available data. Some of these parameters define the service time in
stage one (TS1) given by the normal PDF formulated in (5). Nevertheless, these parameters are not
set ad-hoc to force the system to behave in a particular way. On the contrary, we have observed the
process to extract realistic values by measuring the time it takes to unload trucks. Similarly, all storage
areas have restricted capacity, i.e., a maximum inventory capacity (Table 1). The PDF for the service
time of stage 2 (TS2) is determined by the weekly volume demand of 16,000 m3 of pulpwood from the
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mill. One server (log-stacker) is assigned to secure that the mill receives the specified volume of logs
from all storage areas.

The probability pool defining how often a server in the second stage will visit each storage area
is proportional to the storage area’s turnover time. This means that server 2, in model 1, is trying
to empty storage areas B and C before next train or ship arrives without causing too much volume
accumulation in storage area A and to avoid any inventory build-up in area D. The selection from
which storage area the logs should be taken follows (4) according to µ(ω4,5,6,7) in Table 1. Once the
entity enters the mill, the process concludes.

2.6. Model 2

There are two aspects involved in the reasoning behind model 2. The first has to do with how data
are analysed. For model 2, data of trucks, trains, and ships are analysed all together to extract a single
PDF for the arrival time and volume. This task is done from the normalized data set. The second factor
has to do with the decision-making observed from model 1. Using a single PDF for producing entities
removes the necessity to tag an identification number to each entity. Thus, much of the decision-making
based upon this number can be removed. Therefore, the system can be modelled as a streamline of
stages, as observed in Figure 10.

Figure 10. A general model 2 system layout of log-yard logistics at a pulp mill.

2.7. Stage 1

2.7.1. Entity Generation

As normalization removes the difference in the data of trucks, trains, and ships, a single PDF is
sufficient to represent the dt (Figure 11). To this end, the data are treated per week, similar to what was
done for model 1. Because the PDF of dt takes into account the whole week, model 2 can be further
simplified by removing pause server after entity generation block compared to model 1. Following this
procedure, data fitting suggests that dt follows a weighted combination (7c) of Generalized Pareto’s
(7a) and a deterministic uniform PDF (7b) defined as:

dt21 =
∫
(x2|k2, σ6, θ2) =

1
σ6

+

(
1 + k2

x2 − θ2

σ6

)−1−
1
k2 (7a)

dt22 =
∫
(x6|a4, b4) =

1
b4 − a4

[a4, b4]
x6 (7b)

dt23 = dt21 ·W5 + dt22 ·W6, (7c)

where x2 and x6 is the input value, k2 is the shape parameter, σ6 is a scaling parameter and θ2 is the
threshold parameter and a4 is the lower end point (minimum), b4 is the upper endpoint (maximum)
and W5 and W6 are the weights between two equations (see Table 2).
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Figure 11. Entity generator block diagram for model 2.

Similarly, data show that 17% of the total volume brought by trucks is uniformly spread from one
to 30 m3. Therefore, the volume follows a Weibull’s PDF for values above 30 m3 (8a) and a uniform
PDF for values below 30 m3 (8b), weighed by W3 and W4 (8c).

V21 =
∫
(x4|a2, b2) =

b2

a2

(
x4

a2

)b2−1
e−
(

x4
a2

)b2

(8a)

V22 =
∫
(x5|a3, b3) =

1
b3 − a3

[a3, b3]
x5 (8b)

V23 = V21 ·W3 + V22 ·W4, (8c)

where x4 and x5 are the input values, a2 is the scale factor and b2 is the shape factor, a3 is the lower end
point (minimum), b3 is the upper endpoint (maximum) and W3 and W4 are the weights between two
equations (see Table 2).

2.7.2. Entity Queue Control and Server Work

This model uses similar logic as model 1 to control the queue length, and to control the amount of
servers providing service to entities.

2.7.3. Storage Queue Selection

Since this model produces only one entity type, it does not take into consideration ID numbers.
Thus, it holds only one main storage queue, unlike model 1. Please refer to Figure 12.

Figure 12. Block scheme of entities path to the main storage area in model 2.



Forests 2020, 11, 155 15 of 22

2.8. Stage 2

2.8.1. Server Work

The service time (TS2) in second stage can be formulated with similar normal PDF (2b), but using
different parameters µ5 and σ5 (see Table 2).

2.8.2. Storage Queue Selection for Log in-feed to the Mill

Storage queue selection for log in-feed to the mill is the third main simplification between model 1
and model 2. Since the log-yard represents a storage area, irrespective of whether it has multiple areas
or not, then model 2 only has one main storage area representing the log-yard. Therefore, there is no
necessity to select the storage area from where to take logs. Thus, all entities can directly enter the
server for the mill without extra decision making.

2.8.3. Model Parameter Setting

The procedure to tune this model follows similar principles described for model 1. All parameters
required to run simulations with model 2 are summarized in Table 2.

Table 2. Model 2 parameters.

Parameter Value

Solver Fixed Step Discrete
Fixed Step Size (fundamental sample time), s 300
Total Model 2 Simulation Time, s 1.8576 × 107

η1 36
η2 132
k2 0.4243
σ6 0.0076
θ2 0.002
a2, m3 45.9942
b2, m3 9.65723
a3, m3 1
b3, m3 30
a4 0
b4 0.0007
W3 0.83
W4 0.17
W5 0.64
W6 0.36
q1, entities 3
q2, entities 5
q3, entities >7
µ3, sec 319
σ3, sec 75
µ5, sec 564.8994
σ5, sec 169.4698
Main Storage, m3 >62,000

2.9. Method to Draw Quantitative Comparison between Models and Data

Our procedure to perform quantitative comparisons is as follows. Simulation runs are done in the
following three cases:

1. Case 1: The company data are directly fed into model 1 to record the behaviour of the
model according to these data. To this end, the data were organized to provide the necessary
intergeneration time, attributes, and id number for each of its entries. After simulation, all the
dynamic responses of the data—from stage 1 and 2—were saved.
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2. Case 2: Model 1 was simulated according to its mathematics presented in Section 2.
The simulations are set to produce new values for the PDFs at each run. Thus, each simulation
run will be different from the previous. The computer was left to produce 100 simulation results.
This process took several hours.

3. Case 3: Model 2 was simulated according to its mathematics presented in Section 2. As above,
each simulation run is different from the previous. The computer was left to produce 100
simulation results. This process took 1 hour.

Having the results of these three simulation cases, it is possible to draw statistical comparisons.
As explained earlier, these models were calibrated according to half of the data. However,
the comparison takes place according to the whole data set, to see if the models can predict new data
sets. In particular, results of cases 2 and 3 are used to compare against 1.

One initial approach to validate both models in relation to data is by observing the amount of
input entities produced in each case, and the output from the very last server in the process. Since the
output data are taken from the very last server, the entities at the output are those that the system
processed during simulation.

All data analyses, modeling, and simulations were performed using MathWorks’ MATLAB and
the Simulink software packages.

3. Results

3.1. Number of Entities for Model 1 and Model 2

As shown in Table 3, simulations using models 1 and 2 representing one year of the log yard’s
operations produced 22,223 and 21,738 entities, respectively, on average. These averages are based on
100 simulation runs each. For comparative purposes, the company’s data show that 21,685 entities
arrived over the course of one year. Figure 13a,c show that based on the average of 100 simulation runs,
the results obtained with model 1 deviate from the company’s data by 2.5% whereas those obtained
with model 2 deviate by only 0.2%.

Table 3. Total number of generated and delivered entities over one year period based on 100 simulation
runs using models 1 and 2. * Confidence intervals based on the final values of the simulations.

Difference
from

Company
Data, %

Standard
Deviation

Standard
Error

T-Score Confidence Interval
95% *

Lower Upper Lower Upper

Generated Entities (INPUT)

Model 1 22,223 2.5 6332 42.4828 −1.9601 1.9601 22,138 22,307
Model 2 21,738 0.2 6230 42.2557 −1.9601 1.9601 21,654 21,822
Company Data 21,685 - - - - - - -

Delivered Entities (OUTPUT)

Model 1 21,666 2.4 6216 42.2336 −1.9601 1.9601 21,583 21,750
Model 2 21,742 2.7 6323 42.9702 −1.9601 1.9601 21,659 21,825
Company Data 21,167 - - - - - - -

Figure 13b,d show the output data (i.e., the predicted numbers of delivered entities) for models 1
and 2. The output of model 1 differs from the value indicated by the company data by 2.4%, while that
of model 2 differs by 2.7% (Table 3).
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(a) (b)

(c) (d)

Figure 13. Total numbers of generated and delivered entities based 100 simulation runs representing
one year of the log yard’s operations using Model 1 (a,b) and Model 2 (c,d).

Model 1 predicted the generated volume to be 4% higher than the value indicated by the
company’s data (877,076 m3 vs. 844,363 m3), while model 2 predicted it to be 0.1% lower (843,545 m3)
than the value recorded by the company. The models can also be compared based on the volume
processed before the output is generated; these values correspond to the final volumes delivered to the
mill. Models 1 and 2 predicted the volume delivered to the mill to be 3% and 2% higher, respectively,
than the value reported by the company (824,569 m3).

3.2. Detailed Results for Model 1

As noted in Section 2.3, model 1 treats deliveries by different modes of transport separately,
using concepts of probabilities for deliveries by each mode, whereas model 2 treats them all together
and uses a single unified probability density function to determine when deliveries occur. Therefore,
it is possible to compare the empirical data on deliveries by different modes to results generated using
model 1, but not to those generated using model 2. Model 1 predicts that over the course of an average
year, the yard will receive 34 deliveries by ship and 30 deliveries by train, whereas the empirical data
show that the yard received 34 deliveries by ship and 24 deliveries by train. The model’s predictions
thus deviated from the empirical data by 6% for ships and 22% for trains.

The entities from the entity generator enter a waiting queue, where they remain until they are
unloaded. The length of this queue depends strongly on the mode of transport by which the entities
were delivered to the yard. In Model 1, the arrival of one ship is represented by the simultaneous
arrival of 132 trucks while the arrival of one train is represented by the simultaneous arrival of 36 trucks.
Figure 14 shows how the length of the waiting queue varies over the course of a simulation (black
line); the peaks correspond to the arrival of a ship or a train at the simulated yard. The corresponding
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empirical data are also plotted (in grey), showing that the simulation accurately reproduced behavior
observed in the real world after normalization.
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Figure 14. Number of waiting entities to be unloaded at Stage 1. The dark solid line represents results
obtained using Model 1, while the grey line shows company data.

An important aspect of Model 1 is that the number of working servers depends on the queue size.
As explained in Section 2.3.2 and shown in Table 4, the number of working servers may be between
one and four. Model 1 predicts that only one server will be active for 71% of the total time. The next
most common work pattern occurs when a train or ship arrives at the yard, in which case all four
servers must work simultaneously; this occurs 26% of the total time. Situations in which only two or
three servers were working accounted for 2.5% and 0.5% of the time, respectively. The company data
indicate that one, two, three, and four servers were in operation for 71%, 1.5%, 0.5% and 27% of the
total time, respectively.

Finally, the numbers of entities in the storage areas were considered. Since each simulation
exhibited somewhat different behavior, their results were analyzed at the level of individual runs.
As shown in Figure 15, the empirical data indicated that the maximum volume of material in storage
was somewhat higher than was predicted by the model. Additionally, the empirical data revealed a
number of transient spikes in the stored volume that were not captured in the simulation. Nevertheless,
the model’s prediction of the volume in storage at the end of the year agreed quite well with the
empirical result, because the model’s internal logic and mathematical approximations were derived
from the empirical data.

Table 4. Proportion of entities unloaded while different numbers of servers were operating.

Percentage of Unloaded Entities per Server Combination

1 Server 2 Servers 3 Servers 4 Servers

Model 1 71.0 2.5 0.5 26.0
Company Data 71.0 1.5 0.5 27.0
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Figure 15. One example result of total inventory level of entities as predicted by model 1 and indicated
by the company data.

4. Discussion

Many methods can be used to analytically model complex systems [16,24]. When creating
a model with the aim of reproducing real outcomes, data analysis can be a key issue because the
way data are treated determines which methods can subsequently be used to model the system.
Our objective in this work was to develop a model describing operations at an existing log yard
and to verify its ability to reproduce real outcomes by comparing its output to data supplied by the
company that manages the yard. To this end, we used two modelling concepts based on different ways
of processing and analyzing the available data to illustrate the possibilities offered by mathematics
of discrete event modelling. We thus created a hybrid model (model 1) that can be used to study
the details of the system’s operations. We also created a purely mathematical model (model 2) that
describes the behavior of the system’s main parts. Since model 1 is very detailed, it can be used to
show how the existing system behaves in terms of decision making and so on. However, it is not well
suited to optimizing or testing alternative scenarios. Model 2 can generate similar results to model
1 but uses strict data normalization and standardization processes as used in statistical modeling,
machine learning, and optimization. It can therefore be used to perform numerical optimization
in order to find ways of improving process performance, at least within the limitations imposed by
the chosen set of PDFs, queues, and servers. By choosing different approaches to data analysis and
signal processing, it would be possible to implement many other modeling strategies representing
intermediates between the two extremes presented here.

A major challenge in data analysis is to extract valuable information from a potentially large
quantity of data. A significant problem during this work was that the data supplied by the company
only covered its operations over one year; a dataset covering a longer period, such as six years,
would have enabled analysis of year-on-year variation in the log yard’s operating processes. Since no
such data were available, the models presented here can be considered reliable for the year covered
by the data, but we cannot say with certainty that this is sufficient to describe the performance of the
company’s processes over longer periods. However, if we assume that there are no large variations in
the way the company operates, our models should provide reliable estimates for longer periods.

When using company data, it can be challenging to create PDFs that accurately reflect real-world
outcomes because the behavior of real systems is not always well described by standard PDFs.
Our results show that the behavior of real systems can sometimes be approximated using weighted
PDFs in such cases. Although weighted PDFs are rarely used in discrete event modeling, they are
widely used with other modeling methods. The problem with this approach is that the results obtained
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become highly targeted to the data set on which the PDFs are based. Consequently, the validity of
the approximation in contexts outside that represented by the available data is questionable unless
there is reason to believe that there is no appreciable long-term variation in the studied process and/or
operations. This is another reason why it would be desirable to have a dataset covering a longer
period of time. The use of weighted PDFs is exemplified by the treatment of the variable input entities,
i.e., trains, ships, and trucks. In model 1, each mode of transport is analyzed separately and their
arrivals are coordinated using probability theory. In model 2, all methods of transport are described
using a single PDF, which have to be weighted to achieve reasonable agreement with the company’s
data. A similar situation occurs when dealing with data that vary over a wide range, as was the
case when adapting the model to account for the possibility of partial deliveries (i.e., deliveries in
which the yard receives only a fraction of the volume carried by a train, truck, or ship). Full deliveries
could be modeled well using a normal or Weibull PDF. However, low-volume deliveries (partial truck
loads) accounted for too large a share of the total delivered volume to be ignored but were not well
described by any PDFs that could also describe full deliveries. Therefore, a weighted PDF was used to
model the combined occurrence of full and partial deliveries (the latter being defined as deliveries of
up to 30 m3). An alternative to using weighted PDFs in such cases is to use two-dimensional cluster
functions, which are used extensively in principal component analysis [25]. Cluster functions can
give almost 0% error in data fitting [26,27]. However, they are more difficult to use in the context of
modelling, and overfitting data does not necessarily result in more accurate simulations.

After running 100 simulation trials each representing one year of the log yard’s operations,
the average values for the input and output entities obtained using both models were within 3% of
the value indicated by the company’s data. It was not necessary to perform multiple simulations to
estimate the confidence intervals for the models’ predictions because their values are embedded in the
PDFs and could thus be calculated analytically. The models’ predictive accuracy is very good given
that they were calibrated using only half the available data but tested against the complete company
data set. However, although the input and output values agree well with the empirical data, there is
no way to verify that the models’ descriptions of the yard’s internal operations agree well with reality
due to a lack of suitable reference data. This limits the reliability of our results.

A challenging issue for any model is to capture dynamics over the entire simulated period.
Figure 13a,c show the predictions of models 1 and 2 agree well with the company data between 0 and
ca. 3500 h, but the models fail to capture a fall in the number of arriving entities between 3500 and
ca. 5300 h. A similar pattern exists in Figure 13b,d, where both models closely follow the company
data until ca. 1200 h but fail to capture a slight fall thereafter. In both cases, the fall in the number of
arriving entities observed in the company data could be due to vacation time or holidays. No effort
was made to model vacations and holidays because doing so was expected to require considerable
programming effort without greatly improving the models’ predictive accuracy.

As noted previously, each of the two models presented here has distinct strengths and limitations.
The strength of model 2 is its mathematical simplicity and its ability to describe the yard’s operations
as a linear sequence of events with very few decision-making stages. Conversely, the strength of model
1 is its ability to shed light on the details of the yard’s processes and operations, at the cost of requiring
many conditional statements to describe decision-making. Unfortunately, conditional statements give
rise to bifurcations in simulations, making mathematical optimization difficult or impossible. Model 2
is thus better suited for optimization purposes because it uses analytical expressions in place of many
of the conditional statements used in model 1.

Data representing real life operations often cannot be described using a single PDF, so a
combination of PDFs may be needed to obtain an accurate description. The results presented here
show that using DEM in conjunction with two different approaches to data analysis enabled reliable
prediction of the studied log yard’s inputs and outputs. The two models presented here have different
strengths: model 2 is the most appropriate if seeking to estimate the number of entities handled at the
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yard per year and for performing optimization, while model 1 is best for characterizing the flow of
material through the yard and identifying bottlenecks.
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